Thanks to visit codestin.com
Credit goes to github.com

Skip to content

xu-yang16/rl_wbc

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

RL_WBC Training Framework

This repository contains the code for the training framework of the RL_WBC project. The control framework consists of a high-level RL policy and a low-level Whole-Body Control (WBC) policy.

Acknowledgement: The training framework is partially based on the rsl_rl and cajun.

Train

python train.py

Training arguments:

  • --num_envs=4096: Number of parallel environments.
  • --show_gui=False: Show the GUI of the simulation.
  • --max_iterations=600: Maximum number of iterations.
  • --friction_type=[pyramid,cone]: Friction type of the WBC formulation.
  • --solver_type=[pdhg, qpth]: QP solver type.
  • --env_dt=0.02: RL policy time step.

Eval

python eval.py

Evaluation arguments:

  • --num_envs=4096: Number of parallel environments.
  • --use_gpu=True: Use GPU for evaluation.
  • --show_gui=False: Show the GUI of the simulation.
  • --use_real_robot=[0,1,2]: 0 for isaac gym, 1 for mujoco and 2 for real robot.
  • --name=[go1,go2,a1,mini_cheetah]: Robot name.

Basic PD+WBC Controller

python wbc_example.py

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages