Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content

Advertisement

Log in

Recent trends on synthetic approaches and application studies of conducting polymers and copolymers: a review

  • Review Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Conducting polymers (CPs) have been the subject of extensive investigation due to their electrical, optical and mechanical properties, easy of synthesis and ease of fabrication and high environmental stability. The present review discusses the fundamentals properties of CPs associated with charge generation, followed by various chemical and electrochemical methods of polymerization of these polymers. The synergetic effects in these polymers observed upon copolymerization as well as upon the incorporation of conjugated molecules have also been highlighted. Various investigations based on the synthesis of copolymers of a variety of conducting polymers have been deliberated. At the end of the review, some of the current applications in the field of energy, supercapacitors, solar cells, energy storage, fuel cells, medical diagnostics, sensing devices, bioimaging and photodynamic therapy are also discussed. The review aims to provide a comprehensive outlook about the latest developments in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1

taken from Web of Science)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. SW Thomas and TM Swager (2009), Detection of Explosives Using Amplified Fluorescent Polymers, in Aspects of Explosives Detection, Elsevier. 203–221

  2. H Peng, X Sun, W Weng and X Fang (2017) Synthesis and Design of Conjugated Polymers for Organic Electronics, in Polymer Materials for Energy and Electronic Applications, Elsevier. 9–61

  3. Heeger AJ (2001) Nobel lecture: Semiconducting and metallic polymers: The fourth generation of polymeric materials. Rev Mod Phys 73(3):681–700

    Article  CAS  Google Scholar 

  4. Kobayashi M, Chen J, Chung TC, Moraes F, Heeger AJ, Wudl F (1984) Synthesis and properties of chemically coupled poly(thiophene). Synth Met 9(1):77–86

    Article  CAS  Google Scholar 

  5. Ludeelerd P, Niamlang S, Kunaruksapong R, Sirivat A (2010) Effect of elastomer matrix type on electromechanical response of conductive polypyrrole/elastomer blends. J Phys Chem Solids 71(9):1243–1250

    Article  CAS  Google Scholar 

  6. Mardaani M, Rabani H (2013) An analytical model for magnetoconductance of poly(p-phenylene)-like molecular wires in the tight-binding approach. J Magn Mater 331:28–32

    Article  CAS  Google Scholar 

  7. Stejskal J, Sapurina I, Trchova M (2010) Polyaniline nanostructures and the role of aniline oligomers in their formation. Prog Polym Sci 35:1420–1481

    Article  CAS  Google Scholar 

  8. Banerjee J, Dutta K (2021) A short overview on the synthesis, properties and major applications of poly(p-phenylene vinylene). Chem Pap. https://doi.org/10.1007/s11696-020-01492-9

    Article  Google Scholar 

  9. Givaja G, Amo-Ochoa P, Gómez-García CJ, Zamora F (2012) Electrical conductive coordination polymers. Chem Soc Rev 41(1):115–147

    Article  CAS  PubMed  Google Scholar 

  10. Zarras P, Irvin J (2003) Electrically Active Polymers, in Encyclopedia of Polymer Science and Technology, Hoboken, NJ. John Wiley & Sons Inc, USA

    Google Scholar 

  11. Wang XX, Yu GF, Zhang J, Yu M, Ramakrishna S, Long YZ (2021) Conductive polymer ultrafine fibers via electrospinning: Preparation, physical properties and applications. Prog Mater Sci 115:100704

    Article  CAS  Google Scholar 

  12. Kaur G, Adhikari R, Cass P, Bown M, Gunatillake P (2015) Electrically conductive polymers and composites for biomedical applications. RSC Adv 5(47):37553–37567

    Article  CAS  Google Scholar 

  13. Xiao LL, Zhou X, Yue K, Guo ZH (2020) Synthesis and Self-Assembly of Conjugated Block Copolymers. Polymers (Basel) 13(1):110

    Article  Google Scholar 

  14. M Wan (2008) Conducting Polymers with Micro or Nanometer Structure. Berlin, Heidelberg: Springer Berlin Heidelberg

  15. Burrezo PM, Zafra JL, López Navarrete JT, Casado J (2017) Quinoidal/Aromatic Transformations in π-Conjugated Oligomers: Vibrational Raman studies on the Limits of Rupture for π-Bonds. Angew. Chemie Int Ed 56(9):2250–2259

    Article  CAS  Google Scholar 

  16. G Tourillon 1986 Polythiophene and its derivatives. In: Skotheim TA, editor. Handbook of conducting polymers, vol. I. New York: Marcel Dekker 293–350

  17. Mishra AK (2018) Conducting Polymers: Concepts and Applications. J At Mol Condens Nano Phys 5(2):159–193

    Article  Google Scholar 

  18. Collier JH, Camp JP, Hudson TW, Schmidt CE (2000) Synthesis and characterization of polypyrrole-hyaluronic acid composite biomaterials for tissue engineering applications. J Biomed Mater Res 50(4):574–584

    Article  CAS  PubMed  Google Scholar 

  19. Liang Y, Goh JC-H (2020) Polypyrrole-Incorporated Conducting Constructs for Tissue Engineering Applications: A Review. Bioelectricity 2(2):101–119

