Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content

Characterization of Similarity Metrics in Epistemic Logic

  • Conference paper
  • First Online:
PRICAI 2024: Trends in Artificial Intelligence (PRICAI 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 15281))

Included in the following conference series:

  • 831 Accesses

Abstract

The comprehension of similarity metrics lags behind that of distance metrics. This study aims to address this disparity by synthesizing the properties of similarity metrics and examining them through the lens of weighted epistemic logic. By incorporating these metrics, we analyze knowledge systems in terms of their metric properties. Modal logic techniques, including bisimulation and bounded morphism, are employed to investigate the definable and undefinable properties of similarity. Definable alternatives for undefinable properties are proposed.

Supported by Project of Humanities and Social Sciences, MOE (China).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 51.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 64.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    As observed in [4, p. 4], D1 follows from D3 and D4: by setting \(y=x\) in D4, we obtain \(0 \le d(x,x)\), and by letting \(x=z\) in D4, we arrive at D1. It remains unclear why the 2016 edition weakens this to suggest that D1 follows from D2 to D4.

  2. 2.

    This condition is not required in an earlier version [14].

  3. 3.

    It is called “triangularity” in [2], and renamed to “sharp triangle inequality” in [4].

  4. 4.

    In [2], it is suggested to treat d(xy) as \(2p(x, y) - p(x, x) - p(y, y)\), which enforces that \(d(x, x) = 0\).

  5. 5.

    The original definition in [3] uses “if and only if” instead of “implies”, however, the other direction is trivial as long as s is a function.

  6. 6.

    It is called “covering inequality” in [6].

References

  1. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge (2001)

    Google Scholar 

  2. Bukatin, M., Kopperman, R., Matthews, S., Pajoohesh, H.: Partial metric spaces. Am. Math. Mon. 116(8), 708–718 (2009)

    Article  MathSciNet  Google Scholar 

  3. Chen, S., Ma, B., Zhang, K.: On the similarity metric and the distance metric. Theoret. Comput. Sci. 410(24–25), 2365–2376 (2009)

    Article  MathSciNet  Google Scholar 

  4. Deza, M.M., Deza, E.: Encyclopedia of Distances. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00234-2

    Book  Google Scholar 

  5. Dong, H., Li, X., Wáng, Y.N.: Weighted modal logic in epistemic and deontic contexts. In: Ghosh, S., Icard, T. (eds.) LORI 2021. LNCS, vol. 13039, pp. 73–87. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88708-7_6

    Chapter  Google Scholar 

  6. Elzinga, C.H., Studer, M.: Normalization of distance and similarity in sequence analysis. Sociol. Meth. Res. 48(4), 877–904 (2019)

    Article  MathSciNet  Google Scholar 

  7. Everitt, B.S., Landau, S., Leese, M., Stahl, D.: Cluster Analysis. Wiley (2011)

    Google Scholar 

  8. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge. The MIT Press, Cambridge (1995)

    Book  Google Scholar 

  9. Han, J., Pei, J., Tong, H.: Data Mining: Concepts and Techniques. Morgan Kaufmann, 4 edn. (2022)

    Google Scholar 

  10. Hintikka, J.: Knowledge and Belief: An Introduction to the Logic of Two Notions. Cornell University Press, Ithaca, New York (1962)

    Google Scholar 

  11. Larsen, K.G., Mardare, R.: Complete proof systems for weighted modal logic. Theoret. Comput. Sci. 546(12), 164–175 (2014)

    Article  MathSciNet  Google Scholar 

  12. Liang, X., Wáng, Y.N.: Epistemic logic via distance and similarity. In: Khanna, S., Cao, J., Bai, Q., Xu, G. (eds.) PRICAI 2022. LNCS, vol. 13629, pp. 32–45. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20862-1_3

    Chapter  Google Scholar 

  13. Matthews, S.G.: Partial metric spaces. In: 8th British Colloquium for Theoretical Computer Science (1992). Research Report 212, University of Warwick

    Google Scholar 

  14. Matthews, S.G.: Partial metric topology. Ann. N. Y. Acad. Sci. 728(1), 183–197 (1994)

    Article  MathSciNet  Google Scholar 

  15. Meyer, J.J.C., van der Hoek, W.: Epistemic Logic for AI and Computer Science. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  16. Naumov, P., Tao, J.: Logic of confidence. Synthese 192, 1821–1838 (2015)

    Article  MathSciNet  Google Scholar 

  17. Rozinek, O., Mareš, J.: The duality of similarity and metric spaces. Appl. Sci. 11(4) (2021)

    Google Scholar 

  18. Tan, P.N., Steinbach, M., Karpatne, A., Kumar, V.: Introduction to Data Mining, 2 edn. Pearson (2019)

    Google Scholar 

  19. Wierzchoń, S.T., Kłopotek, M.A.: Modern Algorithms of Cluster Analysis. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-69308-8

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yì N. Wáng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liang, X., Wáng, Y.N. (2025). Characterization of Similarity Metrics in Epistemic Logic. In: Hadfi, R., Anthony, P., Sharma, A., Ito, T., Bai, Q. (eds) PRICAI 2024: Trends in Artificial Intelligence. PRICAI 2024. Lecture Notes in Computer Science(), vol 15281. Springer, Singapore. https://doi.org/10.1007/978-981-96-0116-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-96-0116-5_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-96-0115-8

  • Online ISBN: 978-981-96-0116-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Keywords

Publish with us

Policies and ethics