Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content

Polysaccharides from Natural Sources: Functional Properties and Applications

  • Chapter
  • First Online:
Innovative Pharmaceutical Excipients: Natural Sources

Abstract

Polysaccharides are complex carbohydrates that can be derived from plants, algae, fungus, and bacteria abundantly in nature as they possess multifunctional properties making them suitable for a wide range of uses. These properties include biocompatibility, biodegradability, and gel-forming and film-forming capabilities of polysaccharide like cellulose, starch, chitosan, and alginate that make the polysaccharides highly favorable for formulation of new materials and products. Biomedical uses of polysaccharides comprise of drug delivery systems, tissue engineering, and wound healing because polysaccharides exhibit features of selective drug release, biocompatibility with living tissues, and cell stimulation. In addition, owing to the antioxidant, antibacterial, and anti-inflammatory properties of their constituents, the compounds may also act as therapeutic entities. Polysaccharides are used to a very large extent in food processing-seasoning, thickening agents, stabilizers, and emulsifiers, extending the shelf life of food products and improving their texture. Moreover, the roles of prebiotics, which they regularly confer on gastrointestinal tract, make them included in the list of functional ingredients for meals targeting overall health and well-being. This chapter focuses on the characteristics, biological effects, and applications of the naturally occurring polysaccharides with reference to the growing interest in biomedical engineering, pharmacology and nutritional science. Furthermore, this chapter covers challenges of isolating, refining, and transforming natural polysaccharides so that it is possible to improve their functional properties for specific applications. Solutions for enhancing solubility, mechanical properties, and bioactivity properties of these biopolymers are discussed, and the information sources on the green approach to fabrication of these materials are described. The potential of application of polysaccharides in many fields owing to their versatile properties and their renewability make them some of the most promising materials that shall pave way for sustainable and innovative ideas in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 87.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
GBP 109.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Yu Y, Shen M, Song Q, Xie J. Biological activities and pharmaceutical applications of polysaccharide from natural resources: A review. Carbohydr Polym. 2018;183:91–101.

    Article  PubMed  Google Scholar 

  2. Mohammed ASA, Naveed M, Jost N. Polysaccharides; classification, chemical properties, and future perspective applications in fields of pharmacology and biological medicine (A review of current applications and upcoming potentialities). J Polym Environ. 2021;29:2359–71.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Yang X, Li A, Li X, Sun L, Guo Y. An overview of classifications, properties of food polysaccharides and their links to applications in improving food textures. Trends Food Sci Technol. 2020;102:1–15.

    Article  Google Scholar 

  4. Torres FG, Troncoso OP, Pisani A, Gatto F, Bardi G. Natural polysaccharide nanomaterials: an overview of their immunological properties. IJMS. 2019;20:5092.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Le XT, Rioux L-E, Turgeon SL. Formation and functional properties of protein–polysaccharide electrostatic hydrogels in comparison to protein or polysaccharide hydrogels. Adv Colloid Interf Sci. 2017;239:127–35.

    Article  Google Scholar 

  6. Li M, Jia X, Yao Q, Zhu F, Huang Y, Zeng X-A. Recent advance for animal-derived polysaccharides in nanomaterials. Food Chem. 2024;459:140208.

    Article  PubMed  Google Scholar 

  7. Patel AK, Vadrale AP, Singhania RR, Michaud P, Pandey A, Chen S-J, et al. Algal polysaccharides: current status and future prospects. Phytochem Rev. 2023;22:1167–96.

    Article  Google Scholar 

  8. Freitas F, Torres CAV, Araújo D, Farinha I, Pereira JR, Concórdio-Reis P, et al. Advanced microbial polysaccharides. In: Rehm B, Moradali MF, editors. Biopolymers for biomedical and biotechnological applications [internet]. 1st ed. Wiley; 2021. [cited 2025 Feb 3]. pp. 19–62. Available from: https://onlinelibrary.wiley.com/doi/10.1002/9783527818310.ch2

  9. Díaz-Montes E. Polysaccharides: sources, characteristics, properties, and their application in biodegradable films. Polysaccharides. 2022;3:480–501.

    Article  Google Scholar 

  10. Moreira JB, Vaz BDS, Cardias BB, Cruz CG, Almeida ACAD, Costa JAV, et al. Microalgae polysaccharides: an alternative source for food production and sustainable agriculture. Polysaccharides. 2022;3:441–57.

    Article  Google Scholar 

  11. Kabir SF, Rahman A, Yeasmin F, Sultana S, Masud RA, Kanak NA, et al. Occurrence, distribution, and structure of natural polysaccharides. Radiation-processed polysaccharides [Internet]. Elsevier. 2022 [cited 2025 Feb 3]. pp. 1–27. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780323856720000052

  12. Górska S, Maksymiuk A, Turło J. Selenium-containing polysaccharides—structural diversity, biosynthesis, chemical modifications and biological activity. Appl Sci. 2021;11:3717.

    Article  Google Scholar 

  13. Dumitriu S, editor. Polysaccharides: structural diversity and functional versatility. Second Edition [Internet]. 0 ed. CRC Press; 2004. [cited 2025 Feb 3]. Available from: https://www.taylorfrancis.com/books/9781420030822

    Google Scholar 

  14. Elango B, Shirley CP, Okram GS, Ramesh T, Seralathan K-K, Mathanmohun M. Structural diversity, functional versatility and applications in industrial, environmental and biomedical sciences of polysaccharides and its derivatives—A review. Int J Biol Macromol. 2023;250:126193.

