Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content

Peptidoglycan

  • Chapter
  • First Online:
Bacterial Cell Walls and Membranes

Part of the book series: Subcellular Biochemistry ((SCBI,volume 92))

Abstract

The peptidoglycan sacculus is a net-like polymer that surrounds the cytoplasmic membrane in most bacteria. It is essential to maintain the bacterial cell shape and protect from turgor. The peptidoglycan has a basic composition, common to all bacteria, with species-specific variations that can modify its biophysical properties or the pathogenicity of the bacteria. The synthesis of peptidoglycan starts in the cytoplasm and the precursor lipid II is flipped across the cytoplasmic membrane. The new peptidoglycan strands are synthesised and incorporated into the pre-existing sacculus by the coordinated activities of peptidoglycan synthases and hydrolases. In the model organism Escherichia coli there are two complexes required for the elongation and division. Each of them is regulated by different proteins from both the cytoplasmic and periplasmic sides that ensure the well-coordinated synthesis of new peptidoglycan.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 119.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 149.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 149.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alcorlo M, Martinez-Caballero S, Molina R, Hermoso JA (2017) Carbohydrate recognition and lysis by bacterial peptidoglycan hydrolases. Curr Opin Struct Biol 44:87–100

    Article  CAS  PubMed  Google Scholar 

  • Alexeeva S, Gadella Tw Jr, Verheul J, Verhoeven GS, Den Blaauwen T (2010) Direct interactions of early and late assembling division proteins in Escherichia coli cells resolved by FRET. Mol Microbiol 77:384–389

    Article  CAS  PubMed  Google Scholar 

  • Amanuma H, Strominger JL (1980) Purification and properties of penicillin-binding proteins 5 and 6 from Escherichia coli membranes. J Biol Chem 255:11173–11180

    CAS  PubMed  Google Scholar 

  • Aramini JM, Rossi P, Huang YJ, Zhao L, Jiang M, Maglaqui M, Xiao R, Locke J, Nair R, Rost B, Acton TB, Inouye M, Montelione GT (2008) Solution NMR structure of the NlpC/P60 domain of lipoprotein Spr from Escherichia coli: structural evidence for a novel cysteine peptidase catalytic triad. Biochemistry 47:9715–9717

    Article  CAS  PubMed  Google Scholar 

  • Arthur M, Molinas C, Depardieu F, Courvalin P (1993) Characterization of Tn1546, a Tn3-related transposon conferring glycopeptide resistance by synthesis of depsipeptide peptidoglycan precursors in Enterococcus faecium BM4147. J Bacteriol 175:117–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arthur M, Reynolds P, Courvalin P (1996) Glycopeptide resistance in enterococci. Trends Microbiol 4:401–407

    Article  CAS  PubMed  Google Scholar 

  • Atrih A, Bacher G, Allmaier G, Williamson MP, Foster SJ (1999) Analysis of peptidoglycan structure from vegetative cells of Bacillus subtilis 168 and role of PBP 5 in peptidoglycan maturation. J Bacteriol 181:3956–3966

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aubry C, Goulard C, Nahori MA, Cayet N, Decalf J, Sachse M, Boneca IG, Cossart P, Dussurget O (2011) OatA, a peptidoglycan O-acetyltransferase involved in Listeria monocytogenes immune escape, is critical for virulence. J Infect Dis 204:731–740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Auer GK, Lee TK, Rajendram M, Cesar S, Miguel A, Huang KC, Weibel DB (2016) Mechanical genomics identifies diverse modulators of bacterial cell stiffness. Cell Syst 2:402–411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bailey MW, Bisicchia P, Warren BT, Sherratt DJ, Mannik J (2014a) Evidence for divisome localization mechanisms independent of the min system and SlmA in Escherichia coli. PLoS Genet 10:e1004504

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bailey RG, Turner RD, Mullin N, Clarke N, Foster SJ, Hobbs JK (2014b) The interplay between cell wall mechanical properties and the cell cycle in Staphylococcus aureus. Biophys J 107:2538–2545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banzhaf M, van den berg van saparoea B, Terrak M, Fraipont C, Egan A, Philippe J, Zapun A, Breukink E, Nguyen-Disteche M, den Blaauwen T, Vollmer W (2012) Cooperativity of peptidoglycan synthases active in bacterial cell elongation. Mol Microbiol 85:179–194

    Article  CAS  PubMed  Google Scholar 

  • Barreteau H, Kovac A, Boniface A, Sova M, Gobec S, Blanot D (2008) Cytoplasmic steps of peptidoglycan biosynthesis. FEMS Microbiol Rev 32:168–207

    Article  CAS  PubMed  Google Scholar 

  • Barrett DS, Chen L, Litterman NK, Walker S (2004) Expression and characterization of the isolated glycosyltransferase module of Escherichia coli PBP1b. Biochemistry 43:12375–12381

    Article  CAS  PubMed  Google Scholar 

  • Beeby M, Gumbart JC, Roux B, Jensen GJ (2013) Architecture and assembly of the Gram-positive cell wall. Mol Microbiol 88:664–672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benachour A, Ladjouzi R, le Jeune A, Hebert L, Thorpe S, Courtin P, Chapot-Chartier MP, Prajsnar TK, Foster SJ, Mesnage S (2012) The lysozyme-induced peptidoglycan N-acetylglucosamine deacetylase PgdA (EF1843) is required for Enterococcus faecalis virulence. J Bacteriol 194:6066–6073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bendezu FO, de Boer PA (2008) Conditional lethality, division defects, membrane involution, and endocytosis in mre and mrd shape mutants of Escherichia coli. J Bacteriol 190:1792–1811

    Article  CAS  PubMed  Google Scholar 

  • Bera A, Herbert S, Jakob A, Vollmer W, Gotz F (2005) Why are pathogenic staphylococci so lysozyme resistant? the peptidoglycan O-acetyltransferase OatA is the major determinant for lysozyme resistance of Staphylococcus aureus. Mol Microbiol 55:778–787

    Article  CAS  Google Scholar 

  • Berezuk AM, Glavota S, Roach EJ, Goodyear MC, Krieger JR, Khursigara CM (2018) Outer membrane lipoprotein RlpA is a novel periplasmic interaction partner of the cell division protein FtsK in Escherichia coli. Sci Rep 8:12933

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bernal-Cabas M, Ayala JA, Raivio TL (2015) The Cpx envelope stress response modifies peptidoglycan cross-linking via the ld-transpeptidase LdtD and the novel protein YgaU. J Bacteriol 197:603–614

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bernard CS, Sadasivam M, Shiomi D, Margolin W (2007) An altered FtsA can compensate for the loss of essential cell division protein FtsN in Escherichia coli. Mol Microbiol 64:1289–1305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernard E, Rolain T, Courtin P, Guillot A, Langella P, Hols P, Chapot-Chartier MP (2011) Characterization of O-acetylation of N-acetylglucosamine: a novel structural variation of bacterial peptidoglycan. J Biol Chem 286:23950–23958

    Google Scholar 

  • Bernard E, Rolain T, David B, Andre G, Dupres V, Dufrene YF, Hallet B, Chapot-Chartier MP, Hols P (2012) Dual role for the O-acetyltransferase OatA in peptidoglycan modification and control of cell septation in Lactobacillus plantarum. PLoS ONE 7:e47893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernhardt TG, de Boer PA (2003) The Escherichia coli amidase AmiC is a periplasmic septal ring component exported via the twin-arginine transport pathway. Mol Microbiol 48:1171–1182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertsche U, Breukink E, Kast T, Vollmer W (2005) In vitro murein peptidoglycan synthesis by dimers of the bifunctional transglycosylase-transpeptidase PBP1B from Escherichia coli. J Biol Chem 280:38096–38101

    Article  CAS  PubMed  Google Scholar 

  • Bisson-Filho AW, Hsu YP, Squyres GR, Kuru E, Wu F, Jukes C, Sun Y, Dekker C, Holden S, Vannieuwenhze MS, Brun YV, Garner EC (2017) Treadmilling by FtsZ filaments drives peptidoglycan synthesis and bacterial cell division. Science 355:739–743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolla JR, Sauer JB, Wu D, Mehmood S, Allison TM, Robinson CV (2018) Direct observation of the influence of cardiolipin and antibiotics on lipid II binding to MurJ. Nat Chem 10:363–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boneca IG, Dussurget O, Cabanes D, Nahori MA, Sousa S, Lecuit M, Psylinakis E, Bouriotis V, Hugot JP, Giovannini M, Coyle A, Bertin J, Namane A, Rousselle JC, Cayet N, Prevost MC, Balloy V, Chignard M, Philpott DJ, Cossart P, Girardin SE (2007) A critical role for peptidoglycan N-deacetylation in Listeria evasion from the host innate immune system. Proc Natl Acad Sci USA 104:997–1002

    Article  CAS  Google Scholar 

  • Bonnet J, Durmort C, Jacq M, Mortier-Barriere I, Campo N, Vannieuwenhze MS, Brun YV, Arthaud C, Gallet B, Moriscot C, Morlot C, Vernet T, di Guilmi AM (2017) Peptidoglycan O-acetylation is functionally related to cell wall biosynthesis and cell division in Streptococcus pneumoniae. Mol Microbiol 106:832–846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Born P, Breukink E, Vollmer W (2006) In vitro synthesis of cross-linked murein and its attachment to sacculi by PBP1A from Escherichia coli. J Biol Chem 281:26985–26993

    Article  CAS  PubMed  Google Scholar 

  • Boyle-Vavra S, Labischinski H, Ebert CC, Ehlert K, Daum RS (2001) A spectrum of changes occurs in peptidoglycan composition of glycopeptide-intermediate clinical Staphylococcus aureus isolates. Antimicrob Agents Chemother 45:280–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brammer LAB, Ghosh A, Pan Y, Jakoncic J, Lloyd EP, Townsend CA, Lamichhane G, Bianchet MA (2015) Loss of a functionally and structurally distinct ld-transpeptidase, LdtMt5, compromises cell wall integrity in Mycobacterium tuberculosis. J Biol Chem 290:25670–25685

    Google Scholar 

  • Bratton BP, Shaevitz JW, Gitai Z, Morgenstein RM (2018) MreB polymers and curvature localization are enhanced by RodZ and predict E. coli’s cylindrical uniformity. Nat Commun 9:2797

    Google Scholar 

  • Bui NK, Eberhardt A, Vollmer D, Kern T, Bougault C, Tomasz A, Simorre JP, Vollmer W (2012) Isolation and analysis of cell wall components from Streptococcus pneumoniae. Anal Biochem 421:657–666

    Article  CAS  PubMed  Google Scholar 

  • Buist G, Steen A, Kok J, Kuipers OP (2008) LysM, a widely distributed protein motif for binding to (peptido)glycans. Mol Microbiol 68:838–847

    Article  CAS  PubMed  Google Scholar 

  • Busiek KK, Eraso JM, Wang Y, Margolin W (2012) The early divisome protein FtsA interacts directly through its 1c subdomain with the cytoplasmic domain of the late divisome protein FtsN. J Bacteriol 194:1989–2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Busiek KK, Margolin W (2014) A role for FtsA in SPOR-independent localization of the essential Escherichia coli cell division protein FtsN. Mol Microbiol 92:1212–1226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butler EK, Davis RM, Bari V, Nicholson PA, Ruiz N (2013) Structure-function analysis of MurJ reveals a solvent-exposed cavity containing residues essential for peptidoglycan biogenesis in Escherichia coli. J Bacteriol 195:4639–4649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butler EK, Tan WB, Joseph H, Ruiz N (2014) Charge requirements of lipid II flippase activity in Escherichia coli. J Bacteriol 196:4111–4119

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cao L, Liang D, Hao P, Song Q, Xue E, Caiyin Q, Cheng Z, Qiao J (2018) The increase of O-acetylation and N-deacetylation in cell wall promotes acid resistance and nisin production through improving cell wall integrity in Lactococcus lactis. J Ind Microbiol Biotechnol

    Google Scholar 

  • Cascales E, Bernadac A, Gavioli M, Lazzaroni JC, Lloubes R (2002) Pal lipoprotein of Escherichia coli plays a major role in outer membrane integrity. J Bacteriol 184:754–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cascales E, Gavioli M, Sturgis JN, Lloubes R (2000) Proton motive force drives the interaction of the inner membrane TolA and outer membrane pal proteins in Escherichia coli. Mol Microbiol 38:904–915

    Article  CAS  PubMed  Google Scholar 

  • Cascales E, Lloubes R, Sturgis JN (2001) The TolQ-TolR proteins energize TolA and share homologies with the flagellar motor proteins MotA-MotB. Mol Microbiol 42:795–807

    Article  CAS  PubMed  Google Scholar 

  • Cava F, de Pedro MA, Lam H, Davis BM, Waldor MK (2011) Distinct pathways for modification of the bacterial cell wall by non-canonical d-amino acids. EMBO J 30:3442–3453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cayley DS, Guttman HJ, Record MT Jr (2000) Biophysical characterization of changes in amounts and activity of Escherichia coli cell and compartment water and turgor pressure in response to osmotic stress. Biophys J 78:1748–1764

    Google Scholar 

  • Chamakura KR, Sham LT, Davis RM, Min L, Cho H, Ruiz N, Bernhardt TG, Young R (2017) A viral protein antibiotic inhibits lipid II flippase activity. Nat Microbiol 2:1480–1484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang JD, Foster EE, Wallace AG, Kim SJ (2017) Peptidoglycan O-acetylation increases in response to vancomycin treatment in vancomycin-resistant Enterococcus faecalis. Sci Rep 7:46500

    Google Scholar 

  • Cho H, Uehara T, Bernhardt TG (2014) Beta-lactam antibiotics induce a lethal malfunctioning of the bacterial cell wall synthesis machinery. Cell 159:1300–1311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho H, Wivagg CN, Kapoor M, Barry Z, Rohs PD, Suh H, Marto JA, Garner EC, Bernhardt TG (2016). Bacterial cell wall biogenesis is mediated by SEDS and PBP polymerase families functioning semi-autonomously. Nat Microbiol 16172

    Google Scholar 

  • Clarke TB, Kawai F, Park SY, Tame JR, Dowson CG, Roper DI (2009) Mutational analysis of the substrate specificity of Escherichia coli penicillin binding protein 4. Biochemistry 48:2675–2683

    Article  CAS  PubMed  Google Scholar 

  • Colavin A, Shi H, Huang KC (2018) RodZ modulates geometric localization of the bacterial actin MreB to regulate cell shape. Nat Commun 9:1280

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Coltharp C, Buss J, Plumer TM, Xiao J (2016) Defining the rate-limiting processes of bacterial cytokinesis. Proc Natl Acad Sci USA 113:E1044–E1053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Contreras-Martel C, Martins A, Ecobichon C, Trindade DM, Mattei PJ, Hicham S, Hardouin P, Ghachi ME, Boneca IG, Dessen A (2017) Molecular architecture of the PBP2-MreC core bacterial cell wall synthesis complex. Nat Commun 8:776

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Coulombe F, Divangahi M, Veyrier F, de Leseleuc L, Gleason JL, Yang Y, Kelliher MA, Pandey AK, Sassetti CM, Reed MB, Behr MA (2009) Increased NOD2-mediated recognition of N-glycolyl muramyl dipeptide. J Exp Med 206:1709–1716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dajkovic A, Tesson B, Chauhan S, Courtin P, Keary R, Flores P, Marliere C, Filipe SR, Chapot-Chartier MP, Carballido-Lopez R (2017) Hydrolysis of peptidoglycan is modulated by amidation of meso-diaminopimelic acid and Mg2+ in Bacillus subtilis. Mol Microbiol 104:972–988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Leeuw E, Graham B, Phillips GJ, Ten Hagen-Jongman CM, Oudega B, Luirink J (1999) Molecular characterization of Escherichia coli FtsE and FtsX. Mol Microbiol 31:983–993

    Article  PubMed  Google Scholar 

  • de Pedro MA, Quintela JC, Höltje JV, Schwarz H (1997) Murein segregation in Escherichia coli. J Bacteriol 179:2823–2834

    Article  PubMed  PubMed Central  Google Scholar 

  • Delhaye A, Collet JF, Laloux G (2016) Fine-tuning of the Cpx envelope stress response is required for cell wall homeostasis in Escherichia coli. MBio 7:e00047–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Demchick P, Koch AL (1996) The permeability of the wall fabric of Escherichia coli and Bacillus subtilis. J Bacteriol 178:768–773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Denome SA, Elf PK, Henderson TA, Nelson DE, Young KD (1999) Escherichia coli mutants lacking all possible combinations of eight penicillin binding proteins: viability, characteristics, and implications for peptidoglycan synthesis. J Bacteriol 181:3981–3993

    CAS  PubMed  PubMed Central  Google Scholar 

  • di Lallo G, Fagioli M, Barionovi D, Ghelardini P, Paolozzi L (2003) Use of a two-hybrid assay to study the assembly of a complex multicomponent protein machinery: bacterial septosome differentiation. Microbiology 149:3353–3359

    Article  PubMed  CAS  Google Scholar 

  • Dik DA, Fisher JF, Mobashery S (2018) Cell-wall recycling of the Gram-negative bacteria and the nexus to antibiotic resistance. Chem Rev 118:5952–5984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dik DA, Marous DR, Fisher JF, Mobashery S (2017) Lytic transglycosylases: concinnity in concision of the bacterial cell wall. Crit Rev Biochem Mol Biol 52:503–542

    Article  PubMed  PubMed Central  Google Scholar 

  • Dillard JP, Hackett KT (2005) Mutations affecting peptidoglycan acetylation in Neisseria gonorrhoeae and Neisseria meningitidis. Infect Immun 73:5697–5705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dutta M, Kar D, Bansal A, Chakraborty S, Ghosh AS (2015) A single amino acid substitution in the Omega-like loop of E. coli PBP5 disrupts its ability to maintain cell shape and intrinsic beta-lactam resistance. Microbiology 161:895–902

    Article  CAS  PubMed  Google Scholar 

  • Egan AJ, Jean NL, Koumoutsi A, Bougault CM, Biboy J, Sassine J, Solovyova AS, Breukink E, Typas A, Vollmer W, Simorre JP (2014) Outer-membrane lipoprotein LpoB spans the periplasm to stimulate the peptidoglycan synthase PBP1B. Proc Natl Acad Sci USA 111:8197–8202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Egan AJ, Vollmer W (2013) The physiology of bacterial cell division. Ann N Y Acad Sci 1277:8–28

    Article  CAS  PubMed  Google Scholar 

  • Egan AJF, Maya-Martinez R, Ayala I, Bougault CM, Banzhaf M, Breukink E, Vollmer W, Simorre JP (2018) Induced conformational changes activate the peptidoglycan synthase PBP1B. Mol Microbiol 110:335–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • el Ghachi M, Howe N, Huang CY, Olieric V, Warshamanage R, Touze T, Weichert D, Stansfeld PJ, Wang M, Kerff F, Caffrey M (2018) Crystal structure of undecaprenyl-pyrophosphate phosphatase and its role in peptidoglycan biosynthesis. Nat Commun 9:1078

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Elhenawy W, Davis RM, Fero J, Salama NR, Felman MF, Ruiz N (2016) The O-antigen flippase Wzk can substitute for MurJ in peptidoglycan synthesis in Helicobacter pylori and Escherichia coli. PLoS ONE 11:e0161587

