Abstract
The comprehension of similarity metrics lags behind that of distance metrics. This study aims to address this disparity by synthesizing the properties of similarity metrics and examining them through the lens of weighted epistemic logic. By incorporating these metrics, we analyze knowledge systems in terms of their metric properties. Modal logic techniques, including bisimulation and bounded morphism, are employed to investigate the definable and undefinable properties of similarity. Definable alternatives for undefinable properties are proposed.
Supported by Project of Humanities and Social Sciences, MOE (China).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
As observed in [4, p. 4], D1 follows from D3 and D4: by setting \(y=x\) in D4, we obtain \(0 \le d(x,x)\), and by letting \(x=z\) in D4, we arrive at D1. It remains unclear why the 2016 edition weakens this to suggest that D1 follows from D2 to D4.
- 2.
This condition is not required in an earlier version [14].
- 3.
- 4.
In [2], it is suggested to treat d(x, y) as \(2p(x, y) - p(x, x) - p(y, y)\), which enforces that \(d(x, x) = 0\).
- 5.
The original definition in [3] uses “if and only if” instead of “implies”, however, the other direction is trivial as long as s is a function.
- 6.
It is called “covering inequality” in [6].
References
Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge (2001)
Bukatin, M., Kopperman, R., Matthews, S., Pajoohesh, H.: Partial metric spaces. Am. Math. Mon. 116(8), 708–718 (2009)
Chen, S., Ma, B., Zhang, K.: On the similarity metric and the distance metric. Theoret. Comput. Sci. 410(24–25), 2365–2376 (2009)
Deza, M.M., Deza, E.: Encyclopedia of Distances. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00234-2
Dong, H., Li, X., Wáng, Y.N.: Weighted modal logic in epistemic and deontic contexts. In: Ghosh, S., Icard, T. (eds.) LORI 2021. LNCS, vol. 13039, pp. 73–87. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88708-7_6
Elzinga, C.H., Studer, M.: Normalization of distance and similarity in sequence analysis. Sociol. Meth. Res. 48(4), 877–904 (2019)
Everitt, B.S., Landau, S., Leese, M., Stahl, D.: Cluster Analysis. Wiley (2011)
Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge. The MIT Press, Cambridge (1995)
Han, J., Pei, J., Tong, H.: Data Mining: Concepts and Techniques. Morgan Kaufmann, 4 edn. (2022)
Hintikka, J.: Knowledge and Belief: An Introduction to the Logic of Two Notions. Cornell University Press, Ithaca, New York (1962)
Larsen, K.G., Mardare, R.: Complete proof systems for weighted modal logic. Theoret. Comput. Sci. 546(12), 164–175 (2014)
Liang, X., Wáng, Y.N.: Epistemic logic via distance and similarity. In: Khanna, S., Cao, J., Bai, Q., Xu, G. (eds.) PRICAI 2022. LNCS, vol. 13629, pp. 32–45. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20862-1_3
Matthews, S.G.: Partial metric spaces. In: 8th British Colloquium for Theoretical Computer Science (1992). Research Report 212, University of Warwick
Matthews, S.G.: Partial metric topology. Ann. N. Y. Acad. Sci. 728(1), 183–197 (1994)
Meyer, J.J.C., van der Hoek, W.: Epistemic Logic for AI and Computer Science. Cambridge University Press, Cambridge (1995)
Naumov, P., Tao, J.: Logic of confidence. Synthese 192, 1821–1838 (2015)
Rozinek, O., Mareš, J.: The duality of similarity and metric spaces. Appl. Sci. 11(4) (2021)
Tan, P.N., Steinbach, M., Karpatne, A., Kumar, V.: Introduction to Data Mining, 2 edn. Pearson (2019)
Wierzchoń, S.T., Kłopotek, M.A.: Modern Algorithms of Cluster Analysis. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-69308-8
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Liang, X., Wáng, Y.N. (2025). Characterization of Similarity Metrics in Epistemic Logic. In: Hadfi, R., Anthony, P., Sharma, A., Ito, T., Bai, Q. (eds) PRICAI 2024: Trends in Artificial Intelligence. PRICAI 2024. Lecture Notes in Computer Science(), vol 15281. Springer, Singapore. https://doi.org/10.1007/978-981-96-0116-5_9
Download citation
DOI: https://doi.org/10.1007/978-981-96-0116-5_9
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-96-0115-8
Online ISBN: 978-981-96-0116-5
eBook Packages: Computer ScienceComputer Science (R0)