    Article  PubMed  Google Scholar 

  15. Vaaje-Kolstad G, Forsberg Z, Loose JS, Bissaro B, Eijsink VG. Structural diversity of lytic polysaccharide monooxygenases. Curr Opin Struct Biol. 2017;44:67–76.

    Article  PubMed  Google Scholar 

  16. Peesapati S, Sajeevan KA, Patel SK, Roy D. Relation between glycosidic linkage, structure and dynamics of α – and β -glucans in water. Biopolymers. 2021;112:e23423.

    Article  PubMed  Google Scholar 

  17. Chaudhary S, Jain VP, Jaiswar G. The composition of polysaccharides: monosaccharides and binding, group decorating, polysaccharides chains. Innovation in Nano-Polysaccharides for Eco-sustainability [Internet]. Elsevier; 2022 [cited 2025 Feb 3]. p. 83–118. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780128234396000052

  18. Chen R, Xu J, Wu W, Wen Y, Lu S, El-Seedi HR, et al. Structure–immunomodulatory activity relationships of dietary polysaccharides. Curr Res Food Sci. 2022;5:1330–41.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zvyagintseva TN, Usoltseva RV, Shevchenko NM, Surits VV, Imbs TI, Malyarenko OS, et al. Structural diversity of fucoidans and their radioprotective effect. Carbohydr Polym. 2021;273:118551.

    Article  PubMed  Google Scholar 

  20. Monsan P, Bozonnet S, Albenne C, Joucla G, Willemot R-M, Remaud-Siméon M. Homopolysaccharides from lactic acid bacteria. Int Dairy J. 2001;11:675–85.

    Article  Google Scholar 

  21. Nabot M, Guérin M, Sivakumar D, Remize F, Garcia C. Variability of bacterial Homopolysaccharide production and properties during food processing. Biology. 2022;11:171.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Korakli M, Vogel RF. Structure/function relationship of homopolysaccharide producing glycansucrases and therapeutic potential of their synthesised glycans. Appl Microbiol Biotechnol. 2006;71:790–803.

    Article  PubMed  Google Scholar 

  23. Joseph TM, Sathian A, Joshy KS, Kar Mahapatra D, Haponiuk JT, Thomas S. Modifications of starch and its characterizations. Handbook of Natural Polymers, Volume 2 [Internet]. Elsevier; 2024 [cited 2025 Feb 3]. p. 23–48. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780323998567000240

  24. Holtekjølen AK, Uhlen AK, Bråthen E, Sahlstrøm S, Knutsen SH. Contents of starch and non-starch polysaccharides in barley varieties of different origin. Food Chem. 2006;94:348–58.

    Article  Google Scholar 

  25. Li J, Goddard-Borger ED, Raji O, Saxena H, Solhi L, Mathieu Y, et al. Chitin-active lytic polysaccharide monooxygenases are rare in Cellulomonas species. Kelly RM, editor. Appl Environ Microbiol. 2022;88:e00968–22.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kalidas C, Sangaranarayanan MV. Carbohydrates, their reactions, thermochemistry and energetics. Biophys Chem [Internet]. Cham: Springer Nature Switzerland; 2023 [cited 2025 Feb 3]. pp. 59–85. Available from: https://link.springer.com/10.1007/978-3-031-37682-5_3

  27. De Vuyst L. Heteropolysaccharides from lactic acid bacteria. FEMS Microbiol Rev. 1999;23:153–77.

    Article  PubMed  Google Scholar 

  28. Li Y, Guo X, Zhong R, Ye C, Chen J. Structure characterization and biological activities evaluation of two hetero-polysaccharides from Lepista nuda: cell antioxidant, anticancer and immune-modulatory activities. Int J Biol Macromol. 2023;244:125204.

    Article  PubMed  Google Scholar 

  29. Hussain A, Zia KM, Tabasum S, Noreen A, Ali M, Iqbal R, et al. Blends and composites of exopolysaccharides; properties and applications: a review. Int J Biol Macromol. 2017;94:10–27.

    Article  PubMed  Google Scholar 

  30. Buckley C, Murphy EJ, Montgomery TR, Major I. Hyaluronic acid: A review of the drug delivery capabilities of this naturally occurring polysaccharide. Polymers. 2022;14:3442.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Sudha PN, Rose MH. Beneficial effects of hyaluronic acid. Advances in food and nutrition research [Internet]. Elsevier; 2014 [cited 2025 Feb 3]. p. 137–76. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780128002698000099

  32. Rodén L, Ananth S, Campbell P, Curenton T, Ekborg G, Manzella S, et al. Heparin — an Introduction. In: Lane DA, Björk I, Lindahl U, editors. Heparin and Related Polysaccharides [Internet]. Boston, MA: Springer US; 1992 [cited 2025 Feb 3]. pp. 1–20. Available from: http://link.springer.com/10.1007/978-1-4899-2444-5_1

  33. Saravanan R. Isolation of low-molecular-weight heparin/Heparan sulfate from marine sources. Advances in Food and Nutrition Research [Internet] Elsevier; 2014 [cited 2025 Feb 3]. pp. 45–60. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780128002698000038

  34. Demeter F, Peleskei Z, Kútvölgyi K, Rusznyák Á, Fenyvesi F, Kajtár R, et al. Synthesis and biological profiling of seven heparin and Heparan Sulphate analogue Trisaccharides. Biomol Ther. 2024;14:1052.

    Google Scholar 

  35. Montilla A, Muñoz-Almagro N, Villamiel M. A new approach of functional pectin and pectic oligosaccharides: role as antioxidant and antiinflammatory compounds. Current Advances for Development of Functional Foods Modulating Inflammation and Oxidative Stress [Internet]. Elsevier; 2022 [cited 2025 Feb 3]. p. 105–20. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780128234822000261

  36. Spiridon I, Popa VI. Hemicelluloses: major sources, properties and applications. Monomers, polymers and composites from renewable resources [Internet]. Elsevier; 2008 [cited 2025 Feb 3]. p. 289–304. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780080453163000132

  37. Gao Y, Guo M, Wang D, Zhao D, Wang M. Advances in extraction, purification, structural characteristics and biological activities of hemicelluloses: A review. Int J Biol Macromol. 2023;225:467–83.

    Article  PubMed  Google Scholar 

  38. Potnis AA, Raghavan PS, Rajaram H. Overview on cyanobacterial exopolysaccharides and biofilms: role in bioremediation. Rev Environ Sci Biotechnol. 2021;20:781–94.

    Article  Google Scholar 

  39. Huang Y, Chen H, Zhang K, Lu Y, Wu Q, Chen J, et al. Extraction, purification, structural characterization, and gut microbiota relationship of polysaccharides: a review. Int J Biol Macromol. 2022;213:967–86.

    Article  PubMed  Google Scholar 

  40. Wang W, Tan J, Nima L, Sang Y, Cai X, Xue H. Polysaccharides from fungi: a review on their extraction, purification, structural features, and biological activities. Food Chemistry: X. 2022;15:100414.

    PubMed  Google Scholar 

  41. Luan F, Ji Y, Peng L, Liu Q, Cao H, Yang Y, et al. Extraction, purification, structural characteristics and biological properties of the polysaccharides from Codonopsis pilosula: A review. Carbohydr Polym. 2021;261:117863.

    Article  PubMed  Google Scholar 

  42. Yang W, Huang G. Extraction methods and activities of natural glucans. Trends Food Sci Technol. 2021;112:50–7.

    Article  Google Scholar 

  43. Nai J, Zhang C, Shao H, Li B, Li H, Gao L, et al. Extraction, structure, pharmacological activities and drug carrier applications of Angelica sinensis polysaccharide. Int J Biol Macromol. 2021;183:2337–53.

    Article  PubMed  Google Scholar 

  44. Mozammil Hasnain SM, Hasnain MS, Nayak AK. Natural polysaccharides. Natural Polysaccharides in Drug Delivery and Biomedical Applications [Internet]. Elsevier; 2019 [cited 2025 Feb 4]. pp. 1–14. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780128170557000017

  45. Tang Y, Xiao Y, Tang Z, Jin W, Wang Y, Chen H, et al. Extraction of polysaccharides from Amaranthus hybridus L. by hot water and analysis of their antioxidant activity. PeerJ. 2019;7:e7149.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Wan C, Jiang H, Tang M-T, Zhou S, Zhou T. Purification, physico-chemical properties and antioxidant activity of polysaccharides from Sargassum fusiforme by hydrogen peroxide/ascorbic acid-assisted extraction. Int J Biol Macromol. 2022;223:490–9.

    Article  PubMed  Google Scholar 

  47. Shi Y, Zhu A, Shen L. Optimization of acid assisted extraction process of foxtail millet polysaccharides and its antioxidant activity. Int Agrophys. 2020;34:141–9.

    Article  Google Scholar 

  48. Jia Y, Gao X, Xue Z, Wang Y, Lu Y, Zhang M, et al. Characterization, antioxidant activities, and inhibition on α-glucosidase activity of corn silk polysaccharides obtained by different extraction methods. Int J Biol Macromol. 2020;163:1640–8.

    Article  PubMed  Google Scholar 

  49. Lin L, Zhao L, Deng J, Xiong S, Tang J, Li Y, et al. Enzymatic extraction, purification, and characterization of polysaccharides from Penthorum chinense Pursh : natural antioxidant and anti-inflammatory. Biomed Res Int. 2018;2018:1–13.

    Google Scholar 

  50. Song Y-R, Sung S-K, Jang M, Lim T-G, Cho C-W, Han C-J, et al. Enzyme-assisted extraction, chemical characteristics, and immunostimulatory activity of polysaccharides from Korean ginseng (Panax ginseng Meyer). Int J Biol Macromol. 2018;116:1089–97.

    Article  PubMed  Google Scholar 

  51. Mena-García A, Ruiz-Matute AI, Soria AC, Sanz ML. Green techniques for extraction of bioactive carbohydrates. TrAC Trends Anal Chem. 2019;119:115612.

    Article  Google Scholar 

  52. Morais ES, Lopes AMDC, Freire MG, Freire CSR, Coutinho JAP, Silvestre AJD. Use of ionic liquids and deep eutectic solvents in polysaccharides dissolution and extraction processes towards sustainable biomass valorization. Molecules. 2020;25:3652.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Sun C, Wang G, Sun J, Yin J, Huang J, Li Z, et al. A new method of extracting Polygonatum sibiricum polysaccharide with antioxidant function: ultrasound-assisted extraction-deep eutectic solvents method. Food Secur. 2023;12:3438.

    Google Scholar 

  54. Wang N, Li Q. Study on extraction and antioxidant activity of polysaccharides from radix Bupleuri by natural deep eutectic solvents combined with ultrasound-assisted enzymolysis. Sustain Chem Pharm. 2022;30:100877.

    Article  Google Scholar 

  55. Gomez L, Tiwari B, Garcia-Vaquero M. Emerging extraction techniques: Microwave-assisted extraction. Sustainable Seaweed Technologies [Internet]. Elsevier; 2020 [cited 2025 Feb 4]. p. 207–24. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780128179437000081

  56. Gligor O, Mocan A, Moldovan C, Locatelli M, Crișan G, Ferreira ICFR. Enzyme-assisted extractions of polyphenols—A comprehensive review. Trends Food Sci Technol. 2019;88:302–15.

    Article  Google Scholar 

  57. Magnusson M, Yuen AKL, Zhang R, Wright JT, Taylor RB, Maschmeyer T, et al. A comparative assessment of microwave assisted (MAE) and conventional solid-liquid (SLE) techniques for the extraction of phloroglucinol from brown seaweed. Algal Res. 2017;23:28–36.

    Article  Google Scholar 

  58. Thao My PL, Sung VV, Dat TD, Nam HM, Phong MT, Hieu NH. Ultrasound-assisted extraction of Fucoidan from Vietnamese Brown seaweed Sargassum mcclurei and testing bioactivities of the extract. ChemistrySelect. 2020;5:4371–80.

    Article  Google Scholar 

  59. Santana ÁL, Meireles MAA. Valorization of cereal byproducts with supercritical technology: the case of corn. PRO. 2023;11:289.

    Google Scholar 

  60. Mohan K, Ganesan AR, Ezhilarasi PN, Kondamareddy KK, Rajan DK, Sathishkumar P, et al. Green and eco-friendly approaches for the extraction of chitin and chitosan: A review. Carbohydr Polym. 2022;287:119349.

    Article  PubMed  Google Scholar 

  61. Turan O, Isci A, Yılmaz MS, Tolun A, Sakiyan O. Microwave-assisted extraction of pectin from orange peel using deep eutectic solvents. Sustain Chem Pharm. 2024;37:101352.

    Article  Google Scholar 

  62. Garcia-Vaquero M, Rajauria G, O’Doherty JV, Sweeney T. Polysaccharides from macroalgae: recent advances, innovative technologies and challenges in extraction and purification. Food Res Int. 2017;99:1011–20.

    Article  PubMed  Google Scholar 

  63. Tang W, Liu D, Yin J-Y, Nie S-P. Consecutive and progressive purification of food-derived natural polysaccharide: based on material, extraction process and crude polysaccharide. Trends Food Sci Technol. 2020;99:76–87.

    Article  Google Scholar 

  64. Zhang X, Li L, Fung H, Chen N, Shan P, Zhou Y, et al. Critical review of the criterion of polysaccharide purity. Carbohydr Polym. 2025;352:123187.

    Article  PubMed  Google Scholar 

  65. Xiong Q, Song Z, Hu W, Liang J, Jing Y, He L, et al. Methods of extraction, separation, purification, structural characterization for polysaccharides from aquatic animals and their major pharmacological activities. Crit Rev Food Sci Nutr. 2020;60:48–63.

    Article  PubMed  Google Scholar 

  66. Persin Z, Stana-Kleinschek K, Foster TJ, Van Dam JEG, Boeriu CG, Navard P. Challenges and opportunities in polysaccharides research and technology: the EPNOE views for the next decade in the areas of materials, food and health care. Carbohydr Polym. 2011;84:22–32.

    Article  Google Scholar 

  67. Liao B, Zheng J, Xia C, Chen X, Xu Q, Duan B. The potential, challenges, and prospects of the genus spirulina polysaccharides as future multipurpose biomacromolecules. Int J Biol Macromol. 2023;253:127482.

    Article  PubMed  Google Scholar 

  68. Zhang P, Tan J, Wang W, Zhang J, Gong H, Xue H. Extraction, separation, purification, chemical characterizations, and biological activities of polysaccharides from Chinese herbal medicine: A review. Starch Stärke. 2022;74:2200114.

    Article  Google Scholar 

  69. Shen Y, Hong S, Singh G, Koppel K, Li Y. Improving functional properties of pea protein through “green” modifications using enzymes and polysaccharides. Food Chem. 2022;385:132687.

    Article  PubMed  Google Scholar 

  70. Cui SW, Wang Q. Cell wall polysaccharides in cereals: chemical structures and functional properties. Struct Chem. 2009;20:291–7.

    Article  Google Scholar 

  71. Meng X, Luosang D, Meng S, Wang R, Fan W, Liang D, et al. The structural and functional properties of polysaccharide foulants in membrane fouling. Chemosphere. 2021;268:129364.

    Article  PubMed  Google Scholar 

  72. Cui R, Zhu F. Ultrasound modified polysaccharides: A review of structure, physicochemical properties, biological activities and food applications. Trends Food Sci Technol. 2021;107:491–508.

    Article  Google Scholar 

  73. Wang X, Wang Z, Shen M, Yi C, Yu Q, Chen X, et al. Acetylated polysaccharides: synthesis, physicochemical properties, bioactivities, and food applications. Crit Rev Food Sci Nutr. 2024;64:4849–64.

    Article  PubMed  Google Scholar 

  74. Alba K, Kontogiorgos V. Techniques for the chemical and physicochemical characterization of polysaccharides. Handbook of Hydrocolloids [Internet]. Elsevier; 2021 [cited 2025 Feb 4]. p. 27–74. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780128201046000267

  75. Cui SW. Food carbohydrates: chemistry, physical properties, and applications. Hoboken: Taylor and Francis; 2010.

    Google Scholar 

  76. Chen Y, Zhang N, Chen X. Structurally Modified Polysaccharides: Physicochemical Properties, Biological Activities, Structure–Activity Relationship, and Applications. J Agric Food Chem 2024;72:3259–3276.

    Google Scholar 

  77. Yoshida T. Synthesis of polysaccharides having specific biological activities. Prog Polym Sci. 2001;26:379–441.

    Article  Google Scholar 

  78. Ullah S, Khalil AA, Shaukat F, Song Y. Sources, extraction and biomedical properties of polysaccharides. Food Secur. 2019;8:304.

    Google Scholar 

  79. Liu J, Willför S, Xu C. A review of bioactive plant polysaccharides: biological activities, functionalization, and biomedical applications. Bioact Carbohydr Diet Fibre. 2015;5:31–61.

    Article  Google Scholar 

  80. Pereira L. Biological and therapeutic properties of the seaweed polysaccharides. IBR [Internet]. 2018 [cited 2025 Feb 4];2. Available from: https://journals.ke-i.org/index.php/ibr/article/view/1762

  81. Roger O, Colliec-Jouault S, Ratiskol J, Sinquin C, Guezennec J, Fischer AM, et al. Polysaccharide labelling: impact on structural and biological properties. Carbohydr Polym. 2002;50:273–8.

    Article  Google Scholar 

  82. Polysaccharides: properties and applications. Beverly, Massachusetts: Scrivener Publishing. 2021.

    Google Scholar 

  83. Aravamudhan A, Ramos DM, Nada AA, Kumbar SG. Natural polymers. Natural and synthetic biomedical polymers [Internet]. Elsevier; 2014 [cited 2025 Feb 4]. pp. 67–89. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780123969835000041

  84. Arab K, Ghanbarzadeh B, Karimi S, Ebrahimi B, Hosseini M. Gelling and rheological properties of a polysaccharide extracted from Ocimum album L. seed. Int J Biol Macromol. 2023;246:125603.

    Article  PubMed  Google Scholar 

  85. Dimopoulou M, Alba K, Sims IM, Kontogiorgos V. Structure and rheology of pectic polysaccharides from baobab fruit and leaves. Carbohydr Polym. 2021;273:118540.

    Article  PubMed  Google Scholar 

  86. Mikušová V, Ferková J, Žigrayová D, Krchňák D, Mikuš P. Comparative study of polysaccharide-based hydrogels: rheological and texture properties and ibuprofen release. Gels. 2022;8:168.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Muthukumar J, Chidambaram R, Sukumaran S. Sulfated polysaccharides and its commercial applications in food industries—A review. J Food Sci Technol. 2021;58:2453–66.

    Article  PubMed  Google Scholar 

  88. Xie L, Shen M, Wang Z, Xie J. Structure, function and food applications of carboxymethylated polysaccharides: A comprehensive review. Trends Food Sci Technol. 2021;118:539–57.

    Article  Google Scholar 

  89. Bilal M, Gul I, Basharat A, Qamar SA. Polysaccharides-based bio-nanostructures and their potential food applications. Int J Biol Macromol. 2021;176:540–57.

    Article  PubMed  Google Scholar 

  90. Manzoor A, Dar AH, Pandey VK, Shams R, Khan S, Panesar PS, et al. Recent insights into polysaccharide-based hydrogels and their potential applications in food sector: a review. Int J Biol Macromol. 2022;213:987–1006.

    Article  PubMed  Google Scholar 

  91. Roy S, Malik B, Chawla R, Bora S, Ghosh T, Santhosh R, et al. Biocompatible film based on protein/polysaccharides combination for food packaging applications: a comprehensive review. Int J Biol Macromol. 2024;278:134658.

    Article  PubMed  Google Scholar 

  92. Costa JAV, Lucas BF, Alvarenga AGP, Moreira JB, De Morais MG. Microalgae polysaccharides: an overview of production, characterization, and potential applications. Polysaccharides. 2021;2:759–72.

    Article  Google Scholar 

  93. Wang Z, Wang L, Yu X, Wang X, Zheng Y, Hu X, et al. Effect of polysaccharide addition on food physical properties: A review. Food Chem. 2024;431:137099.

    Article  PubMed  Google Scholar 

  94. Zhu F. Polysaccharide based films and coatings for food packaging: effect of added polyphenols. Food Chem. 2021;359:129871.

    Article  PubMed  Google Scholar 

  95. Nasrollahzadeh M. Biopolymer-based metal nanoparticle chemistry for sustainable applications: volume 2: applications. Amsterdam, Netherlands: Elsevier; 2021.

    Google Scholar 

  96. Patel AR, Baldi A, Verma DK, Sandhu KS, Garcia S, editors. Biotechnical processing in the food industry: new methods, techniques, and applications. Boca Raton, FL, USA Abingdon, Oxon, UK: CRC Press; 2021.

    Google Scholar 

  97. Khodadadi Yazdi M, Seidi F, Hejna A, Zarrintaj P, Rabiee N, Kucinska-Lipka J, et al. Tailor-made polysaccharides for biomedical applications. ACS Appl Bio Mater. 2024;7:4193–230.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Schuerch C. Biomedical Applications of Polysaccharides. In: Gebelein CG, Carraher CE, editors. Bioactive Polymeric Systems [Internet]. Boston, MA: Springer US; 1985 [cited 2025 Feb 4]. p. 365–86. Available from: http://link.springer.com/10.1007/978-1-4757-0405-1_14

  99. Nayak AK, Hasnain MS, editors. Natural polysaccharides in drug delivery and biomedical applications. London: Academic, an Imprint of Elsevier; 2019.

    Google Scholar 

  100. Priya S, Batra U, R.N. S, Sharma S, Chaurasiya A, Singhvi G. Polysaccharide-based nanofibers for pharmaceutical and biomedical applications: A review. Int J Biol Macromol. 2022;218:209–24.

    Article  PubMed  Google Scholar 

  101. Arokiarajan MS, Thirunavukkarasu R, Joseph J, Ekaterina O, Aruni W. Advance research in biomedical applications on marine sulfated polysaccharide. Int J Biol Macromol. 2022;194:870–81.

    Article  PubMed  Google Scholar 

  102. Jabeen N, Atif M. Polysaccharides based biopolymers for biomedical applications: A review. Polymers Adv Techs. 2024;35:e6203.

    Article  Google Scholar 

  103. Tchobanian A, Van Oosterwyck H, Fardim P. Polysaccharides for tissue engineering: current landscape and future prospects. Carbohydr Polym. 2019;205:601–25.

    Article  PubMed  Google Scholar 

  104. Nayak AK, Ahmed SA, Tabish M, Hasnain MS. Natural polysaccharides in tissue engineering applications. Natural Polysaccharides in Drug Delivery and Biomedical Applications [Internet] Elsevier; 2019 [cited 2025 Feb 4]. p. 531–548. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780128170557000236

  105. Rajalekshmy GP, Lekshmi Devi L, Joseph J, Rekha MR. An overview on the potential biomedical applications of polysaccharides. Functional Polysaccharides for Biomedical Applications [Internet] Elsevier; 2019 [cited 2025 Feb 4]. pp. 33–94. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780081025550000029

  106. Maiti S, Jana S. Functional polysaccharides for biomedical applications. Duxford: Woodhead publishing; 2019.

    Google Scholar 

  107. Shariatinia Z. Pharmaceutical applications of natural polysaccharides. Natural Polysaccharides in Drug Delivery and Biomedical Applications [Internet]. Elsevier; 2019 [cited 2025 Feb 4]. pp. 15–57. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780128170557000029

  108. Iacob A-T, Drăgan M, Ionescu O-M, Profire L, Ficai A, Andronescu E, et al. An overview of biopolymeric electrospun nanofibers based on polysaccharides for wound healing management. Pharmaceutics. 2020;12:983.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Nosrati H, Khodaei M, Alizadeh Z, Banitalebi-Dehkordi M. Cationic, anionic and neutral polysaccharides for skin tissue engineering and wound healing applications. Int J Biol Macromol. 2021;192:298–322.

    Article  PubMed  Google Scholar 

  110. Ahsan H. The significance of complex polysaccharides in personal care formulations. J Carbohydr Chem. 2019;38:213–33.

    Article  Google Scholar 

  111. Savary G, Grisel M, Picard C. Cosmetics and Personal Care Products. In: Olatunji O, editor. Natural Polymers [Internet]. Cham: Springer International Publishing; 2016 [cited 2025 Feb 5]. pp. 219–61. Available from: http://link.springer.com/10.1007/978-3-319-26414-1_8

  112. Semenzato A, Costantini A, Baratto G. Green polymers in personal care products: rheological properties of tamarind seed polysaccharide. Cosmetics. 2014;2:1–10.

    Article  Google Scholar 

  113. Yao Y, Xu B. Skin health promoting effects of natural polysaccharides and their potential application in the cosmetic industry. Polysaccharides. 2022;3:818–30.

    Article  Google Scholar 

  114. Albuquerque PBS, De Oliveira WF, Dos Santos Silva PM, Dos Santos Correia MT, Kennedy JF, Coelho LCBB. Skincare application of medicinal plant polysaccharides — A review. Carbohydr Polym. 2022;277:118824.

    Article  PubMed  Google Scholar 

  115. De Oliveira AC, Morocho-Jácome AL, De Castro Lima CR, Marques GA, De Oliveira Bispo M, De Barros AB, et al. Cosmetics applications. Microalgae [Internet] Elsevier; 2021 [cited 2025 Feb 5]. p. 313–338. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780128212189000104

  116. Wu Q, Cheng N, Fang D, Wang H, Rahman F-U, Hao H, et al. Recent advances on application of polysaccharides in cosmetics. J Dermatl Sci Cosmetic Technol. 2024;1:100004.

    Article  Google Scholar 

  117. Tafuro G, Costantini A, Baratto G, Francescato S, Busata L, Semenzato A. Characterization of Polysaccharidic associations for cosmetic use: rheology and texture analysis. Cosmetics. 2021;8:62.