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Emami K, Guyet A, Kawai Y, Devi J, Wu LJ, Allenby N, Daniel RA, Errington J (2017) RodA as the missing glycosyltransferase in Bacillus subtilis and antibiotic discovery for the peptidoglycan polymerase pathway. Nat Microbiol 2:16253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engel H, van Leeuwen A, Dijkstra A, Keck W (1992) Enzymatic preparation of 1,6-anhydro-muropeptides by immobilized murein hydrolases from Escherichia coli fused to staphylococcal protein A. Appl Microbiol Biotechnol 37:772–783

    Article  CAS  PubMed  Google Scholar 

  • Errington J (2015) Bacterial morphogenesis and the enigmatic MreB helix. Nat Rev Microbiol 13:241–248

    Article  CAS  PubMed  Google Scholar 

  • Espaillat A, Forsmo O, el Biari K, Bjork R, Lemaitre B, Trygg J, Canada FJ, de Pedro MA, Cava F (2016) Chemometric analysis of bacterial peptidoglycan reveals atypical modifications that empower the cell wall against predatory enzymes and fly innate immunity. J Am Chem Soc 138:9193–9204

    Article  CAS  PubMed  Google Scholar 

  • Evans KL, Kannan S, Li G, de Pedro MA, Young KD (2013) Eliminating a set of four penicillin binding proteins triggers the Rcs phosphorelay and Cpx stress responses in Escherichia coli. J Bacteriol 195:4415–4424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan J, Jiang D, Zhao Y, Liu J, Zhang XC (2014) Crystal structure of lipid phosphatase Escherichia coli phosphatidylglycerophosphate phosphatase B. Proc Natl Acad Sci USA 111:7636–7640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fenton AK, Gerdes K (2013) Direct interaction of FtsZ and MreB is required for septum synthesis and cell division in Escherichia coli. EMBO J 32:1953–1965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Figueiredo TA, Sobral RG, Ludovice AM, Almeida JM, Bui NK, Vollmer W, de Lencastre H, Tomasz A (2012) Identification of genetic determinants and enzymes involved with the amidation of glutamic acid residues in the peptidoglycan of Staphylococcus aureus. PLoS Pathog 8:e1002508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Filipe SR, Tomasz A (2000) Inhibition of the expression of penicillin resistance in Streptococcus pneumoniae by inactivation of cell wall muropeptide branching genes. Proc Natl Acad Sci USA 97:4891–4896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Firczuk M, Bochtler M (2007) Mutational analysis of peptidoglycan amidase MepA. Biochemistry 46:120–128

    Article  CAS  PubMed  Google Scholar 

  • Fraipont C, Alexeeva S, Wolf B, van der Ploeg R, Schloesser M, den Blaauwen T, Nguyen-Disteche M (2011) The integral membrane FtsW protein and peptidoglycan synthase PBP3 form a subcomplex in Escherichia coli. Microbiology 157:251–259

    Article  CAS  PubMed  Google Scholar 

  • Gallant CV, Daniels C, Leung JM, Ghosh AS, Young KD, Kotra LP, Burrows LL (2005) Common beta-lactamases inhibit bacterial biofilm formation. Mol Microbiol 58:1012–1024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Bustos J, Tomasz A (1990) A biological price of antibiotic resistance: major changes in the peptidoglycan structure of penicillin-resistant pneumococci. Proc Natl Acad Sci USA 87:5415–5419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia Del Portillo F, De Pedro MA (1990) Differential effect of mutational impairment of penicillin-binding proteins 1A and 1B on Escherichia coli strains harboring thermosensitive mutations in the cell division genes ftsA, ftsQ, ftsZ, and pbpB. J Bacteriol 172:5863–5870

    Google Scholar 

  • Garcia Del Portillo F, De Pedro MA (1991) Penicillin-binding protein 2 is essential for the integrity of growing cells of Escherichia coli ponB strains. J Bacteriol 173:4530–4532

    Google Scholar 

  • Garner EC, Bernard R, Wang W, Zhuang X, Rudner DZ, Mitchison T (2011) Coupled, circumferential motions of the cell wall synthesis machinery and MreB filaments in B. subtilis. Science 333:222–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geiger T, Pazos M, Lara-Tejero M, Vollmer W, Galan JE (2018). Peptidoglycan editing by a specific ld-transpeptidase controls the muramidase-dependent secretion of typhoid toxin. Nat Microbiol

    Google Scholar 

  • Gerding MA, Liu B, Bendezu FO, Hale CA, Bernhardt TG, de Boer PA (2009) Self-enhanced accumulation of FtsN at division sites and roles for other proteins with a SPOR domain (DamX, DedD, and RlpA) in Escherichia coli cell constriction. J Bacteriol 191:7383–7401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glauner B, Höltje JV, Schwarz U (1988) The composition of the murein of Escherichia coli. J Biol Chem 263:10088–10095

    CAS  PubMed  Google Scholar 

  • Gonzalez-Leiza SM, de Pedro MA, Ayala JA (2011) AmpH, a bifunctional dd-endopeptidase and dd-carboxypeptidase of Escherichia coli. J Bacteriol 193:6887–6894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Govindarajan S, Amster-Choder O (2017) The bacterial Sec system is required for the organization and function of the MreB cytoskeleton. PLoS Genet 13:e1007017

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gray AN, Egan AJ, Van’t Veer IL, Verheul J, Colavin A, Koumoutsi A, Biboy J, Altelaar AF, Damen MJ, Huang KC, Simorre JP, Breukink E, Den Blaauwen T, Typas A, Gross CA, Vollmer W (2015) Coordination of peptidoglycan synthesis and outer membrane constriction during Escherichia coli cell division. Elife 4

    Google Scholar 

  • Gupta R, Lavollay M, Mainardi JL, Arthur M, Bishai WR, Lamichhane G (2010) The Mycobacterium tuberculosis protein LdtMt2 is a nonclassical transpeptidase required for virulence and resistance to amoxicillin. Nat Med 16:466–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ha R, Frirdich E, Sychantha D, Biboy J, Taveirne ME, Johnson JG, Dirita VJ, Vollmer W, Clarke AJ, Gaynor EC (2016) Accumulation of peptidoglycan O-acetylation leads to altered cell wall biochemistry and negatively impacts pathogenesis factors of Campylobacter jejuni. J Biol Chem 291:22686–22702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hakulinen JK, Hering J, Branden G, Chen H, Snijder A, Ek M, Johansson P (2017) MraY-antibiotic complex reveals details of tunicamycin mode of action. Nat Chem Biol 13:265–267