    Article  PubMed  PubMed Central  Google Scholar 

  20. Nie H, Zhao Y, Zhang M, Ma Y, Baumgarten M, Müllen K (2011) Detection of TNT explosives with a new fluorescent conjugated polycarbazole polymer. Chem Commun 47(4):1234–1236

    Article  CAS  Google Scholar 

  21. Bocchetta P, Frattini D, Tagliente M, Selleri F (2020) Electrochemical Deposition of Polypyrrole Nanostructures for Energy Applications: A Review. Curr Nanosci 16(4):462–477

    Article  CAS  Google Scholar 

  22. Ghorbani Zamani F, Moulahoum H, Ak M, Odaci Demirkol D, Timur S (2019) Current trends in the development of conducting polymers-based biosensors. TrAC Trends Anal Chem 118:264–276

    Article  CAS  Google Scholar 

  23. Feng ZQ, Wu J, Cho W, Leach MK, Franz EW, Naim YI, Martin D (2013) Highly aligned poly(3,4-ethylene dioxythiophene) (PEDOT) nano and microscale fibers and tubes. Polymer 54(2):702–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jadoun S, Riaz U (2019) A review on the chemical and electrochemical copolymerization of conducting monomers: recent advancements and future prospects. Polym Plast Tecnhol Engg. https://doi.org/10.1080/25740881.2019.1669647

    Article  Google Scholar 

  25. Naskar P, Maiti A, Chakraborty P, Kundu D, Biswas B, Banerjee A (2021) Chemical supercapacitors: a review focusing on metallic compounds and conducting polymers. J Mater Chem A. https://doi.org/10.1039/D0TA09655E

    Article  Google Scholar 

  26. Guimard NK, Gomez N, Schmidt CE (2007) Conducting polymers in biomedical engineering. Prog Polym Sci 32(8–9):876–921

    Article  CAS  Google Scholar 

  27. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359(6397):710–712

    Article  CAS  Google Scholar 

  28. Li X, Tian S, Ping Y, Kim DH, Knoll W (2005) One-Step Route to the Fabrication of Highly Porous Polyaniline Nanofiber Films by Using PS- b -PVP Diblock Copolymers as Templates. Langmuir 21(21):9393–9397

    Article  CAS  PubMed  Google Scholar 

  29. Uppalapati D, Boyd BJ, Garg S, Travas-Sejdic J, Svirskis D (2016) Conducting polymers with defined micro- or nanostructures for drug delivery. Biomaterials 111:149–162

    Article  CAS  PubMed  Google Scholar 

  30. Ma Y, Zhang J, Zhang G, He H (2004) Polyaniline Nanowires on Si Surfaces Fabricated with DNA Templates. J Am Chem Soc 126(22):7097–7101

    Article  CAS  PubMed  Google Scholar 

  31. Qiu H, Wan M, Matthews B, Dai L (2001) Conducting Polyaniline Nanotubes by Template-Free Polymerization. Macromolecules 34(4):675–677

    Article  CAS  Google Scholar 

  32. Lee JY, Park SM (2000) Electrochemistry of Conductive Polymers XXIV Polypyrrole Films Grown at Electrodes Modified with β-Cyclodextrin Molecular Templates. J Electrochem Soc 147(11):4189

    Article  CAS  Google Scholar 

  33. Malinauskas A, Malinauskiene J, Ramanavičius A (2005) Conducting polymer-based nanostructurized materials: electrochemical aspects. Nanotechnology 16(10):R51–R62

    Article  CAS  PubMed  Google Scholar 

  34. Yang Y, Liu J, Wan M (2002) Self-assembled conducting polypyrrole micro/nanotubes. Nanotechnology 13(6):771–773

    Article  CAS  Google Scholar 

  35. Rakić AA, Trifunović S, Ćirić-Marjanović G (2014) Dopant-free interfacial oxidative polymerization of aniline. Synth Met 192:56–65

    Article  Google Scholar 

  36. Huang J (2006) Syntheses and applications of conducting polymer polyaniline nanofibers. Pure Appl Chem 78(1):15–27

    Article  CAS  Google Scholar 

  37. Cholli AL, Thiyagarajan M, Kumar J, Parmar VS (2005) Biocatalytic approaches for synthesis of conducting polyaniline nanoparticles. Pure Appl Chem 77(1):339–344

    Article  CAS  Google Scholar 

  38. Innis PC, Norris ID, Kane-Maguire LAP, Wallace GG (1998) Electrochemical Formation of Chiral Polyaniline Colloids Codoped with (+)- or (−)-10-Camphorsulfonic Acid and Polystyrene Sulfonate. Macromolecules 31(19):6521–6528

    Article  CAS  Google Scholar 

  39. Shen W, Deng H, Gao Z (2014) Synthesis of polyaniline via DNAzyme-catalyzed polymerization of aniline. RSC Adv 4(95):53257–53264

    Article  CAS  Google Scholar 

  40. Nakao H, Hayashi H, Yoshino T, Sugiyama S, Otobe K, Ohtani T (2002) Development of Novel Polymer-Coated Substrates for Straightening and Fixing DNA. Nano Lett 2(5):475–479

