Thanks to visit codestin.com
Credit goes to github.com

Skip to content

A program that can judge various information using regular expressions

License

zafrem/data-detector

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

16 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

Data Detector

data-detector is a general-purpose engine that detects and masks personal information (mobile phone numbers, social security numbers, email addresses, etc.) by country and information type, using a "pattern file-based + library + daemon (server)."

Features

  • 🌍 Global Support: Patterns organized by country (ISO2) and information type
  • πŸ” Detection: Find PII in text using multiple patterns
  • βœ… Validation: Validate text against specific patterns with optional verification functions
  • πŸ”’ Redaction: Mask, hash, or tokenize sensitive information
  • πŸš€ Multiple Interfaces: Library API, CLI, and HTTP/gRPC server
  • ⚑ High Performance: p95 < 10ms for 1KB text (single namespace)
  • πŸ”„ Hot Reload: Non-disruptive pattern reloading
  • πŸ“Š Observability: Prometheus metrics and health checks

Quick Start

Clone repository

git clone https://github.com/data-detector.git

Installation

pip install data-detector

See Installation Guide for more options.

Library Usage

from datadetector import Engine, load_registry

# Load patterns from directory
registry = load_registry(paths=["patterns/"])
engine = Engine(registry)

# Validate
is_valid = engine.validate("010-1234-5678", "kr/mobile_01")

# Find PII (searches all loaded patterns)
results = engine.find("My phone: 01012345678, email: [email protected]")

# Redact
redacted = engine.redact("SSN: 900101-1234567", namespaces=["kr"])
print(redacted.redacted_text)

YAML Pattern Management

Create and manage pattern files programmatically:

from datadetector import PatternFileHandler

# Create a new pattern file
PatternFileHandler.create_pattern_file(
    file_path="custom_patterns.yml",
    namespace="custom",
    description="My custom patterns",
    patterns=[{
        "id": "api_key_01",
        "location": "custom",
        "category": "token",
        "pattern": r"API-[A-Z0-9]{32}",
        "mask": "API-" + "*" * 32,
        "policy": {
            "store_raw": False,
            "action_on_match": "redact",
            "severity": "critical"
        }
    }]
)

# Add, update, or remove patterns
PatternFileHandler.add_pattern_to_file("custom_patterns.yml", new_pattern)
PatternFileHandler.update_pattern_in_file("custom_patterns.yml", "api_key_01", {...})
PatternFileHandler.remove_pattern_from_file("custom_patterns.yml", "api_key_01")

See YAML Utilities Documentation for complete guide.

Pattern Restoration Utility

The tokens.yml pattern file may use modified patterns (with rk_ prefix) during development to avoid triggering GitHub's push protection. Use the restoration utility to convert these back to real-world Stripe API key patterns:

# After installing via pip
data-detector-restore-tokens

# Or run directly
python restore_tokens.py

# Or as a module
python -m datadetector.restore_tokens

What it does:

  • Converts fake rk_(live|test)_ patterns to real [sp]k_(live|test)_ Stripe patterns
  • Updates examples to use proper sk_test_, sk_live_, pk_test_ prefixes
  • Uses obviously fake example keys to avoid secret scanner detection

Security Note: All examples use FAKE keys like "EXAMPLEKEY" for security scanner compatibility. This is a defensive security tool - the patterns help detect real leaked credentials.

CLI Usage

# Find PII
data-detector find --text "010-1234-5678" --ns kr

# Redact PII
data-detector redact --in input.log --out redacted.log --ns kr us

# Start server
data-detector serve --port 8080

REST API

# Start server
data-detector serve --port 8080

# Find PII
curl -X POST http://localhost:8080/find \
  -H "Content-Type: application/json" \
  -d '{"text": "010-1234-5678", "namespaces": ["kr"]}'

Documentation

Supported Pattern Types

  • πŸ“± Phone numbers (KR, US, TW, JP, CN, IN)
  • πŸ†” National IDs (SSN, RRN, Aadhaar, etc.)
  • πŸ“§ Email addresses
  • 🏦 Bank accounts & IBANs (with Mod-97 verification)
  • πŸ’³ Credit cards (Visa, MasterCard, Amex, etc.)
  • πŸ›‚ Passport numbers
  • πŸ“ Physical addresses
  • 🌐 IP addresses & URLs

Total: 60+ patterns across 7 locations (Common, KR, US, TW, JP, CN, IN)

See Supported Patterns for the complete list.

Verification Functions

Patterns can include verification functions for additional validation beyond regex:

- id: iban_01
  category: iban
  pattern: '[A-Z]{2}\d{2}[A-Z0-9]{11,30}'
  verification: iban_mod97  # Validates IBAN checksum

Built-in verification functions:

  • iban_mod97 - IBAN Mod-97 checksum validation
  • luhn - Luhn algorithm for credit cards

You can also register custom verification functions. See Verification Functions for details.

Performance

  • Latency: p95 < 10ms for 1KB text with single namespace
  • Throughput: 500+ RPS on 1 vCPU, 512MB RAM
  • Scalability: Handles 1k+ patterns and 1k+ concurrent requests

Security & Privacy

  • No raw PII is logged (only hashes/metadata)
  • TLS support for server
  • Configurable rate limiting
  • GDPR/CCPA compliant operations

Development

# Install with dev dependencies
pip install -e ".[dev]"

# Run tests
pytest

# Format code
black src/ tests/
ruff check src/ tests/

# Validate patterns
python -c "from datadetector import load_registry; load_registry(validate_examples=True)"

Docker

# Build
docker build -t data-detector:latest .

# Run
docker run -p 8080:8080 -v ./patterns:/app/patterns data-detector:latest

License

MIT License - see LICENSE file for details.

Contributing

Contributions are welcome! Please read our contributing guidelines and submit pull requests.

Support

Next Step

  • Pattern Expansion: Support for additional countries like the EU, the UK, Canada, and Australia, as well as new PII types like Social Security Numbers, Vehicle Numbers, and Driver's License Numbers, will expand the usability of the pattern. Enhance the contribution guidelines to facilitate pattern additions by the community.

  • Web UI/Test Tool: Currently, text must be submitted via the CLI or gRPC. Providing a UI that allows users to directly input patterns and view results, such as a web-based demo or a VS Code extension, will improve the user experience.

  • Asynchronous/Streaming API: Adding an asyncio-based asynchronous API for high-speed log processing or data pipeline integration, or providing Kafka/Flink connectors, will facilitate application to large-scale systems.

  • Automated Pattern Management: Maintaining the pattern catalog in a remote repository and implementing version control to automatically deploy pattern updates will improve operational convenience. Strictly defining the pattern format as a JSON schema will help prevent errors.

  • Other Language Bindings: While gRPC allows calls from various languages, providing wrapper libraries for Node.js and Java would increase developer adoption.

  • Monitoring and Deployment: In addition to the performance metrics presented in the README, adding benchmarks measuring memory usage and parallel processing performance in real environments, along with Kubernetes/Helm deployment examples and CI processes, would facilitate adoption by operations teams.

About

A program that can judge various information using regular expressions

Topics

Resources

License

Contributing

Stars

Watchers

Forks

Packages

No packages published

Languages