    Article  CAS  PubMed  Google Scholar 

  • Hansen JM, Golchin SA, Veyrier FJ, Domenech P, Boneca IG, Azad AK, Rajaram MV, Schlesinger LS, Divangahi M, Reed MB, Behr MA (2014) N-glycolylated peptidoglycan contributes to the immunogenicity but not pathogenicity of Mycobacterium tuberculosis. J Infect Dis 209:1045–1054

    Article  CAS  PubMed  Google Scholar 

  • Heidrich C, Templin MF, Ursinus A, Merdanovic M, Berger J, Schwarz H, de Pedro MA, Höltje JV (2001) Involvement of N-acetylmuramyl-l-alanine amidases in cell separation and antibiotic-induced autolysis of Escherichia coli. Mol Microbiol 41:167–178

    Article  CAS  PubMed  Google Scholar 

  • Heidrich C, Ursinus A, Berger J, Schwarz H, Höltje JV (2002) Effects of multiple deletions of murein hydrolases on viability, septum cleavage, and sensitivity to large toxic molecules in Escherichia coli. J Bacteriol 184:6093–6099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henderson TA, Dombrosky PM, Young KD (1994) Artifactual processing of penicillin-binding proteins 7 and 1b by the OmpT protease of Escherichia coli. J Bacteriol 176:256–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henderson TA, Templin M, Young KD (1995) Identification and cloning of the gene encoding penicillin-binding protein 7 of Escherichia coli. J Bacteriol 177:2074–2079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henderson TA, Young KD, Denome SA, Elf PK (1997) AmpC and AmpH, proteins related to the class C beta-lactamases, bind penicillin and contribute to the normal morphology of Escherichia coli. J Bacteriol 179:6112–6121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holden S (2018) Probing the mechanistic principles of bacterial cell division with super-resolution microscopy. Curr Opin Microbiol 43:84–91

    Article  CAS  PubMed  Google Scholar 

  • Höltje JV (1998) Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli. Microbiol Mol Biol Rev 62:181–203

    PubMed  PubMed Central  Google Scholar 

  • Hrast M, Sosic I, Sink R, Gobec S (2014) Inhibitors of the peptidoglycan biosynthesis enzymes MurA-F. Bioorg Chem 55:2–15

    Article  CAS  PubMed  Google Scholar 

  • Hsu YP, Rittichier J, Kuru E, Yablonowski J, Pasciak E, Tekkam S, Hall E, Murphy B, Lee TK, Garner EC, Huang KC, Brun YV, Vannieuwenhze MS (2017) Full color palette of fluorescent d-amino acids for in situ labeling of bacterial cell walls. Chem Sci 8:6313–6321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hughes RC, Thurman PF, Stokes E (1975) Estimates of the porosity of Bacillus licheniformis and Bacillus subtilis cell walls. Z Immunitatsforsch Exp Klin Immunol 149:126–135

    CAS  PubMed  Google Scholar 

  • Hugonnet JE, Mengin-Lecreulx D, Monton A, Den Blaauwen T, Carbonnelle E, Veckerle C, Brun YV, Van Nieuwenhze M, Bouchier C, Tu K, Rice LB, Arthur M (2016). Factors essential for ld-transpeptidase-mediated peptidoglycan cross-linking and beta-lactam resistance in Escherichia coli. Elife 5

    Google Scholar 

  • Iida K, Hirota Y, Schwarz U (1983) Mutants of Escherichia coli defective in penicillin-insensitive murein dd-endopeptidase. Mol Gen Genet 189:215–221

    Article  CAS  PubMed  Google Scholar 

  • Inoue A, Murata Y, Takahashi H, Tsuji N, Fujisaki S, Kato J (2008) Involvement of an essential gene, mviN, in murein synthesis in Escherichia coli. J Bacteriol 190:7298–7301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inouye M, Shaw J, Shen C (1972) The assembly of a structural lipoprotein in the envelope of Escherichia coli. J Biol Chem 247:8154–8159

    CAS  PubMed  Google Scholar 

  • Ishino F, Jung HK, Ikeda M, Doi M, Wachi M, Matsuhashi M (1989) New mutations fts-36, lts-33, and ftsW clustered in the mra region of the Escherichia coli chromosome induce thermosensitive cell growth and division. J Bacteriol 171:5523–5530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ize B, Stanley NR, Buchanan G, Palmer T (2003) Role of the Escherichia coli Tat pathway in outer membrane integrity. Mol Microbiol 48:1183–1193

    Article  CAS  PubMed  Google Scholar 

  • Jacobs C, Huang LJ, Bartowsky E, Normark S, Park JT (1994) Bacterial cell wall recycling provides cytosolic muropeptides as effectors for beta-lactamase induction. EMBO J 13:4684–4694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobs C, Joris B, Jamin M, Klarsov K, van Beeumen J, Mengin-Lecreulx D, van Heijenoort J, Park JT, Normark S, Frere JM (1995) AmpD, essential for both beta-lactamase regulation and cell wall recycling, is a novel cytosolic N-acetylmuramyl-l-alanine amidase. Mol Microbiol 15:553–559

    Article  CAS  PubMed  Google Scholar 

  • Jacoby GH, Young KD (1988) Unequal distribution of penicillin-binding proteins among inner membrane vesicles of Escherichia coli. J Bacteriol 170:3660–3667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jean NL, Bougault CM, Lodge A, Derouaux A, Callens G, Egan AJ, Ayala I, Lewis RJ, Vollmer W, Simorre JP (2014) Elongated structure of the outer-membrane activator of peptidoglycan synthesis LpoA: implications for PBP1A stimulation. Structure 22:1047–1054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeong JH, Kim YS, Rojviriya C, Ha SC, Kang BS, Kim YG (2013) Crystal structures of bifunctional penicillin-binding protein 4 from Listeria monocytogenes. Antimicrob Agents Chemother 57:3507–3512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jorgenson MA, Chen Y, Yahashiri A, Popham DL, Weiss DS (2014) The bacterial septal ring protein RlpA is a lytic transglycosylase that contributes to rod shape and daughter cell separation in Pseudomonas aeruginosa. Mol Microbiol 93:113–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Juan C, Torrens G, Gonzalez-Nicolau M, Oliver A (2017) Diversity and regulation of intrinsic beta-lactamases from non-fermenting and other Gram-negative opportunistic pathogens. FEMS Microbiol Rev 41:781–815

    Article  CAS  PubMed  Google Scholar 

  • Kaoukab-Raji A, Biskri L, Bernardini ML, Allaoui A (2012) Characterization of SfPgdA, a Shigella flexneri peptidoglycan deacetylase required for bacterial persistence within polymorphonuclear neutrophils. Microbes Infect 14:619–627

    Article  CAS  PubMed  Google Scholar 

  • Kar D, Pandey SD, Mallick S, Dutta M, Ghosh AS (2018) Substitution of alanine at position 184 with glutamic acid in Escherichia coli PBP5 omega-like loop introduces a moderate cephalosporinase activity. Protein J 37:122–131

    Article  CAS  PubMed  Google Scholar 

  • Karimova G, Dautin N, Ladant D (2005) Interaction network among Escherichia coli membrane proteins involved in cell division as revealed by bacterial two-hybrid analysis. J Bacteriol 187:2233–2243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kato J, Suzuki H, Hirota Y (1985) Dispensability of either penicillin-binding protein-1a or -1b involved in the essential process for cell elongation in Escherichia coli. Mol Gen Genet 200:272–277

    Article  CAS  PubMed  Google Scholar 

  • Kawazura T, Matsumoto K, Kojima K, Kato F, Kanai T, Niki H, Shiomi D (2017) Exclusion of assembled MreB by anionic phospholipids at cell poles confers cell polarity for bidirectional growth. Mol Microbiol 104:472–486

    Article  CAS  PubMed  Google Scholar 

  • Keck W, Schwarz U (1979) Escherichia coli murein-dd-endopeptidase insensitive to beta-lactam antibiotics. J Bacteriol 139:770–774

    CAS  PubMed  PubMed Central  Google Scholar 

  • Keck W, van Leeuwen AM, Huber M, Goodell EW (1990) Cloning and characterization of mepA, the structural gene of the penicillin-insensitive murein endopeptidase from Escherichia coli. Mol Microbiol 4:209–219

    Article  CAS  PubMed  Google Scholar 

  • Kerff F, Petrella S, Mercier F, Sauvage E, Herman R, Pennartz A, Zervosen A, Luxen A, Frere JM, Joris B, Charlier P (2010) Specific structural features of the N-acetylmuramoyl-l-alanine amidase AmiD from Escherichia coli and mechanistic implications for enzymes of this family. J Mol Biol 397:249–259

    Article  CAS  PubMed  Google Scholar 

  • Kerr CH, Culham DE, Marom D, Wood JM (2014) Salinity-dependent impacts of ProQ, Prc, and Spr deficiencies on Escherichia coli cell structure. J Bacteriol 196:1286–1296

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Khattar MM, Begg KJ, Donachie WD (1994) Identification of FtsW and characterization of a new ftsW division mutant of Escherichia coli. J Bacteriol 176:7140–7147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • King DT, Lameignere E, Strynadka NC (2014) Structural insights into the lipoprotein outer membrane regulator of penicillin-binding protein 1B. J Biol Chem 289:19245–19253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • King DT, Wasney GA, Nosella M, Fong A, Strynadka NC (2017) Structural insights into inhibition of Escherichia coli penicillin-binding protein 1B. J Biol Chem 292:979–993

    Article  CAS  PubMed  Google Scholar 

  • Kishida H, Unzai S, Roper DI, Lloyd A, Park SY, Tame JR (2006) Crystal structure of penicillin binding protein 4 (dacB) from Escherichia coli, both in the native form and covalently linked to various antibiotics. Biochemistry 45:783–792

    Article  CAS  PubMed  Google Scholar 

  • Koch AL (1988) Biophysics of bacterial walls viewed as stress-bearing fabric. Microbiol Rev 52:337–353

    CAS  PubMed  PubMed Central  Google Scholar 

  • Korat B, Mottl H, Keck W (1991) Penicillin-binding protein 4 of Escherichia coli: molecular cloning of the dacB gene, controlled overexpression, and alterations in murein composition. Mol Microbiol 5:675–684

    Article  CAS  PubMed  Google Scholar 

  • Kouidmi I, Levesque RC, Paradis-Bleau C (2014) The biology of Mur ligases as an antibacterial target. Mol Microbiol 94:242–253

    Article  CAS  PubMed  Google Scholar 

  • Kruse T, Bork-Jensen J, Gerdes K (2005) The morphogenetic MreBCD proteins of Escherichia coli form an essential membrane-bound complex. Mol Microbiol 55:78–89

    Article  CAS  PubMed  Google Scholar 

  • Kuk AC, Mashalidis EH, Lee SY (2017) Crystal structure of the MOP flippase MurJ in an inward-facing conformation. Nat Struct Mol Biol 24:171–176

    Article  CAS  PubMed  Google Scholar 

  • Kuru E, Hughes HV, Brown PJ, Hall E, Tekkam S, Cava F, de Pedro MA, Brun YV, Vannieuwenhze MS (2012) In situ probing of newly synthesized peptidoglycan in live bacteria with fluorescent d-amino acids. Angew Chem Int Ed Engl 51:12519–12523

    Article  CAS  PubMed  Google Scholar 

  • Lai GC, Cho H, Bernhardt TG (2017) The mecillinam resistome reveals a role for peptidoglycan endopeptidases in stimulating cell wall synthesis in Escherichia coli. PLoS Genet 13:e1006934

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lam H, Oh DC, Cava F, Takacs CN, Clardy J, de Pedro MA, Waldor MK (2009) d-amino acids govern stationary phase cell wall remodeling in bacteria. Science 325:1552–1555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lambert C, Lerner TR, Bui NK, Somers H, Aizawa S, Liddell S, Clark A, Vollmer W, Lovering AL, Sockett RE (2016) Interrupting peptidoglycan deacetylation during Bdellovibrio predator-prey interaction prevents ultimate destruction of prey wall, liberating bacterial-ghosts. Sci Rep 6:26010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lara B, Ayala JA (2002) Topological characterization of the essential Escherichia coli cell division protein FtsW. FEMS Microbiol Lett 216:23–32

    Article  CAS  PubMed  Google Scholar 

  • Lara B, Mengin-Lecreulx D, Ayala JA, van Heijenoort J (2005) Peptidoglycan precursor pools associated with MraY and FtsW deficiencies or antibiotic treatments. FEMS Microbiol Lett 250:195–200

    Article  CAS  PubMed  Google Scholar 

  • Lavollay M, Arthur M, Fourgeaud M, Dubost L, Marie A, Veziris N, Blanot D, Gutmann L, Mainardi JL (2008) The peptidoglycan of stationary-phase Mycobacterium tuberculosis predominantly contains cross-links generated by ld-transpeptidation. J Bacteriol 190:4360–4366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lavollay M, Fourgeaud M, Herrmann JL, Dubost L, Marie A, Gutmann L, Arthur M, Mainardi JL (2011) The peptidoglycan of Mycobacterium abscessus is predominantly cross-linked by ld-transpeptidases. J Bacteriol 193:778–782