    Article  CAS  Google Scholar 

  41. Lu Y, Pich A, Adler H-JP (2004) Synthesis and characterization of polypyrrole dispersions prepared with different dopants. Macromol Symp 210(1):411–417

    Article  CAS  Google Scholar 

  42. Marcilla R, Pozo-Gonzalo C, Rodríguez J, Alduncin JA, Pomposo JA, Mecerreyes D (2006) Use of polymeric ionic liquids as stabilizers in the synthesis of polypyrrole organic dispersions. Synth Met 156(16–17):1133–1138

    Article  CAS  Google Scholar 

  43. Wallace GG, Moulton SE, Misoska VJ, Kane-Maguire LAP, Innis PC (2002) Nanostructure based on inherently conducting polymers. Mat Forum 26:29–38

    CAS  Google Scholar 

  44. Verma A, Riaz U (2018) Mechanochemically synthesized poly( o -toluidine)-intercalated montmorillonite nanocomposites as antituberculosis drug carriers. Int J Polym Mater Polym Biomater 67(4):221–228

    Article  CAS  Google Scholar 

  45. Liao Y, Zheng X, Zhang Z, Xu B, Sun Y, Liu Y, Zeng H (2017) Ultrasound-assisted polymerization of P(AM-DMDAAC): Synthesis, characterization and sludge dewatering performance. J Environ Chem Eng 5(6):5439–5447

    Article  CAS  Google Scholar 

  46. Loganathan S, Rajendran V (2013) Ultrasound assisted polymerization of N-vinyl imidazole under phase-transfer catalysis condition – A kinetic study. Ultrason Sonochem 20(1):308–313

    Article  CAS  PubMed  Google Scholar 

  47. Xia H, Wang Q (2001) Synthesis and characterization of conductive polyaniline nanoparticles through ultrasonic assisted inverse microemulsion polymerization. J Nanoparticle Res 3(5–6):401–411

    CAS  Google Scholar 

  48. Kumar PR, Suryawanshi PL, Gumfekar SP, Sonawane SH (2017) Ultrasound-assisted synthesis of conducting polymer-based electrocatalysts for fuel cell applications. Chem Eng Process Process Intensif 121:50–56

    Article  CAS  Google Scholar 

  49. Gao X, Lu P, Ma Y (2014) Ultrasound-assisted Suzuki coupling reaction for rapid synthesis of polydihexylfluorene. Polymer 55(14):3083–3086

    Article  CAS  Google Scholar 

  50. Panigrahi R, Srivastava SK (2013) Ultrasound assisted synthesis of a polyaniline hollow microsphere/Ag core/shell structure for sensing and catalytic applications. RSC Adv 3(21):7808–7815

    Article  CAS  Google Scholar 

  51. Coffin RC, Peet J, Rogers J, Bazan GC (2009) Streamlined microwave-assisted preparation of narrow-bandgap conjugated polymers for high-performance bulk heterojunction solar cells. Nat Chem 1(8):657–661

    Article  CAS  PubMed  Google Scholar 

  52. Park YS, Wu Q, Nam CY, Grubbs RB (2014) Polymerization of Tellurophene Derivatives by Microwave-Assisted Palladium-Catalyzed ipso -Arylative Polymerization. Angew Chemie Int Ed 53(40):10691–10695

    Article  CAS  Google Scholar 

  53. Zhang W, Lu P, Wang Z, Ma Y (2013) Microwave-assisted suzuki coupling reaction for rapid synthesis of conjugated polymer-poly(9,9-dihexylfluorene)s as an example. J Polym Sci Part A Polym Chem 51(9):1950–1955

    Article  CAS  Google Scholar 

  54. Shen X, Wu Y, Bai L, Zhao H, Ba X (2017) Microwave-assisted synthesis of 4,9-linked pyrene-based ladder conjugated polymers. J Polym Sci Part A Polym Chem 55(8):1285–1288

    Article  CAS  Google Scholar 

  55. Ghosh S, Bedi A, Zade SS (2015) Thienopyrrole and selenophenopyrrole donor fused with benzotriazole acceptor: microwave assisted synthesis and electrochemical polymerization. RSC Adv 5(7):5312–5320

    Article  CAS  Google Scholar 

  56. Tierney S, Heeney M, McCulloch I (2005) Microwave-assisted synthesis of polythiophenes via the Stille coupling. Synth Met 148(2):195–198

    Article  CAS  Google Scholar 

  57. Qiu B, Wang J, Li Z, Wang X, Li X (2020) Influence of Acidity and Oxidant Concentration on the Nanostructures and Electrochemical Performance of Polyaniline during Fast Microwave-Assisted Chemical Polymerization. Polymers (Basel) 12(2):310

    Article  CAS  Google Scholar 

  58. Li X, Yang L, Lei Y, Gu L, Xiao D (2014) Microwave-Assisted Chemical-Vapor-Induced in Situ Polymerization of Polyaniline Nanofibers on Graphite Electrode for High-Performance Supercapacitor. ACS Appl Mater Interfaces 6(22):19978–19989

