Thanks to visit codestin.com
Credit goes to github.com

Skip to content

This is the implementation of "Low rank matrix factorization under general mixture noise distributions."

Notifications You must be signed in to change notification settings

xiangyongcao/PMoEP

Repository files navigation

README

Version 1.0, 29-Dec-2015

This package contains the MATLAB implementation of "Low-Rank Matrix Factorization Under General Mixture Noise Distributions".

The code has been tested with MATLAB 2014b on a PC with 64-bit windows 7.

================================================================================================

Use of this code is free for research purposes only.

================================================================================================

Reference:

Xiangyong Cao, Yang Chen, Qian Zhao, Deyu Meng, Yao Wang, Dong Wang and Zongben Xu, Low-Rank Matrix Factorization Under General Mixture Noise Distributions, 15th International Conference on Computer Vision (ICCV), Chile, Dec. 2015 (Oral)

================================================================================================

Installation:

  1. Unpack the contents of the compressed file to a new directory.

  2. Run the Demos

================================================================================================

Demos:

Demo_EP.m % EP 0.2 noise Demo_Gauss.m % Gaussian noise Demo_Laplace.m % Laplace noise Demo_Sparse.m % Sparse noise Demo_Mixture1.m % Mixture1 noise: Sparse noise + Gaussian noise + Gaussian noise Demo_Mixture2.m % Mixture2 noise: EP 0.5 noise + Gaussian noise + Laplace noise

================================================================================================

Main Routine

[label,model,TW,OutU,OutV,llh,llh_BIC,p] = EM_PMoEP(InW,InX,r,param,p,lambda) %Input: InW: d x n x param.k indicator matrices InX: d x n input data matrix r: the rank param: --param.maxiter: maximal iteration number --param.OriX: ground truth matrix --param.InU: initialized factorized matrice U --param.InV: initialized factorized matrice V --param.k: the number of mixture components --param.display: display the iterative process --param.tol: the tolerance for stop p: the candidate components lambda: the tuning parameter

%Output: label: the labels of the noises model: model.eta, the precisions of the different EPs model.Pi,the mixing coefficients W: d x n weighted matrix OutU: the final factorized matrix U OutV: the final factorized matrix V llh: the log likelihood llh_BIC: the log likelihood used in BIC criterion p: the selected components

  • =========================================================================
    If you have any quesion, please contact Xiangyong Cao([email protected])

About

This is the implementation of "Low rank matrix factorization under general mixture noise distributions."

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published