    Article  CAS  PubMed  Google Scholar 

  • Leclercq S, Derouaux A, Olatunji S, Fraipont C, Egan AJ, Vollmer W, Breukink E, Terrak M (2017) Interplay between penicillin-binding proteins and SEDS proteins promotes bacterial cell wall synthesis. Sci Rep 7:43306

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee M, Batuecas MT, Tomoshige S, Dominguez-Gil T, Mahasenan KV, Dik DA, Hesek D, Millan C, Uson I, Lastochkin E, Hermoso JA, Mobashery S (2018) Exolytic and endolytic turnover of peptidoglycan by lytic transglycosylase Slt of Pseudomonas aeruginosa. Proc Natl Acad Sci USA 115:4393–4398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee M, Hesek D, Llarrull LI, Lastochkin E, Pi H, Boggess B, Mobashery S (2013) Reactions of all Escherichia coli lytic transglycosylases with bacterial cell wall. J Am Chem Soc 135:3311–3314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee TK, Meng K, Shi H, Huang KC (2016) Single-molecule imaging reveals modulation of cell wall synthesis dynamics in live bacterial cells. Nat Commun 7:13170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee TK, Tropini C, Hsin J, Desmarais SM, Ursell TS, Gong E, Gitai Z, Monds RD, Huang KC (2014) A dynamically assembled cell wall synthesis machinery buffers cell growth. Proc Natl Acad Sci USA 111:4554–4559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leidenix MJ, Jacoby GH, Henderson TA, Young KD (1989) Separation of Escherichia coli penicillin-binding proteins into different membrane vesicles by agarose electrophoresis and sizing chromatography. J Bacteriol 171:5680–5686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levefaudes M, Patin D, De Sousa-D’auria C, Chami M, Blanot D, Herve M, Arthur M, Houssin C, Mengin-Lecreulx D (2015) Diaminopimelic acid amidation in corynebacteriales: new insights into the role of LtsA in peptidoglycan modification. J Biol Chem 290:13079–13094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li GW, Burkhardt D, Gross C, Weissman JS (2014) Quantifying absolute protein synthesis rates reveals principles underlying allocation of cellular resources. Cell 157:624–635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li SY, Höltje JV, Young KD (2004) Comparison of high-performance liquid chromatography and fluorophore-assisted carbohydrate electrophoresis methods for analyzing peptidoglycan composition of Escherichia coli. Anal Biochem 326:1–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liechti G, Kuru E, Packiam M, Hsu YP, Tekkam S, Hall E, Rittichier JT, Vannieuwenhze M, Brun YV, Maurelli AT (2016) Pathogenic chlamydia lack a classical sacculus but synthesize a narrow, mid-cell peptidoglycan ring, regulated by MreB, for cell division. PLoS Pathog 12:e1005590

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu B, Persons L, Lee L, de Boer PA (2015) Roles for both FtsA and the FtsBLQ subcomplex in FtsN-stimulated cell constriction in Escherichia coli. Mol Microbiol 95:945–970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Breukink E (2016) The membrane steps of bacterial cell wall synthesis as antibiotic targets. Antibiotics (Basel) 5

    Google Scholar 

  • Loskill P, Pereira PM, Jung P, Bischoff M, Herrmann M, Pinho MG, Jacobs K (2014) Reduction of the peptidoglycan crosslinking causes a decrease in stiffness of the Staphylococcus aureus cell envelope. Biophys J 107:1082–1089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lovering AL, de Castro LH, Lim D, Strynadka NC (2007) Structural insight into the transglycosylation step of bacterial cell-wall biosynthesis. Science 315:1402–1405

    Article  CAS  PubMed  Google Scholar 

  • Lu C, Reedy M, Erickson HP (2000) Straight and curved conformations of FtsZ are regulated by GTP hydrolysis. J Bacteriol 182:164–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lupoli TJ, Lebar MD, Markovski M, Bernhardt T, Kahne D, Walker S (2014) Lipoprotein activators stimulate Escherichia coli penicillin-binding proteins by different mechanisms. J Am Chem Soc 136:52–55

    Article  CAS  PubMed  Google Scholar 

  • Lupoli TJ, Tsukamoto H, Doud EH, Wang TS, Walker S, Kahne D (2011) Transpeptidase-mediated incorporation of d-amino acids into bacterial peptidoglycan. J Am Chem Soc 133:10748–10751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magnet S, Bellais S, Dubost L, Fourgeaud M, Mainardi JL, Petit-Frere S, Marie A, Mengin-Lecreulx D, Arthur M, Gutmann L (2007) Identification of the ld-transpeptidases responsible for attachment of the Braun lipoprotein to Escherichia coli peptidoglycan. J Bacteriol 189:3927–3931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magnet S, Dubost L, Marie A, Arthur M, Gutmann L (2008) Identification of the ld-transpeptidases for peptidoglycan cross-linking in Escherichia coli. J Bacteriol 190:4782–4785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahapatra S, Crick DC, Brennan PJ (2000) Comparison of the UDP-N-acetylmuramate:l-alanine ligase enzymes from Mycobacterium tuberculosis and Mycobacterium leprae. J Bacteriol 182:6827–6830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mainardi JL, Fourgeaud M, Hugonnet JE, Dubost L, Brouard JP, Ouazzani J, Rice LB, Gutmann L, Arthur M (2005) A novel peptidoglycan cross-linking enzyme for a beta-lactam-resistant transpeptidation pathway. J Biol Chem 280:38146–38152

    Article  CAS  PubMed  Google Scholar 

  • Mainardi JL, Hugonnet JE, Rusconi F, Fourgeaud M, Dubost L, Moumi AN, Delfosse V, Mayer C, Gutmann L, Rice LB, Arthur M (2007) Unexpected inhibition of peptidoglycan ld-transpeptidase from Enterococcus faecium by the beta-lactam imipenem. J Biol Chem 282:30414–30422

    Article  CAS  PubMed  Google Scholar 

  • Mainardi JL, Legrand R, Arthur M, Schoot B, van Heijenoort J, Gutmann L (2000) Novel mechanism of beta-lactam resistance due to bypass of dd-transpeptidation in Enterococcus faecium. J Biol Chem 275:16490–16496

