Stars
[CVPR 2025] Complexity Experts are Task-Discriminative Learners for Any Image Restoration
The official code of paper "Online Streaming Video Super-Resolution with Convolutional Look-Up Table".
[arXiv 2024] PyTorch implementation of UniRestorer: Universal Image Restoration via Adaptively Estimating Image Degradation at Proper Granularity
[IEEE TPAMI 2025] A Survey on All-in-One Image Restoration: Taxonomy, Evaluation and Future Trends
本项目是一个面向小白开发者的大模型应用开发教程,在线阅读地址:https://datawhalechina.github.io/llm-universe/
LangChain 的中文入门教程
主要记录大语言大模型(LLMs) 算法(应用)工程师相关的知识及面试题
MMaDA - Open-Sourced Multimodal Large Diffusion Language Models
[AAAI 2025] Event-Enhanced Blurry Video Super-Resolution
LAIT-CVLab / BF-STVSR
Forked from Eunjnnn/bfstvsrCVPR 2025 - BF-STVSR: B-Splines and Fourier-Best Friends for High Fidelity Spatial-Temporal Video Super-Resolution
A latent text-to-image diffusion model
[CVPR 2024 Oral] Official repository of FMA-Net
Official implementation of ICCV2023 VideoFlow: Exploiting Temporal Cues for Multi-frame Optical Flow Estimation
VRT: A Video Restoration Transformer (official repository)
A Simple Baseline for Video Restoration with Grouped Spatial-temporal Shift
[CVPR 2023] This repository is the official PyTorch implementation of "Deep Discriminative Spatial and Temporal Network for Efficient Video Deblurring".
Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network
推荐系统入门教程,在线阅读地址:https://datawhalechina.github.io/fun-rec/
搜索、推荐、广告、用增等工业界实践文章收集(来源:知乎、Datafuntalk、技术公众号)
Best of Both Worlds: Learning Arbitrary-scale Blind Super-Resolution via Dual Degradation Representations and Cycle-Consistency (WACV 2024)
PromptIR: Prompting for All-in-One Blind Image Restoration [NeurIPS 2023]
PyTorch implementation for All-In-One Image Restoration for Unknown Corruption (AirNet) (CVPR 2022)
Quantization of Convolutional Neural networks.
This is the official pytorch implementation for the paper: Towards Accurate Post-training Quantization for Diffusion Models.(CVPR24 Poster Highlight)
Post-Training Quantization for Vision transformers.
This is the official pytorch implementation for the paper: *Quantformer: Learning Extremely Low-precision Vision Transformers*.
Fast, Accurate, and Lightweight Super-Resolution with Cascading Residual Network (ECCV 2018)
AAAI 2024 Papers: Explore a comprehensive collection of innovative research papers presented at one of the premier artificial intelligence conferences. Seamlessly integrate code implementations for…