Thanks to visit codestin.com
Credit goes to github.com

Skip to content

zhongmicai/StereoCell

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

StereoCell

StereoCell is a tool for generating single-cell gene expression data



Installation

  • pipeline

It supported on Stitching, Tissue segmentation, Cell segmentation and Cell labelling. Easy installation based on python==3.8 like,

pip install -r requirements.txt

If you need run the segmentation module, download the weights files first, then modify the file -> weights.json. Model zoo,

Function ML framework resolution Download
Cell segmentation onnx 256 .onnx
Tissue segmentation onnx 512 .onnx
  • manual tool on Windows

It supported on Stitching, Registration, Tissue segmentation and Single cell data visulization. Please download the installation package first, and follow the tutorial step by step. More detail refer this.

Usage

We recommend using Manual tool to complete Stitching & Registration module, and Pipeline to complete Segmentation & Cell labelling module

  • Sample Data Image(FOV tiles, 3X3) and GeneMatrix

  • Manual tool

Refer the tutorial step by step

  • About pipeline
Segmentation & Cell Labelling
python .\cell_bin.py \
--image_path D:\code\mine\github\StereoCell\data\SS2000_regist.tif \
--matrix_path D:\code\mine\github\StereoCell\data\SS2000.gem.gz  \
--out_path D:\code\mine\github\StereoCell\data
Stitching

In shell

python .\stitch.py \
--input D:\\code\\mine\\github\\StereoCell\\data \
--output D:\\code\\mine\\github\\StereoCell\\data\\stitched.tif \
--overlap 0.12

or in script

import stitch

input = 'D:\\code\\mine\\github\\StereoCell\\data'
output = 'D:\\code\\mine\\github\\StereoCell\\data\\stitched.tif'
stitch.stitch(input, output, overlap=0.12)
Segmentation

In shell

python .\cell.py \
--input D:\StereoCell\data\image_6467_16800_512_512.tif \
-output D:\StereoCell\data\image_cell.tif \

or

python .\tissue.py \
--input D:\StereoCell\data\image_6467_16800_512_512.tif \
-output D:\StereoCell\data\image_tissue.tif \
Cell Labeling In shell
python correct.py \
--way fast \
--mask_path D:\StereoCell\data\cell_mask.tif \
--matrix_path D:\StereoCell\data\gene.gem.gz \
--out_path D:\StereoCell\data

or in script

import correct

mask_path = 'D:\StereoCell\data\gene.gem.gz'
matrix_path = 'D:\StereoCell\data\cell_mask.tif'
out_path = 'D:\StereoCell\data'
correct.adjust('fast', mask_path, matrix_path, out_path, radius=50, process=10, threshold=20)

License and Citation

Please cite StereoCell in your publications if it helps your research:

@article{StereoCell,
  Author = {BGI Dev Group},
  Year = {2022}
}

Reference

https://github.com/matejak/imreg_dft

Acknowledgements

https://github.com/rezazad68/BCDU-Net

https://github.com/libvips/pyvips

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages