Abstract
Objective
Extracellular fructosyltransferase (FTase, E.C.2.4.1.9) from Aspergillus oryzae IPT-301 was immobilized on silica gel by adsorption and biochemically characterized aiming at its application in the transfructosylation reaction of sucrose for the production of fructooligossaccarides (FOS).
Results
The transfructosylation activity (AT) was maximized by the experimental design in function of the reaction pHs and temperatures. The AT of the immobilized enzyme showed the kinetics behavior described by the Hill model. The immobilized FTase showed reuse capacity for six consecutive reaction cycles and higher pH and thermal stability than the soluble enzyme.
Conclusion
These results suggest a high potential of application of silica gel as support for FTase immobilization aiming at FOS production.
Similar content being viewed by others
References
Aguiar-Oliveira E, Maugeri F (2010) Characterization of the immobilized fructosyltransferase from Rhodotorula sp. Int J Food Eng 6(3):1–21. https://doi.org/10.2202/1556-3758.1894
Aguiar-Oliveira E, Maugeri F (2011) Thermal stability of the immobilized fructosyltransferase from Rhodotorula sp. Braz J Chem Eng 28(3):363–372. https://doi.org/10.1590/S0104-66322011000300002
Ahmed SA, Saleh SAA, Abdel-Hameed SAM, Fayad AM (2019) Catalytic, kinetic and thermodynamic properties of free and immobilized caseinase on mica glass-ceramics. https://doi.org/10.1016/j.heliyon.2019.e01674
Ali Z, Tian L, Zhao P, Zhang B, Ali N, Khan M, Zhang Q (2016) Immobilization of lipase on mesoporous silica nanoparticles with hierarchical fibrous pore. J Mol Catal B Enzym 134:129–135. https://doi.org/10.1016/j.molcatb.2016.10.011
Alvarado-Huallanco MB, Maugeri F (2011) Kinetic studies and modelling of the production of fructooligosaccharides by fructosyltransferase from Rhodotorula sp. Catal Sci Technol 1:1043–1050. https://doi.org/10.1039/C0CY00059K
Alves MD, Aracri FM, Cren ÉC, Mendes AA (2017) Isotherm, kinetic, mechanism and thermodynamic studies of adsorption of a microbial lipase on a mesoporous and hydrophobic resin. Chem Eng J 311:1–12. https://doi.org/10.1016/j.cej.2016.11.069
An D, Guo Y, Zhu Y, Whan Z (2010) A green route to preparation of silica powders with rice husk ash and waste gas. Chem Eng J 162(2):509–514. https://doi.org/10.1016/j.cej.2010.05.052
Brady D, Jordaan J (2009) Advances in enzyme immobilization. Biotechnol Lett 31(11):1639–1650. https://doi.org/10.1007/s10529-009-0076-4
Carvalho NB, Lima AS, Soares CMF (2015) Use of modified silicas for lipase immobilization. Quim Nova 38(3):399–409. https://doi.org/10.5935/0100-4042.20140304
Castro CC, Nobre C, Duprez ME, Weireld G, Hantson AL (2017) Screening and selection of potential carriers to immobilize Aureobasidium pullulans cells for fructo-oligosaccharides production. Biochem Eng J 118:82–90. https://doi.org/10.1016/j.bej.2016.11.011
Chen WC, Liu CH (1996) Production of β-fructofuranosidase by Aspergillus japonicus. Enzyme Microb Technol 18(2):153–160. https://doi.org/10.1016/0141-0229(95)00099-2
Chiang CJ, Lee WC, Sheu DC, Duan KJ (1997) Immobilization of β-fructofuranosidase from Aspergillus on methacrylamide-based polymeric beads for production of fructooligosaccharides. Biotechnol Prog 13(5):577–582. https://doi.org/10.1021/bp970067z
Cuervo-Fernandez R, Ottoni CA, Silva ES, Matsubara RMS, Carter JM, Magossi LR, Wada MAA, Rodrigues MFA, Maresma BG, Maiorano AE (2007) Screening of β-fructofuranosidase-producing microorganisms and effect of pH and temperature on enzymatic rate. Appl Microbiol Biotechnol 75(1):87–93. https://doi.org/10.1007/s00253-006-0803-x
Cunha JS, Ottoni CA, Morales SAV, Silva ES, Maiorano AE, Perna RF (2019) Synthesis and characterization of fructosyltransferase from Aspergillus oryzae IPT-301 for high fructooligosaccharides production. Braz J Chem Eng 36(2):657–668. https://doi.org/10.1590/0104-6632.20190362s20180572
Damodaran S (2005) Protein: denaturation. In: Hi YH, Sherkat F (eds) Handbook of food science, technology and engineering, 1st edn. CRC Press, Boca Raton, pp 1–14. https://doi.org/10.1201/b15995
Dong A, Huang P, Caughey WS (1990) Protein secondary structures in water from second-derivative amide I infrared spectra. Biochemistry 29(13):3303–3308. https://doi.org/10.1021/bi00465a022
Ferreira MM, Santiago FLB, Silva NAG, Luiz JHH, Fernandéz-Lafuente R, Mendes AA, Hirata DB (2018) Different strategies to immobilize lipase from Geotrichum candidum: kinetic and thermodynamic studies. Process Biochem 67:55–63. https://doi.org/10.1016/j.procbio.2018.01.028
Fonseca LC, Corrêa NCR, Garrote-Filho MS, Cunha CC, Nilson Penha-Silva N (2006) Effects of the solvent composition on the stability of protein in aqueous solutions. Quim Nova 29(3):543–548. https://doi.org/10.1590/S0100-40422006000300024
Gabrielczyk J, Duensing T, Buchholz S, Schwinges A, Jördening HJ (2018) A comparative study on immobilization of fructosyltransferase in biodegradable polymers by electrospinning. Appl Biochem Biotechnol 185:847–862. https://doi.org/10.1007/s12010-018-2694-6
Ganaie MA, Lateef A, Gupta US (2014) Enzymatic trends of fructooligosaccharides production by microorganisms. Appl Biochem Biotechnol 172:2143–2159. https://doi.org/10.1007/s12010-013-0661-9
Gao S, Wang Y, Wang T, Luo G, Dai Y (2009) Immobilization of lipase on methyl-modified silica aerogels by physical adsorption. Bioresour Technol 100(2):996–999. https://doi.org/10.1016/j.biortech.2008.06.060
Ghazi I, Segura AG, Fernandez-Arrojo L, Alcalde M, Yates M, Rojas-Cervantes ML, Plou FJ, Ballesteros A (2005) Immobilisation of fructosyltransferase from Aspergillus aculeatuson epoxy-activated Sepabeads EC for the synthesis of fructo-oligosaccharides. J Mol Catal B Enzym 35(1–3):19–27. https://doi.org/10.1016/j.molcatb.2005.04.013
Ghazi I, Fernandez-Arrojo L, Garcia-Arellano H, Ferrer M, Ballesteros A, Plou FJ (2007) Purification and kinetic characterization of a fructosyltransferase from Aspergillus aculeatus. J Biotechnol 128(1):204–211. https://doi.org/10.1016/j.jbiotec.2006.09.017
Gonçalves MCP, Morales SAV, Silva ES, Maiorano AE, Perna RF, Kieckbusch TG (2020) Entrapment of glutaraldehyde-crosslinked cells from Aspergillus oryzae IPT-301 in calcium alginate for high transfructosylation activity. J Chem Technol Biotechnol. https://doi.org/10.1002/jctb.6429
Griffin H, Dintzis FR, Krull L, Baker FL (1984) A microfibril generating factor from the enzyme complex of Trichoderma reesei. Biotechnol Bioeng 26(3):269–300. https://doi.org/10.1002/bit.260260315
Guisan JM (2013) Immobilization of enzymes and cells, 3rd edn. Humana Press, New York. https://doi.org/10.1007/978-1-62703-550-7
Hernalsteens S, Maugeri F (2010) Synthesis of fructooligosaccharides using extracellular enzymes from Rhodotorula sp. J Food Biochem 34(3):520–534. https://doi.org/10.1111/j.1745-4514.2009.00295.x
Hidaka H, Hirayama M, Sumi N (1988) A fructooligosaccharide producing enzyme from Aspergillus niger ATCC 20611. Agric Biol Chem 52(5):1181–1187. https://doi.org/10.1080/00021369.1988.10868810
Huang MP, Wu M, Xu QS, Mo DJ, Feng JX (2016) Highly efficient synthesis of fructooligosaccharides by extracellular fructooligosaccharide-producing enzymes and immobilized cells of Aspergillus aculeatus M105 and purification and biochemical characterization of a fructosyltransferase from the fungus. J Agric Food Chem 64(33):6425–6432. https://doi.org/10.1021/acs.jafc.6b02115
Jung KH, Yun WJ, Kang KR, Lim JY, Lee JH (1989) Mathematical model for enzymatic production of fructooligosaccharides from sucrose. Enzyme Microb Technol 11:491–494. https://doi.org/10.1016/0141-0229(89)90029-X
Kalantari M, Yu M, Yang Y, Strounina E, Gu Z, Huang X, Zhang J, Song H, Yu C (2017) Tailoring mesoporous-silica nanoparticles for robust immobilization of lipase and biocatalysis. Nano Res 10(2):605–617. https://doi.org/10.1007/s12274-016-1320-6
Kamimura ES, Silva GS, Covre LM, Carvalho RA, Santos AMP (2009) Immobilization of fructosyltransferase from Pichia pastoris in blend of alginate and gelatin. New Biotechnol 25:S149. https://doi.org/10.1016/j.nbt.2009.06.485
Kharrat N, Ben Ali Y, Marzouk S, Gargouri YT, Karra-Châabouni M (2011) Immobilization of Rhizopus oryzae lipase on silica aerogels by adsorption: comparison with the free enzyme. Process Biochem 46(5):1083–1089. https://doi.org/10.1016/j.procbio.2011.01.029
Lateef A, Oloke J, Gueguim-Kana E, Oyeniyi S, Onifade O, Oyeleye A, Oladosu O (2008) Rhizopus stolonifer LAU 07: a novel source of fructosyltransferase. Chem Pap 62(6):635–638. https://doi.org/10.2478/s11696-008-0074-3
Lateef A, Oloke J, Gueguim-Kana E, Raimi O (2012) Production of fructosyltransferase by a local isolate of Aspergillus niger in both submerged and solid substrate media. Acta Aliment 41(1):100–117. https://doi.org/10.1556/AAlim.41.2012.1.12
Machado NB, Miguez JP, Bolina ICA, Salviano AB, Gomes RAB, Tavano OI, Luiz JHH, Tardioli PW, Cren EC, Mendes AA (2019) Preparation, functionalization and characterization of rice husk silica for lipase immobilization via adsorption. Enzyme Microb Technol 128:9–21. https://doi.org/10.1016/j.enzmictec.2019.05.001
Marangoni AG (2003) Enzyme kinetics: a modern approach. Wiley, New Jersey
Maresma BG, Castillo BG, Fernández RC, Silva ES, Maiorano AE, Rodrigues MFA (2010) Mutagenesis of Aspergillus oryzae IPT-301 to improve the production of β-fructofuranosidase. Braz J Microbiol 41(1):186–195. https://doi.org/10.1590/S1517-83822010000100027
Mendes AA, Oliveira PC, Castro HF, Giordano RLC (2011) Application of chitosan as support for immobilization of enzymes of industrial interest. Quim Nova 34(5):831–840. https://doi.org/10.1590/S0100-40422011000500019
Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428. https://doi.org/10.1021/ac60147a030
Nobre C, Filho EGA, Fernandes FAN, Brito ES, Rodrigues S, Teixeira JA, Rodrigues LR (2018) Production of fructo-oligosaccharides by Aspergillus ibericus and their chemical characterization. LWT Food Sci Technol 89:58–64. https://doi.org/10.1016/j.lwt.2017.10.015
Onderková Z, Bryjak J, Polakovič M (2007) Properties of fructosyltransferase from Aureobasidium pullulans immobilized on an acrylic carrier. Chem Pap 61(5):359–363. https://doi.org/10.2478/s11696-007-0048-x
Ottoni CA, Cuervo-Fernández R, Piccoli RM, Moreira R, Guilarte-Maresma B, Sabino ES, Rodrigues MFDA, Maiorano AE (2012) Media optimization for β-fructofuranosidase production by Aspergillus oryzae. Braz J Chem Eng 29(1):49–59. https://doi.org/10.1590/S0104-66322012000100006
Perna RF, Cunha JS, Gonçalves MCP, Basso RC, Silva ES, Maiorano AE (2018) Microbial fructosyltransferase: production by submerged fermentation and evaluation of pH and temperature effects on transfructosylation and hydrolytic enzymatic activities. Int J Eng Res Sci 4(3):43–50. https://doi.org/10.5281/zenodo.1213538
Platková Z, Polakovič M, Stefuca V, Vandáková M, Antošová M (2006) Selection of carrier for immobilization of fructosyltransferase from Aureobasidium pullulans. Chem Pap 60(6):469–472. https://doi.org/10.2478/s11696-006-0085-x
Rashid MH, Siddiqui KS (1998) Thermodynamic and kinetic study of stability of the native and chemically modified β-glucosidases from Aspergillus niger. Process Biochem 33(2):109–115. https://doi.org/10.1016/S0032-9592(97)00036-8
Rodrigues MI, Iemma AF (2009) Planejamento de experimentos & otimização de processos. Casa do Espírito Amigo Fraternidade Fé e Amor, Campinas
Saqib AAN, Hassan M, Khan NF, Baig S (2010) Thermostability of crude endoglucanase from Aspergillus fumigatus grown under solid state fermentation (SSF) and submerged fermentation (SmF). Process Biochem 45:641–646. https://doi.org/10.1016/j.procbio.2009.12.011
Siddiqui KS, Saqib AAN, Rashid MH, Rajoka MI (1997) Thermostabilization of carboxymethylcellulase from Aspergillus niger by carboxyl group modification. Biotechnol Lett 19(4):325–329. https://doi.org/10.1023/A:1018342632083
Soares CMF, Castro HF, Moraes FF, Zanin GM (1999) Characterization and utilization of Candida rugosa lipase immobilized on controlled pore silica. Appl Biochem Biotechnol 79:745–757. https://doi.org/10.1385/ABAB:79:1-3:745
Souza RL, De Faria ELP, Figueiredo RT, Freitas LS, Iglesias M, Mattedi S, Zanin GM, Santos OAA, Coutinho JAP, Lima AS, Soares CMF (2013) Protic ionic liquid as additive on lipase immobilization using silica sol–gel. Enzyme Microb Technol 52(3):141–150. https://doi.org/10.1016/j.enzmictec.2012.12.007
Souza PM, Aliakbarian B, Ferreira Filho EX, Magalhães PO, Pessoa Junior A, Converti A, Perego P (2015) Kinetic and thermodynamic studies of a novel acid protease from Aspergillus foetidus. Int J Biol Macromol 81:17–21. https://doi.org/10.1016/j.ijbiomac.2015.07.043
Sugahara VH, Varéa GS (2014) Immobilization of Beauveria bassiana lipase on silica gel by physical adsorption. Braz Arch Biol Technol 57:842–850. https://doi.org/10.1590/S1516-8913201401358
Tammer MG (2004) Sokrates: Infrared and Raman characteristic group frequencies: tables and charts. Colloid Polym Sci 283:235. https://doi.org/10.1007/s00396-004-1164-6
Vaňková K, Onderková Z, Antošová M, Polakovič M (2008) Design and economics of industrial production of fructooligosaccharides. Chem Pap 62(4):375–381. https://doi.org/10.2478/s11696-008-0034-y
Verma R, Kumar A, Kumar S (2019) Synthesis and characterization of cross-linked enzyme aggregates (CLEAs) of thermostable xylanase from Geobacillus thermodenitrificans X1. Process Biochem 80:72–79. https://doi.org/10.1016/j.procbio.2019.01.019
Weiss JN (1997) The Hill equation revisited: uses and misuses. FASEB J 11:835–841. https://doi.org/10.1096/fasebj.11.11.9285481
Xu Q, Zheng X, Huang M, Wu M, Yan Y, Pan J, Yang Q, Duan C-J, Liu J-L, Feng J-X (2015) Purification and biochemical characterization of a novel β-fructofuranosidase from Penicillium oxalicum with transfructosylating activity neokestose. Process Biochem 50(8):1237–1246. https://doi.org/10.1016/j.procbio.2015.04.020
Yun JW, Song SK (1996) Continuous production of fructooligosaccharides using fructosyltransferase immobilized on ion exchange resin. Biotechnol Bioprocess Eng 1:18–21. https://doi.org/10.1007/BF02949138
Zambelli P, Tamborini L, Cazzamalli S, Pinto A, Arioli S, Balzaretti S, Plou FJ, Fernandez-Arrojo L, Molinari F, Conti P, Romano D (2016) An efficient continuous flow process for the synthesis of a non-conventional mixture of fructooligosaccharides. Food Chem 190:607–613. https://doi.org/10.1016/j.foodchem.2015.06.002
Zhou Z, Inayat A, Schwieger W, Hartmann M (2012) Improved activity and stability of lipase immobilized in cage-like large pore mesoporous organosilicas. Microporous Mesoporous Mater 154:133–141. https://doi.org/10.1016/j.micromeso.2012.01.003
Acknowledgements
The authors gratefully acknowledge the financial support from the National Council for Scientific and Technological Development—CNPq (Proc. 421540/2018-4), Foundation for Research of the State of Minas Gerais (FAPEMIG, Proc. APQ-02131-14) and Coordination for the Improvement of Higher Education Personnel (CAPES).
Supporting Information—Supplementary Figures
Figure S1 Linear adjustment for the determination of the thermal denaturation constant (kD) of the soluble (A) and immobilized FTase on in silica gel (B).
Figure S2 Determination of activation energy for the thermal denaturation (ED). Arrhenius plot of ln (kD) versus (1/T) was used for ED of soluble (■) and immobilized (□) extracellular FTase from Aspergillus oryzae IPT-301.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declares that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Faria, L.L., Morales, S.A.V., Prado, J.P.Z. et al. Biochemical characterization of extracellular fructosyltransferase from Aspergillus oryzae IPT-301 immobilized on silica gel for the production of fructooligosaccharides. Biotechnol Lett 43, 43–59 (2021). https://doi.org/10.1007/s10529-020-03016-7
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1007/s10529-020-03016-7