    Article  CAS  PubMed  Google Scholar 

  59. Haldorai Y, Zong T, Shim J-J (2011) Microwave-assisted facile and rapid synthesis of self-assembled conducting copolymer nanorods via aqueous/ionic liquid interfacial polymerization. Mater Chem Phys 127(1–2):385–390

    Article  CAS  Google Scholar 

  60. Riaz U, Ashraf SM, Aleem S, Budhiraja V, Jadoun S (2016) Microwave-assisted green synthesis of some nanoconjugated copolymers: characterisation and fluorescence quenching studies with bovine serum albumin. New J Chem 40(5):4643–4653

    Article  CAS  Google Scholar 

  61. Riaz U, Jadoun S, Kumar P, Kumar R, Yadav N (2018) Microwave-assisted facile synthesis of poly(luminol- co -phenylenediamine) copolymers and their potential application in biomedical imaging. RSC Adv 8(65):37165–37175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Riaz U, Ashraf SM, Madan A (2014) Effect of microwave irradiation time and temperature on the spectroscopic and morphological properties of nanostructured poly(carbazole) synthesized within bentonite clay galleries. New J Chem 2014(38):4219–4228

    Article  Google Scholar 

  63. Riaz U, Ashraf SM, Aqib M (2014) Microwave-assisted degradation of acid orange using a conjugated polymer, polyaniline, as catalyst. Arab J Chem 7(1):79–86

    Article  CAS  Google Scholar 

  64. Riaz U, Ashraf SM, Budhiraja V, Aleem S, Kashyap J (2016) Comparative studies of the photocatalytic and microwave –assisted degradation of alizarin red using ZnO/poly(1- naphthylamine) nanohybrids. J Mol Liq 216:259–267

    Article  CAS  Google Scholar 

  65. Riaz U, Ashraf SM (2015) Microwave-induced catalytic degradation of a textile dye using bentonite–poly(o-toluidine) nanohybrid. RSC Adv 5(5):3276–3285

    Article  CAS  Google Scholar 

  66. Bhadra J, Al-Thani N (2019) Advances in blends preparation based on electrically conducting polymer. Emergent Mater 2:67–77

    Article  CAS  Google Scholar 

  67. Huang Y, Kormakov S, He X, Gao X, Zheng X, Liu Y, Sun J, Wu D (2019) Conductive Polymer Composites from Renewable Resources: An Overview of Preparation, Properties, and Applications. Polymers (Basel) 11:187

    Article  Google Scholar 

  68. Iovu MC, Jeffries M, Sheina EE, Cooper JR, McCullough RD (2005) Regioregular poly(3-alkylthiophene) conducting block copolymers. Polymer 46(19):8582–8586

    Article  CAS  Google Scholar 

  69. Zhao H, Zhu B, Luo SC, Lin HA, Nakao A, Yamashita Y, Yu HH (2013) Controlled Protein Absorption and Cell Adhesion on Polymer-brush grafted Poly(3,4-ethylenedioxythiophene) Films. ACS Appl Mater Interfaces 5:4536–4543

    Article  CAS  PubMed  Google Scholar 

  70. Komiyama H, Komura M, Akimoto Y, Kamata K, Iyoda T (2015) Longitudinal and Lateral Integration of Conducting Polymer Nanowire Arrays via Block-copolymer-templated Electropolymerization. Chem Mater 27:4972–4982

    Article  CAS  Google Scholar 

  71. Li X, Zhang X, Li H (2001) Preparation and characterization of pyrrole/aniline copolymer nanofibrils using the template-synthesis method. J Appl Polym Sci 81(12):3002–3007

    Article  CAS  Google Scholar 

  72. Han CC, Hong SP, Yang KF, Bai MY, Lu CH, Huang CS (2001) Highly Conductive New Aniline Copolymers Containing Butylthio Substituent. Macromolecules 34(3):587–591

    Article  CAS  Google Scholar 

  73. Huang L, Zhuang X, Hu J, Lange L, Zhange P, Wange Y, Chen X, Wei Y, Jing X (2008) Synthesis of Biodegradable and Electroactive Multiblock Polylactide and Aniline Pentamer Copolymer for Tissue Engineering Applications. Biomacromol 9(3):850–858

    Article  CAS  Google Scholar 

  74. Li XG, Zhou HJ, Huang MR (2004) Synthesis and properties of processable conducting copolymers fromN-ethylaniline with aniline. J Polym Sci Part A Polym Chem 42(23):6109–6124

    Article  CAS  Google Scholar 

  75. Lim VWL, Kang ET, Neoh KG, Ma ZH, Tan KL (2001) Determination of pyrrole–aniline copolymer compositions by X-ray photoelectron spectroscopy. Appl Surf Sci 181(3–4):317–326

    Article  CAS  Google Scholar 

  76. Chan HSO, Ng SC, Sim WS, Tan KL, Tan BTG (1992) Preparation and characterization of electrically conducting copolymers of aniline and anthranilic acid: evidence for self-doping by x-ray photoelectron spectroscopy. Macromolecules 25(22):6029–6034

    Article  CAS  Google Scholar 

  77. Huang MR, Li XG, Yang YL, Wang XS, Yan D (2001) Oxidative copolymers of aniline witho-toluidine: Their structure and thermal properties. J Appl Polym Sci 81(8):1838–1847

    Article  CAS  Google Scholar 

  78. Hammad AS, Noby H, Elkady MF, El-Shazly AH (2018) In-situ Polymerization of Polyaniline/Polypyrrole Copolymer using Different Techniques. IOP Conf Ser Mater Sci Eng 290(8–9):012001

    Article  Google Scholar 

  79. Liao F, Yang S, Li X, Yang L, Xie Z, Hu C, He L, Kang X, Song X, Ren T (2014) Poly(o-phenylenediamine) and benzeneselenol copolymer fluorescent nanorod: An ultra-sensitive fluorescent probe and a fluorescent switch triggered by redox procedure. Synth Met 189:135–142

    Article  CAS  Google Scholar 

  80. Park YH, Kim SJ, Lee JY (2003) Preparation and characterization of electroconductive polypyrrole copolymer Langmuir-Blodgett films. Thin Solid Films 425(1–2):233–238

    Article  CAS  Google Scholar 

  81. Dhanalakshmi K, Saraswathi R (2001) Electrochemical Preparation and Characterization of Conducting Copolymers: Poly (pyrrole-co-indole). J Mat Sci 36:4107–4115. https://doi.org/10.1023/A:1017988015634

    Article  CAS  Google Scholar 

  82. Bae WJ, Kim KH, Jo WH, Park YH (2005) A Water-Soluble and Self-Doped Conducting Polypyrrole Graft Copolymer. Macromolecules 38(4):1044–1047

    Article  CAS  Google Scholar 

  83. Khademi S, Pourabbas B, Foroutani K (2018) Synthesis and characterization of poly(thiophene-co-pyrrole) conducting copolymer nanoparticles via chemical oxidative polymerization. Polym Bull 75(9):4291–4309

    Article  CAS  Google Scholar 

  84. Mahashabde JP, Patel SN, Baviskar PK (2018) Physical properties of poly[(thiophene-2,5-diyl)-co-para-chloro benzylidene] doped with cobalt sulphate: synthesis and characterization. Polym Bull 75(1):255–265

    Article  CAS  Google Scholar 

  85. Jeong NY, Jang MS, Park SM, Chung DS, Kim Y-H, Kwon S-K (2018) Synthesis and characterization of highly soluble phenanthro[1,10,9,8-c, d, e, f, g]carbazole-based copolymer: Effects of thermal treatment on crystalline order and charge carrier mobility. Dye Pigm 149:560–565

    Article  CAS  Google Scholar 

  86. Berson S, Cecioni S, Billon M, de Kervella Y, Bettignies R, Bailly S, Guillerez S (2010) Effect of Carbonitrile and Hexyloxy Substituents on Alternated Copolymer of polythiophene–Performances in Photovoltaic Cells. Sol Ener Mater Sol Cells 94:699–708

    Article  CAS  Google Scholar 

  87. Keshtov ML, Marochkin DV, Kochurov VS, Khokhlov AR, Koukaras EN, Sharma GD (2014) New conjugated alternating benzodithiophene-containing copolymers with different acceptor units: synthesis and photovoltaic application. J Mater Chem A 2(1):155–171

    Article  CAS  Google Scholar 

  88. Sun H, Lu B, Duan X, Xu J, Dong L, Zhu X, Zhang K, Hu D, Ming S (2015) Electrosynthesis and Characterization of a New Conducting Copolymer from 2ʹ-aminomethyl-3,4-ethylenedioxythiophene and 3,4-ethylenedioxythiophene. Int J Electrochem Sci 10:3236–3249

    CAS  Google Scholar 

  89. Cirpan A, Alkan S, Toppare L, Hepuzer Y, Yag Y (2002) Conducting graft copolymers of poly(3-methylthienyl methacrylate) with pyrrole and thiophene. J Polym Sci Part A Polym Chem 40(23):4131–4140

    Article  CAS  Google Scholar 

  90. Xia C, Advincula RC (2001) Decreased Aggregation Phenomena in Polyfluorenes by Introducing Carbazole Copolymer Units. Macromolecules 34(17):5854–5859

    Article  CAS  Google Scholar 

  91. Toshimitsu F, Ozawa H, Nakashima N (2015) Hybrids of Copolymers of Fluorene and C 60 -Carrying-Carbazole with Semiconducting Single-Walled Carbon Nanotubes. Chem A Eur J 21(8):3359–3366

    Article  CAS  Google Scholar 

  92. Li Y, Ding J, Day M, Tao Y, Lu J, Marie D (2004) Synthesis and Properties of Random and Alternating Fluorene/Carbazole Copolymers for Use in Blue Light-Emitting Devices. Chem Mater 16(11):2165–2173

    Article  CAS  Google Scholar 

  93. Yu CY, Godana AS (2018) Conjugated polymer nanoparticles based on fluorenes, PEGylated carbazoles and diphenylamines. Eur Polym J 99:165–171

    Article  CAS  Google Scholar 

  94. Lian S, Zheng W, Xiao GJB, Liu Z, Li X, Pan Y, Huang JC, Hou L, Mo Y, Wu H (2018) Synthesis and photovoltaic properties of silafluorene copolymers substituted by carbazole and triphenylamine pendants. Dye Pigm 149:133–140

    Article  CAS  Google Scholar 

  95. Zhang ZG, Liu YL, Yang Y, Hou K, Peng B, Zhao G, Zhang M, Guo X, Kang ET, Li Y (2010) Alternating Copolymers of Carbazole and Triphenylamine with Conjugated Side Chain Attaching Acceptor Groups: Synthesis and Photovoltaic Application. Macromolecules 43(22):9376–9383

    Article  CAS  Google Scholar 

  96. Ates M, Castillo J, Sezai Sarac A, Schuhmann W (2008) Carbon fiber microelectrodes electrocoated with polycarbazole and poly(carbazole-co-p-tolylsulfonyl pyrrole) films for the detection of dopamine in presence of ascorbic acid. Microchim Act 160(1–2):247–251

    Article  CAS  Google Scholar 

  97. Geiβler U, Hallensleben ML, Toppare L (1993) Electrochemical studies on carbazole/pyrrole-copolymers. Synth Met 55(2–3):1483–1488

    Article  Google Scholar 

  98. Jadoun S, Ashraf SM, Riaz U (2017) Tuning the spectral, thermal and fluorescent properties of conjugated polymers via random copolymerization of hole transporting monomers. RSC Adv 7(52):32757–32768

    Article  CAS  Google Scholar 

  99. Hrabák F, Chuiko L, Voloshin G, Morozova E, Eliseeva V, Lokaj J (1987) Polymerizable azo dyes. Acta Polym 38(12):643–647

    Article  Google Scholar 

  100. Constantin CP, Sava I, Damaceanu MD (2021) Structural Chemistry-Assisted Strategy toward Fast Cis-Trans Photo/Thermal Isomerization Switch of Novel Azo-Naphthalene-Based Polyimides. Macromolecules. https://doi.org/10.1021/acs.macromol.0c02182

    Article  Google Scholar 

  101. Chigrinov V, Muravski A, Kwok HS, Takada H, Akiyama H, Takatsu H (2003) Anchoring properties of photoaligned azo-dye materials. Phys Rev E 68(6):061702

    Article  Google Scholar 

  102. Rehan HH (2000) Electrosynthesis of conducting polymer films from the azo dye methoxy red. J Appl Electrochem 30:945–951

    Article  CAS  Google Scholar 

  103. Cihaner A, Algi F (2009) Electrochemical and optical properties of an azo dye based conducting copolymer. Turkish J Chem 33(6):759–767

    CAS  Google Scholar 

  104. Jerca VV, Nicolescu FA, Trusca R, Vasile E, Baran A, Anghel DF, Vasilescu DS, Vuluga DM (2011) Oxazoline-functional polymer particles graft with azo-dye. React Funct Polym 71(4):373–379

    Article  CAS  Google Scholar 

  105. Teixeira MFS, Barsan MM, Brett CMA (2016) Molecular engineering of a π-conjugated polymer film of the azo dye Bismarck Brown Y. RSC Adv 6(103):101318–101322

    Article  CAS  Google Scholar 

  106. Olean-Oliveira A, Teixeira MFS (2018) Development of a nanocomposite chemiresistor sensor based on π-conjugated azo polymer and graphene blend for detection of dissolved oxygen. Sensors Actuators B Chem 271:353–357

    Article  CAS  Google Scholar 

  107. Almeida AKA, Dias JMM, Santos DP, Nogueira FAR, Navarro M, Tonholo J, Lima DJP, Ribeiro AS (2017) A magenta polypyrrole derivatised with Methyl Red azo dye: synthesis and spectroelectrochemical characterisation. Electrochim Acta 240:239–249

    Article  CAS  Google Scholar 

  108. Kopecky D, Skodova J, Vrnata M, Fitl P (2012) Polypyrrole Micro/Nanostructure Prepared Using Azo Dyes with Different Substituents. Adv Mater Phys Chem 02(04):89–91

    Article  Google Scholar 

  109. Trofimov BA, Markova MV, Morozova LV, Yu Shmidt E, Yu Senotrusova E, Myachina GF, Myachin YuA, Vakulskaya TI, Mikhaleva AI (2007) 2-Arylazo-1-vinylpyrroles: Free-radical polymerization and copolymerization. Polym Sci Ser B 49(11–12):292–296

    Article  Google Scholar 

  110. Katz E, Searson PC, Poehler TO (2010) Batteries and charge storage devices based on electronically conducting polymers. J Mater Res 25(8):1561–1574

    Article  CAS  Google Scholar 

  111. Kim YU, Park SH, Nhan NT, Hoang MH, Cho MJ, Choi DH (2021) Optimal Design of PEDOT:PSS Polymer-Based Silver Nanowire Electrodes for Realization of Flexible Polymer Solar Cells. Macromol Res 29(1):75–81

    Article  CAS  Google Scholar 

  112. Liu Y, Man X, Bai Q, Liu H, Liu P, Fu Y, Hu D, Lu P, Ma Y (2021) Highly Efficient Blue Organic Light-Emitting Diode Based on a Pyrene[4,5- d ]imidazole-pyrene Molecule. CCS Chem 1:545–558

    Google Scholar 

  113. Rohwerder M (2009) Conducting polymers for corrosion protection: a review. Int J Mater Res 100(10):1331–1342

    Article  CAS  Google Scholar 

  114. Tajika S, Beitollahi H, Nejadc FG, Shoaiec IS, Khalilzadeh MA, Asle MS, Van Q, Zhangg K, Jang HW, Shokouhimehr M (2020) Recent developments in conducting polymers: applications for electrochemistry. RSC Adv 10(62):37834–37856

    Article  Google Scholar 

  115. Wu L, Yang J, Zhou X, Zhang M, Ren Y, Nie Y (2016) Silicon nanoparticles embedded in a porous carbon matrix as a high-performance anode for lithium-ion batteries. J Mater Chem A 4(29):11381–11387

    Article  CAS  Google Scholar 

  116. Gal YS, Jin SH, Shim SY, Lim KT (2017) Photovoltaic properties of polyacetylene derivative for quasi-solid state dye-sensitized solar cell applications. Mol Cryst Liq Cryst 654(1):83–89

    Article  CAS  Google Scholar 

  117. Gopalan SA, Gopalan AI, Vinu A, Lee KP, Kang SW (2018) A new optical-electrical integrated buffer layer design based on gold nanoparticles tethered thiol containing sulfonated polyaniline towards enhancement of solar cell performance. Sol Energy Mater Sol Cells 74:112–123

    Article  Google Scholar 

  118. Chen H, Cong TN, Yang W, Tan C, Li Y, Ding Y (2009) Progress in electrical energy storage system: A critical review. Prog Nat Sci 19(3):291–312

    Article  CAS  Google Scholar 

  119. Kim J, Campbell AS, de Ávila BEF, Wang J (2019) Wearable biosensors for healthcare monitoring. Nat Biotechnol 37(4):389–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Fard A, Ojani R, Raoof JB, Zare EN, Lakouraj MM (2017) PdCo porous nanostructures decorated on polypyrrole @ MWCNTs conductive nanocomposite—Modified glassy carbon electrode as a powerful catalyst for ethanol electrooxidation. Appl Surf Sci 401:40–48

    Article  CAS  Google Scholar 

  121. Abd El Moghny G, Alalawy HH, Mohammad AM, Mazhar AA, El-Deab MS, El-Anadouli BE (2017) Conducting polymers inducing catalysis: Enhanced formic acid electro-oxidation at a Pt/polyaniline nanocatalyst. Int J Hydrogen Energy 42(16):11166–11176

    Article  CAS  Google Scholar 

  122. Yang J, Liu Y, Liu S, Li L, Zhang C, Liu T (2017) Conducting polymer composites: material synthesis and applications in electrochemical capacitive energy storage. Mater Chem Front 1(2):251–268

    Article  CAS  Google Scholar 

  123. Ibanez JG, Rincón ME, Granados SG, Chahma M, Jaramillo-Quintero OA, Frontana-Uribe BA (2018) Conducting Polymers in the Fields of Energy, Environmental Remediation, and Chemical-Chiral Sensors. Chem Rev 118(9):4731–4816

    Article  CAS  PubMed  Google Scholar 

  124. Dervisevic M, Dervisevic E, Azak H, Çevik E, Şenel M, Yildiz HB (2016) Novel amperometric xanthine biosensor based on xanthine oxidase immobilized on electrochemically polymerized 10-[4H-dithieno(3,2-b:2′,3′-d)pyrrole-4-yl]decane-1-amine film. Sensors Actuators B Chem 225:181–187

    Article  CAS  Google Scholar 

  125. Mudila H, Prasher P, Rana S, Khati B, Zaidi MGH (2018) Electrochemical oxidation-reduction and determination of urea at enzyme free PPY-GO electrode. Carbon Lett 26:88–94

    Google Scholar 

  126. Dhand C, Arya SK, Datta M, Malhotra BD (2008) Polyaniline–carbon nanotube composite film for cholesterol biosensor. Anal Biochem 383(2):194–199

    Article  CAS  PubMed  Google Scholar 

  127. Singh S, Solanki PR, Pandey MK, Malhotra BD (2006) Covalent immobilization of cholesterol esterase and cholesterol oxidase on polyaniline films for application to cholesterol biosensor. Anal Chim Acta 568(1–2):126–132

    Article  CAS  PubMed  Google Scholar 

  128. Langer JJ, Filipiak M, Ke J, cińska, J Jasnowska, J Włodarczak, and B Buładowski, (2004) Polyaniline biosensor for choline determination. Surf Sci 573(1):140–145

    Article  CAS  Google Scholar 

  129. Wilson J, Radhakrishnan S, Sumathi C, Dharuman V (2012) Polypyrrole–polyaniline–Au (PPy–PANi–Au) nano composite films for label-free electrochemical DNA sensing. Sensors Actuators B Chem 171–172:216–222

    Article  Google Scholar 

  130. Zhu N, Chang Z, He P, Fang Y (2006) Electrochemically fabricated polyaniline nanowire-modified electrode for voltammetric detection of DNA hybridization. Electrochim Acta 51(18):3758–3762

    Article  CAS  Google Scholar 

  131. Kim JH, Park K, Nam HY, Lee S, Kim K, Kwon IC (2007) Polymers for bioimaging. Prog Polym Sci 32(8–9):1031–1053

    Article  CAS  Google Scholar 

  132. Klingstedt T, Nilsson KPR (2011) Conjugated polymers for enhanced bioimaging. Biochim Biophys Acta - Gen 1810(3):286–296

    Article  CAS  Google Scholar 

  133. Liu L, Wang X, Zhu S, Li L (2021) Different Surface Interactions between Fluorescent Conjugated Polymers and Biological Targets. ACS Appl Bio Mater. https://doi.org/10.1021/acsabm.0c01567

    Article  PubMed  PubMed Central  Google Scholar 

  134. Peters M, Desta D, Seneca S, Reekmans G, Adriaensens P, Noben JP, Hellings N, Junkers T, Ethirajan A (2021) PEGylating poly(p-phenylene vinylene)-based bioimaging nanoprobes. J Colloid Interface Sci 581:566–575

    Article  CAS  PubMed  Google Scholar 

  135. Spada RM, Macor LP, Hernández LI, Ponzio RA, Ibarra LE, Lorente C, Chesta CA, Palacios RE (2018) Amplified singlet oxygen generation in metallated-porphyrin doped conjugated polymer nanoparticles. Dye Pigment 149:212–223

    Article  CAS  Google Scholar 

  136. Cheng SH, Lee CH, Yang CS, Tseng FG, Mou CY, Lo LW (2009) Mesoporous silica nanoparticles functionalized with an oxygen-sensing probe for cell photodynamic therapy: potential cancer theranostics. J Mater Chem 19:1252–1257

    Article  CAS  Google Scholar 

  137. Chang K, Tang Y, Fang X, Yin S, Xu H, Wu C (2016) Incorporation of Porphyrin to π-Conjugated Backbone for Polymer-Dot-Sensitized Photodynamic Therapy. Biomacromol 17(6):2128–2136

    Article  CAS  Google Scholar 

  138. Imato K, Ohira K, Yamaguchi M, Enoki T, Ooyama Y (2020) Phenazine-based photosensitizers for singlet oxygen generation. Mater Chem Front 4(2):589–596

    Article  CAS  Google Scholar 

  139. Blacha-Grzechnik A, Drewniak A, Walczak KZ, Szindler M, Ledwon P (2020) Efficient generation of singlet oxygen by perylene diimide photosensitizers covalently bound to conjugate polymers. J Photochem Photobiol A Chem 388:112161

    Article  CAS  Google Scholar 

  140. Eçik ET, Şenkuytu E, Çoşut B (2017) Novel Bodipy- triazine conjugates: Synthesis and the generation of singlet oxygen. Dye Pigment 143:455–462

    Article  Google Scholar 

  141. Mafukidze DM, Mashazi P, Nyokong T (2016) Synthesis and singlet oxygen production by a phthalocyanine when embedded in asymmetric polymer membranes. Polymer 105:203–213

    Article  CAS  Google Scholar 

  142. Ding X, Han B (2015) Metallophthalocyanine Based Conjugated Microporous Polymers as Highly Efficient Photosensitizers for Singlet Oxygen Generation. Angew Chem 127(22):1–5

    Article  Google Scholar 

  143. Ma Z, Liu H, Peng Z, Xuan Y, Rivera E, Zhu XX (2020) Star-Shaped Glycopolymers with a Porphyrin Core: Synthesis, Singlet Oxygen Generation, and Photodynamic Therapy. ACS Appl Polym Mater 2(6):2477–2484

    Article  CAS  Google Scholar 

  144. Li J, An Z, Sun J, Tan C, Gao D, Tan Y, Jiang Y (2020) Highly selective oxidation of organic sulfides by a conjugated polymer as the photosensitizer for singlet oxygen generation. ACS Appl Mater Interfaces. https://doi.org/10.1021/acsami.0c10162

    Article  PubMed  PubMed Central  Google Scholar 

  145. Ramírez CL, Parise AR, Bertolotti SG, Previtali CM, Arbeloa EM (2020) Study on the triplet states of N-phenyl carbazoles Transient spectra and singlet oxygen generation. J Photochem Photobiol A Chem 397:112503

    Article  Google Scholar 

  146. Kumari P, Paul M, Bhatt H, Rompicharla SVK, Sarkar D, Ghosh B, Biswas S (2020) Chlorin e6 Conjugated Methoxy-Poly(Ethylene Glycol)-Poly(D, L-Lactide) Glutathione Sensitive Micelles for Photodynamic Therapy. Pharm Res 37(2):18

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author Neetika Singh wishes to acknowledge the RGNF-SRF, UGC, India for providing funding support to conduct this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ufana Riaz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, N., Riaz, U. Recent trends on synthetic approaches and application studies of conducting polymers and copolymers: a review. Polym. Bull. 79, 10377–10408 (2022). https://doi.org/10.1007/s00289-021-03987-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03987-1

Keywords