Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content

Epistemic Logic via Distance and Similarity

  • Conference paper
  • First Online:
PRICAI 2022: Trends in Artificial Intelligence (PRICAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13629))

Included in the following conference series:

  • 1673 Accesses

  • 2 Citations

Abstract

A weighted graph extends a standard Kripke frame for modal logic with a weight on each of its edges. Distance and similarity measures can be imposed so that the edges stand for the dissimilairty/similarity relation between nodes (in particular, we focus on the distance and similarity metrics introduced in [5]). Models based on these types of weighted graphs give a simple and flexible way of formally interpreting knowledge. We study proof systems and computational complexity of the resulting logics, partially by correspondence to normal modal logics interpreted in Kripke semantics.

Supported by the National Social Science Fund of China (Grant No. 20 &ZD047).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 63.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 79.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    A weighted epistemic logic over similarities defined as such is studied in [7].

  2. 2.

    The axiomatic system \(\textbf{K}\) is \(\textbf{KS}\) without the axiom (S); see Fig. 3 for details. By adding the axiom schemes (B) and (T), i.e., \(K_a\varphi \rightarrow \varphi \) for the latter, to the system \(\textbf{K}\), we get the axiomatic system \(\textbf{KTB}\).

References

  1. Ågotnes, T., Balbiani, P., van Ditmarsch, H., Seban, P.: Group announcement logic. J. Appl. Logic 8(1), 62–81 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Balbiani, P., Baltag, A., van Ditmarsch, H., Herzig, A., Hoshi, T., de Lima, T.: Knowable’ as ‘known after an announcement. Rev. Symbol. Logic 1(3), 305–334 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Blackburn, P., De Rijke, M., Venema, Y.: Modal Logic, Cambridge Tracts in Theoretical Computer Science, vol. 53. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  4. Chen, C.C., Lin, I.P.: The computational complexity of the satisfiability of modal Horn clauses for modal propositional logics. Theor. Comput. Sci. 129, 95–121 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, S., Ma, B., Zhang, K.: On the similarity metric and the distance metric. Theor. Comput. Sci. 410(24–25), 2365–2376 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic, Synthese Library, vol. 337. Springer, Netherlands (2007). https://doi.org/10.1007/978-1-4020-5839-4

    Book  Google Scholar 

  7. Dong, H., Li, X., Wáng, Y.N.: Weighted modal logic in epistemic and deontic contexts. In: Ghosh, S., Icard, T. (eds.) LORI 2021. LNCS, vol. 13039, pp. 73–87. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88708-7_6

    Chapter  Google Scholar 

  8. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge. The MIT Press, Cambridge (1995)

    MATH  Google Scholar 

  9. Halpern, J.Y., Moses, Y.: A guide to completeness and complexity for modal logics of knowledge and belief. Artif. Intell. 54(3), 319–379 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hansen, M., Larsen, K.G., Mardare, R., Pedersen, M.R.: Reasoning about bounds in weighted transition systems. LMCS 14, 1–32 (2018)

    MathSciNet  MATH  Google Scholar 

  11. Hintikka, J.: Knowledge and Belief: An Introduction to the Logic of Two Notions. Cornell University Press, Ithaca, New York (1962)

    Google Scholar 

  12. Ladner, R.E.: The computational complexity of provability in systems of modal propositional logic. SIAM J. Comput. 6(3), 467–480 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  13. Larsen, K.G., Mardare, R.: Complete proof systems for weighted modal logic. Theor. Comput. Sci. 546(12), 164–175 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Liang, X., Wáng, Y.N.: Epistemic logics over weighted graphs. In: Liao, B., Markovich, R., Wáng, Y.N. (eds.) Second International Workshop on Logics for New-Generation Artificial Intelligence (2022)

    Google Scholar 

  15. Meyer, J.J.C., van der Hoek, W.: Epistemic Logic for AI and Computer Science. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  16. Naumov, P., Tao, J.: Logic of confidence. Synthese 192(6), 1821–1838 (2015). https://doi.org/10.1007/s11229-014-0655-3

    Article  MathSciNet  MATH  Google Scholar 

  17. Tan, P.N., Steinbach, M., Kumar, V.: Introduction to data mining. Pearson (2005)

    Google Scholar 

  18. Wang, Y.: A logic of goal-directed knowing how. Synthese 195(10), 4419–4439 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yì N. Wáng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liang, X., Wáng, Y.N. (2022). Epistemic Logic via Distance and Similarity. In: Khanna, S., Cao, J., Bai, Q., Xu, G. (eds) PRICAI 2022: Trends in Artificial Intelligence. PRICAI 2022. Lecture Notes in Computer Science, vol 13629. Springer, Cham. https://doi.org/10.1007/978-3-031-20862-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20862-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20861-4

  • Online ISBN: 978-3-031-20862-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics