Thanks to visit codestin.com
Credit goes to github.com

Skip to content

yelzha/nlp_lab

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

340 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Project To-Do List


Completed Tasks

1.1. AEDA Implementation

  • Status: Completed
  • Description: Successfully implemented and tested simplistic version of AEDA using Python code.
  • Outcome: Works as expected.

1.2. Local LLM Integration (Ollama + Python)

  • Status: Completed
  • Description: Successfully installed and tested Ollama with Python code execution on Bender using local LLMs.
  • Outcome: Local inference working as expected.

1.3. AgentForest: Implementation and Testing

  • Status: Completed
  • Description: Adapted, implemented, and validated the AgentFores codebase.
  • Adjustments: Code was modified to address compatibility issues on Bender.
  • Benchmark Result:
    • Runtime: 2h 47m on clean dataset
    • Mode: Solo Agent Execution
    • Issues: Not optimized for Parallel Inference and some problems with GPU

1.4. Ollama Optimization -> migration to VLLM Framework

  • Status: Completed
  • Goal: Improve Ollama’s response time on Bender.
  • Current Performance: ~5–20 seconds per query (qwen3:4B full mode)
  • Target: Achieve stable, low-latency inference (<5s preferred)
  • Results: Good performance for N Agents with the 16-20 seconds per n of query.

1.5. Wikitypo, r2ata

  • Status: Completed
  • Goal: Add noising to the dataset
  • Target: Achieve generated results

2. Experimental Runs & Data Collection

  • Status: Completed
  • Description: Execute all planned experimental configurations (Clean & AEDA & WikiTypo -> 1-25 Agents).
  • Estimated Duration: 1-3+ week of continuous runtime
  • Deliverables: Logs, metrics, performance data for all models and settings.

3. Report & Visualization

  • Status: Completed
  • Goal: Compile results into a detailed report with clear visualizations.
  • Tools Suggested: Python (Matplotlib/Plotly), Pandas, LaTeX for formatting.

Timeline Overview

Task Status ETA / Notes
Ollama + Python Integration Done Complete
AgentFores Implementation Done Runtime measured: 2h 47m
Ollama Optimization Done Focus on reducing latency -> VLLM migration
Prompting Fixes Done Changed fully for all datasets
WikiTypo(2025) Noising Done Requires initial implementation
R2ATA Noising Done Requires initial implementation
Gemma Fix for VLLM Done Requires initial implementation
Full Experiments Done Will run for over a week
Report & Visualization Done Final stage

Experiments Overview

grid_models_by_noise

Notes

  • All code and runtime logs are stored on Bender under /home/s06zyelt/nlp_lab/.
  • Environment dependencies and setup steps are documented in README.md.

module load Miniforge3
module load git/2.41.0-GCCcore-12.3.0-nodocs
conda activate /home/s06zyelt/nlp_lab/env
huggingface-cli download meta-llama/Llama-3.1-8B-Instruct
huggingface-cli download mistralai/Mistral-7B-Instruct-v0.3


module load Miniforge3
module load git/2.41.0-GCCcore-12.3.0-nodocs
virtualenv env
source /software/easybuild-INTEL_A40/software/Miniforge3/24.1.2-0/etc/profile.d/conda.sh
source env/bin/activate

Setup Steps

=========initialization start=========
======================================
mkdir -p ~/ollama/bin

curl -L https://ollama.com/download/ollama-linux-amd64.tgz -o ollama-linux-amd64.tgz

tar -xzf ollama-linux-amd64.tgz -C ~/ollama

echo 'export PATH="$HOME/ollama/bin:$PATH"' >> ~/.bashrc
source ~/.bashrc

ollama --version









# double check this place, maybe some mistakes / errors

module load Miniforge3
module load git/2.41.0-GCCcore-12.3.0-nodocs
conda create -p /home/s06zyelt/nlp_lab/env python=3.10 -y
source /software/easybuild-INTEL_A40/software/Miniforge3/24.1.2-0/etc/profile.d/conda.sh
conda activate /home/s06zyelt/nlp_lab/env

cd nlp_lab
sbatch run_test.sh

==========initialization end==========
======================================
==========code test start=============
======================================

# ~/nlp_lab/run_test.sh:
#!/bin/bash
#SBATCH --partition=A40devel
#SBATCH --time=0:05:00
#SBATCH --gpus=1
#SBATCH --output=slurm_output.txt   # Log everything here

module load Miniforge3
module load git/2.41.0-GCCcore-12.3.0-nodocs


#conda create -p /home/s06zyelt/nlp_lab/env python=3.10 -y
source /software/easybuild-INTEL_A40/software/Miniforge3/24.1.2-0/etc/profile.d/conda.sh
conda activate /home/s06zyelt/nlp_lab/env

pip install numpy pandas
pip install openai==0.28.1
pip install sacrebleu
pip install git+https://github.com/openai/human-eval.git

python -c "import numpy, pandas, openai; print('All good')"
python -c "from human_eval.data import read_problems; print('human_eval works')"



export OLLAMA_HOST=127.0.0.1:11500
ollama serve &
sleep 5
ollama run qwen3:0.6b || true

python ollama_test.py

echo "Finished!!!"








# ~/nlp_lab/ollama_test.py:
import requests

# old port: 11434

response = requests.post(
    'http://localhost:11500/api/generate',
    json={
        'model': 'qwen3:0.6b',
        'prompt': 'What is the capital of France?',
        'stream': False
    }
)

result = response.json()['response']

# Print to console (optional)
print(result)

# Save to a text file
with open('output.txt', 'w') as f:
    f.write(result)

==========code test end===============
======================================

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published