Abstract
A weighted graph extends a standard Kripke frame for modal logic with a weight on each of its edges. Distance and similarity measures can be imposed so that the edges stand for the dissimilairty/similarity relation between nodes (in particular, we focus on the distance and similarity metrics introduced in [5]). Models based on these types of weighted graphs give a simple and flexible way of formally interpreting knowledge. We study proof systems and computational complexity of the resulting logics, partially by correspondence to normal modal logics interpreted in Kripke semantics.
Supported by the National Social Science Fund of China (Grant No. 20 &ZD047).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
A weighted epistemic logic over similarities defined as such is studied in [7].
- 2.
The axiomatic system \(\textbf{K}\) is \(\textbf{KS}\) without the axiom (S); see Fig. 3 for details. By adding the axiom schemes (B) and (T), i.e., \(K_a\varphi \rightarrow \varphi \) for the latter, to the system \(\textbf{K}\), we get the axiomatic system \(\textbf{KTB}\).
References
Ågotnes, T., Balbiani, P., van Ditmarsch, H., Seban, P.: Group announcement logic. J. Appl. Logic 8(1), 62–81 (2010)
Balbiani, P., Baltag, A., van Ditmarsch, H., Herzig, A., Hoshi, T., de Lima, T.: Knowable’ as ‘known after an announcement. Rev. Symbol. Logic 1(3), 305–334 (2008)
Blackburn, P., De Rijke, M., Venema, Y.: Modal Logic, Cambridge Tracts in Theoretical Computer Science, vol. 53. Cambridge University Press, Cambridge (2001)
Chen, C.C., Lin, I.P.: The computational complexity of the satisfiability of modal Horn clauses for modal propositional logics. Theor. Comput. Sci. 129, 95–121 (1994)
Chen, S., Ma, B., Zhang, K.: On the similarity metric and the distance metric. Theor. Comput. Sci. 410(24–25), 2365–2376 (2009)
van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic, Synthese Library, vol. 337. Springer, Netherlands (2007). https://doi.org/10.1007/978-1-4020-5839-4
Dong, H., Li, X., Wáng, Y.N.: Weighted modal logic in epistemic and deontic contexts. In: Ghosh, S., Icard, T. (eds.) LORI 2021. LNCS, vol. 13039, pp. 73–87. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88708-7_6
Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge. The MIT Press, Cambridge (1995)
Halpern, J.Y., Moses, Y.: A guide to completeness and complexity for modal logics of knowledge and belief. Artif. Intell. 54(3), 319–379 (1992)
Hansen, M., Larsen, K.G., Mardare, R., Pedersen, M.R.: Reasoning about bounds in weighted transition systems. LMCS 14, 1–32 (2018)
Hintikka, J.: Knowledge and Belief: An Introduction to the Logic of Two Notions. Cornell University Press, Ithaca, New York (1962)
Ladner, R.E.: The computational complexity of provability in systems of modal propositional logic. SIAM J. Comput. 6(3), 467–480 (1977)
Larsen, K.G., Mardare, R.: Complete proof systems for weighted modal logic. Theor. Comput. Sci. 546(12), 164–175 (2014)
Liang, X., Wáng, Y.N.: Epistemic logics over weighted graphs. In: Liao, B., Markovich, R., Wáng, Y.N. (eds.) Second International Workshop on Logics for New-Generation Artificial Intelligence (2022)
Meyer, J.J.C., van der Hoek, W.: Epistemic Logic for AI and Computer Science. Cambridge University Press, Cambridge (1995)
Naumov, P., Tao, J.: Logic of confidence. Synthese 192(6), 1821–1838 (2015). https://doi.org/10.1007/s11229-014-0655-3
Tan, P.N., Steinbach, M., Kumar, V.: Introduction to data mining. Pearson (2005)
Wang, Y.: A logic of goal-directed knowing how. Synthese 195(10), 4419–4439 (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Liang, X., Wáng, Y.N. (2022). Epistemic Logic via Distance and Similarity. In: Khanna, S., Cao, J., Bai, Q., Xu, G. (eds) PRICAI 2022: Trends in Artificial Intelligence. PRICAI 2022. Lecture Notes in Computer Science, vol 13629. Springer, Cham. https://doi.org/10.1007/978-3-031-20862-1_3
Download citation
DOI: https://doi.org/10.1007/978-3-031-20862-1_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20861-4
Online ISBN: 978-3-031-20862-1
eBook Packages: Computer ScienceComputer Science (R0)