    Article  Google Scholar 

  118. Goddard ED. Principles of polymer science and technology in cosmetics and personal care. Milton: Taylor & Francis Group; 1999.

    Book  Google Scholar 

  119. Arora S, Singh D, Rajput A, Bhatia A, Kumar A, Kaur H, et al. Plant-based polysaccharides and their health functions. FFHD. 2021;11:179.

    Article  Google Scholar 

  120. Resende DISP, Ferreira M, Magalhães C, Sousa Lobo JM, Sousa E, Almeida IF. Trends in the use of marine ingredients in anti-aging cosmetics. Algal Res. 2021;55:102273.

    Article  Google Scholar 

  121. Balkrishna A, Agarwal V, Kumar G, Gupta AK. Applications of bacterial polysaccharides with special reference to the cosmetic industry. In: Singh J, Sharma D, Kumar G, Sharma NR, (eds). Microbial Bioprospecting for Sustainable Development [Internet]. Singapore: Springer Singapore; 2018 [cited 2025 Feb 5]. pp. 189–202. Available from: http://link.springer.com/10.1007/978-981-13-0053-0_9

  122. Plucinski A, Lyu Z, Schmidt BVKJ. Polysaccharide nanoparticles: from fabrication to applications. J Mater Chem B. 2021;9:7030–62.

    Article  PubMed  Google Scholar 

  123. Juncan AM, Moisă DG, Santini A, Morgovan C, Rus L-L, Vonica-Țincu AL, et al. Advantages of hyaluronic acid and its combination with other bioactive ingredients in cosmeceuticals. Molecules. 2021;26:4429.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Kanlayavattanakul M, Lourith N. Natural Polysaccharides for Skin Care. In: Oliveira J, Radhouani H, Reis RL (eds). Polysaccharides of Microbial Origin [Internet]. Cham: Springer International Publishing; 2021 [cited 2025 Feb 5]. pp. 1–23. Available from: https://link.springer.com/10.1007/978-3-030-35734-4_46-1

  125. Baptista S, Freitas F. Bacterial polysaccharides: cosmetic applications. In: Oliveira J, Radhouani H, Reis RL, editors. Polysaccharides of microbial origin [internet]. Cham: Springer International Publishing; 2021 [cited 2025 Feb 5]. pp. 1–42. Available from: https://link.springer.com/10.1007/978-3-030-35734-4_45-1.

  126. Guzmán E, Ortega F, Rubio RG. Chitosan: A promising multifunctional cosmetic ingredient for skin and hair care. Cosmetics. 2022;9:99.

    Article  Google Scholar 

  127. Gawade RP, Chinke SL, Alegaonkar PS. Polymers in cosmetics. Polymer science and innovative applications [Internet]. Elsevier; 2020 [cited 2025 Feb 5]. pp. 545–65. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780128168080000172

  128. Shafie MH, Kamal ML, Zulkiflee FF, Hasan S, Uyup NH, Abdullah S, et al. Application of carrageenan extract from red seaweed (Rhodophyta) in cosmetic products: a review. J Indian Chem Soc. 2022;99:100613.

    Article  Google Scholar 

  129. Sousa P, Tavares-Valente D, Amorim M, Azevedo-Silva J, Pintado M, Fernandes J. Β-Glucan extracts as high-value multifunctional ingredients for skin health: a review. Carbohydr Polym. 2023;322:121329.

    Article  PubMed  Google Scholar 

  130. Sadgrove NJ, Simmonds MSJ. Pharmacodynamics of Aloe vera and acemannan in therapeutic applications for skin, digestion, and immunomodulation. Phytother Res. 2021;35:6572–84.

    Article  PubMed  Google Scholar 

  131. Yuan M, Wang J, Geng L, Wu N, Yang Y, Zhang Q. A review: structure, bioactivity and potential application of algal polysaccharides in skin aging care and therapy. Int J Biol Macromol. 2024;272:132846.

    Article  PubMed  Google Scholar 

  132. Madni A, Khalid A, Wahid F, Ayub H, Khan R, Kousar R. Preparation and applications of guar gum composites in biomedical, pharmaceutical, food, and cosmetics industries. CNANO. 2021;17:365–79.

    Article  Google Scholar 

  133. Raza ZA, Munim SA, Ayub A. Recent developments in polysaccharide-based electrospun nanofibers for environmental applications. Carbohydr Res. 2021;510:108443.

    Article  PubMed  Google Scholar 

  134. Souza MAD, Vilas-Boas IT, Leite-da-Silva JM, Abrahão PDN, Teixeira-Costa BE, Veiga-Junior VF. Polysaccharides in agro-industrial biomass residues polysaccharides. 2022;3:95–120.

    Google Scholar 

  135. Orejuela-Escobar L, Gualle A, Ochoa-Herrera V, Philippidis GP. Prospects of microalgae for biomaterial production and environmental applications at biorefineries. Sustain For. 2021;13:3063.

    Google Scholar 

  136. Gamage A, Thiviya P, Liyanapathiranage A, Wasana MLD, Jayakodi Y, Bandara A, et al. Polysaccharide-based bioplastics: eco-friendly and sustainable solutions for packaging. J Compos Sci. 2024;8:413.

    Article  Google Scholar 

  137. Aleksanyan KV. Polysaccharides for biodegradable packaging materials: past, present, and future (brief review). Polymers. 2023;15:451.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Wang Z, Xu C, Qi L, Chen C. Chemical modification of polysaccharides for sustainable bioplastics. Trends Chem. 2024;6:314–31.

    Article  Google Scholar 

  139. Reichert CL, Bugnicourt E, Coltelli M-B, Cinelli P, Lazzeri A, Canesi I, et al. Bio-based packaging: materials, modifications. Indus Appl Sustai Polymers. 2020;12:1558.

    Google Scholar 

  140. Zhao X, Wang Y, Chen X, Yu X, Li W, Zhang S, et al. Sustainable bioplastics derived from renewable natural resources for food packaging. Matter. 2023;6:97–127.

    Article  Google Scholar 

  141. Martins BA, De Albuquerque PBS, De Souza MP. Bio-based films and coatings: sustainable polysaccharide packaging alternatives for the food industry. J Polym Environ. 2022;30:4023–39.

    Article  Google Scholar 

  142. Bochek AM. Prospects for use of polysaccharides of different origin and environmental problems in processing them. Fibre Chem. 2008;40:192–7.

    Article  Google Scholar 

  143. Maciel JV, Durigon AMM, Souza MM, Quadrado RFN, Fajardo AR, Dias D. Polysaccharides derived from natural sources applied to the development of chemically modified electrodes for environmental applications: a review. Trends Environ Analytical Chem. 2019;22:e00062.

    Article  Google Scholar 

  144. Arias DM, Ortíz-Sánchez E, Okoye PU, Rodríguez-Rangel H, Balbuena Ortega A, Longoria A, et al. A review on cyanobacteria cultivation for carbohydrate-based biofuels: cultivation aspects, polysaccharides accumulation strategies, and biofuels production scenarios. Sci Total Environ. 2021;794:148636.

    Article  PubMed  Google Scholar 

  145. Picos-Corrales LA, Morales-Burgos AM, Ruelas-Leyva JP, Crini G, García-Armenta E, Jimenez-Lam SA, et al. Chitosan as an outstanding polysaccharide improving health-commodities of humans and environmental protection. Polymers. 2023;15:526.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Bakshi PS, Selvakumar D, Kadirvelu K, Kumar NS. Chitosan as an environment friendly biomaterial—a review on recent modifications and applications. Int J Biol Macromol. 2020;150:1072–83.

    Article  PubMed  Google Scholar 

  147. Selvaraj S, Chauhan A, Dutta V, Verma R, Rao SK, Radhakrishnan A, et al. A state-of-the-art review on plant-derived cellulose-based green hydrogels and their multifunctional role in advanced biomedical applications. Int J Biol Macromol. 2024;265:130991.

    Article  PubMed  Google Scholar 

  148. Biranje SS, Sun J, Shi Y, Yu S, Jiao H, Zhang M, et al. Polysaccharide-based hemostats: recent developments, challenges, and future perspectives. Cellulose. 2021;28:8899–937.

    Article  Google Scholar 

  149. Bushra R, Ahmad M, Seidi F, Qurtulen SJ, Jin Y, et al. Polysaccharide-based nanoassemblies: from synthesis methodologies and industrial applications to future prospects. Adv Colloid Interf Sci. 2023;318:102953.

    Article  Google Scholar 

  150. Ali SS, Alsharbaty MHM, Al-Tohamy R, Naji GA, Elsamahy T, Mahmoud YA-G, et al. A review of the fungal polysaccharides as natural biopolymers: current applications and future perspective. Int J Biol Macromol. 2024;273:132986.

    Article  PubMed  Google Scholar 

  151. Manikandan V, Min SC. Roles of polysaccharides-based nanomaterials in food preservation and extension of shelf-life of food products: a review. Int J Biol Macromol. 2023;252:126381.

    Article  PubMed  Google Scholar 

  152. Guo Q, Zhang M, Mujumdar AS. Progress of plant-derived non-starch polysaccharides and their challenges and applications in future foods. Comp Rev Food Sci Food Safe. 2024;23:e13361.

    Article  Google Scholar 

  153. Mahendiran B, Muthusamy S, Sampath S, Jaisankar SN, Popat KC, Selvakumar R, et al. Recent trends in natural polysaccharide based bioinks for multiscale 3D printing in tissue regeneration: a review. Int J Biol Macromol. 2021;183:564–88.

    Article  PubMed  Google Scholar 

  154. Teixeira MC, Lameirinhas NS, Carvalho JPF, Silvestre AJD, Vilela C, Freire CSR. A guide to polysaccharide-based hydrogel bioinks for 3D bioprinting applications. IJMS. 2022;23:6564.

    Article  PubMed  PubMed Central  Google Scholar 

  155. Kaith A, Jain N, Kaul S, Nagaich U. Polysaccharide-infused bio-fabrication: advancements in 3D bioprinting for tissue engineering and bone regeneration. Materials Today Commun. 2024;40:109429.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Minocha, N. (2025). Polysaccharides from Natural Sources: Functional Properties and Applications. In: S, J., Vinchurkar, K., Suryawanshi, M., Mane, S. (eds) Innovative Pharmaceutical Excipients: Natural Sources. Springer, Singapore. https://doi.org/10.1007/978-981-96-7959-1_6

Download citation

Keywords

Publish with us

Policies and ethics