Thanks to visit codestin.com
Credit goes to github.com

Skip to content

xq-xia/HCSeer

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

32 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

github github github github github

HCSeer employs the Kernel Density Estimation (KDE) algorithm and the Expectation-Maximization (EM) algorithm from machine learning to calculate the variant density on the amino acid sequence of each gene and identify potential hot and cold spot regions.

HCSeer Graph

Python packages that need to be installed

  1. numpy (v>=1.26.4)
  2. pandas (v>=2.2.2)
  3. scikit-learn (v>=1.4.2)
  4. scipy (v>=1.13.1)
  5. python (v>=3.6)

Installation tutorial

These scripts do not require compilation.

Annotate whether our variant is located in a cold hot spot regions

How to use Auto-annotation.py scripts to annotate whether our variants are located in cold and hot spot regions

python Auto-annotation.py -i /path/to/your/input.vcf -o /path/to/your/output.vcf -buildver hg38

Other script purposes

  • 00_database-processing.sh

    Preprocess the data in the Clinvar database

  • 01_clinvar-annotation.sh

    Annotate preprocessed data with an annotator

  • 02_annotation-data-processing.py

    Process the data generated by annotations

  • 03_main.py

    Kernel density estimation algorithm

  • 04_EM.py

    Maximum Expectation Algorithm

  • 05_Initial-result-processing.py

    Process the initial result to obtain the final result

  • 06_compute_p-value.py

    Calculate p-value

  • 07_profile-coefficient.py

    Calculate contour coefficient

  • hg19-to-hg38.sh

    Script for converting hg19 genome version coordinates to hg38 version

  • inAutoPVS1.py

    Compared to AutoPVS1

  • PP2_BP1_PM1_PS1.py

    Combining PP2, PM5, PS1, BP1

  • process_function.py

    Some file processing functions

  • result-analysis.py

    Result analysis

Citation

If you use EpiAgent in your research, please cite our paper:

Xia, X., Zhao, G., Yuan, X. (2026). HCSeer: A Classification Tool for Human Genetic Variant Hot and Cold Spots Designed for PM1 and Benign Criteria in the ACMG Guideline. In: Tang, J., Lai, X., Cai, Z., Peng, W., Wei, Y. (eds) Bioinformatics Research and Applications. ISBRA 2025. Lecture Notes in Computer Science(), vol 15756. Springer, Singapore. https://doi.org/10.1007/978-981-95-0698-9_1

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published