    Article  CAS  PubMed  Google Scholar 

  • Mainardi JL, Morel V, Fourgeaud M, Cremniter J, Blanot D, Legrand R, Frehel C, Arthur M, van Heijenoort J, Gutmann L (2002) Balance between two transpeptidation mechanisms determines the expression of beta-lactam resistance in Enterococcus faecium. J Biol Chem 277:35801–35807

    Article  CAS  PubMed  Google Scholar 

  • Manat G, el Ghachi M, Auger R, Baouche K, Olatunji S, Kerff F, Touze T, Mengin-Lecreulx D, Bouhss A (2015) Membrane topology and biochemical characterization of the Escherichia coli BacA undecaprenyl-pyrophosphate phosphatase. PLoS ONE 10:e0142870

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Manat G, Roure S, Auger R, Bouhss A, Barreteau H, Mengin-Lecreulx D, Touze T (2014) Deciphering the metabolism of undecaprenyl-phosphate: the bacterial cell-wall unit carrier at the membrane frontier. Microb Drug Resist 20:199–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Markiewicz Z, Broome-Smith JK, Schwarz U, Spratt BG (1982) Spherical E. coli due to elevated levels of d-alanine carboxypeptidase. Nature 297:702–704

    Article  CAS  PubMed  Google Scholar 

  • Markovski M, Bohrhunter JL, Lupoli TJ, Uehara T, Walker S, Kahne DE, Bernhardt TG (2016) Cofactor bypass variants reveal a conformational control mechanism governing cell wall polymerase activity. Proc Natl Acad Sci USA 113:4788–4793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matias VR, Al-Amoudi A, Dubochet J, Beveridge TJ (2003) Cryo-transmission electron microscopy of frozen-hydrated sections of Escherichia coli and Pseudomonas aeruginosa. J Bacteriol 185:6112–6118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matias VR, Beveridge TJ (2005) Cryo-electron microscopy reveals native polymeric cell wall structure in Bacillus subtilis 168 and the existence of a periplasmic space. Mol Microbiol 56:240–251

    Article  CAS  PubMed  Google Scholar 

  • Meberg BM, Paulson AL, Priyadarshini R, Young KD (2004) Endopeptidase penicillin-binding proteins 4 and 7 play auxiliary roles in determining uniform morphology of Escherichia coli. J Bacteriol 186:8326–8336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meeske AJ, Riley EP, Robins WP, Uehara T, Mekalanos JJ, Kahne D, Walker S, Kruse AC, Bernhardt TG, Rudner DZ (2016) SEDS proteins are a widespread family of bacterial cell wall polymerases. Nature 537:634–638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meeske AJ, Sham LT, Kimsey H, Koo BM, Gross CA, Bernhardt TG, Rudner DZ (2015) MurJ and a novel lipid II flippase are required for cell wall biogenesis in Bacillus subtilis. Proc Natl Acad Sci USA 112:6437–6442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meiresonne NY, Van Der Ploeg R, Hink MA, Den Blaauwen (2017) Activity-related conformational changes in dd-carboxypeptidases revealed by in vivo periplasmic forster resonance energy transfer assay in Escherichia coli. MBio 8

    Google Scholar 

  • Mohammadi T, Sijbrandi R, Lutters M, Verheul J, Martin NI, den Blaauwen T, de Kruijff B, Breukink E (2014) Specificity of the transport of lipid II by FtsW in Escherichia coli. J Biol Chem 289:14707–14718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohammadi T, Van Dam V, Sijbrandi R, Vernet T, Zapun A, Bouhss A, Diepeveen-De Bruin M, Nguyen-Disteche M, De Kruijff B, Breukink E (2011) Identification of FtsW as a transporter of lipid-linked cell wall precursors across the membrane. EMBO J 30:1425–1432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monteiro JM, Pereira AR, Reichmann NT, Saraiva BM, Fernandes PB, Veiga H, Tavares AC, Santos M, Ferreira MT, Macario V, Vannieuwenhze MS, Filipe SR, Pinho MG (2018) Peptidoglycan synthesis drives an FtsZ-treadmilling-independent step of cytokinesis. Nature 554:528–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morlot C, Straume D, Peters K, Hegnar OA, Simon N, Villard AM, Contreras-Martel C, Leisico F, Breukink E, Gravier-Pelletier C, le Corre L, Vollmer W, Pietrancosta N, Havarstein LS, Zapun A (2018) Structure of the essential peptidoglycan amidotransferase MurT/GatD complex from Streptococcus pneumoniae. Nat Commun 9:3180

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moynihan PJ, Clarke AJ (2010) O-acetylation of peptidoglycan in gram-negative bacteria: identification and characterization of peptidoglycan O-acetyltransferase in Neisseria gonorrhoeae. J Biol Chem 285:13264–13273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Müller P, Ewers C, Bertsche U, Anstett M, Kallis T, Breukink E, Fraipont C, Terrak M, Nguyen-Disteche M, Vollmer W (2007) The essential cell division protein FtsN interacts with the murein (peptidoglycan) synthase PBP1B in Escherichia coli. J Biol Chem 282:36394–36402

    Article  PubMed  Google Scholar 

  • Münch D, Roemer T, Lee SH, Engeser M, Sahl HG, Schneider T (2012) Identification and in vitro analysis of the GatD/MurT enzyme-complex catalyzing lipid II amidation in Staphylococcus aureus. PLoS Pathog 8:e1002509

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nanninga N (1991) Cell division and peptidoglycan assembly in Escherichia coli. Mol Microbiol 5:791–795

    Article  CAS  PubMed  Google Scholar 

  • Nelson DE, Ghosh AS, Paulson AL, Young KD (2002) Contribution of membrane-binding and enzymatic domains of penicillin binding protein 5 to maintenance of uniform cellular morphology of Escherichia coli. J Bacteriol 184:3630–3639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson DE, Young KD (2000) Penicillin binding protein 5 affects cell diameter, contour, and morphology of Escherichia coli. J Bacteriol 182:1714–1721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ngadjeua F, Braud E, Saidjalolov S, Iannazzo L, Schnappinger D, Ehrt S, Hugonnet JE, Mengin-Lecreulx D, Patin D, Etheve-Quelquejeu M, Fonvielle M, Arthur M (2018) Critical impact of peptidoglycan precursor amidation on the activity of ld-transpeptidases from Enterococcus faecium and Mycobacterium tuberculosis. Chemistry 24:5743–5747

    Article  CAS  PubMed  Google Scholar 

  • Noldeke ER, Muckenfuss LM, Niemann V, Müller A, Stork E, Zocher G, Schneider T, Stehle T (2018) Structural basis of cell wall peptidoglycan amidation by the GatD/MurT complex of Staphylococcus aureus. Sci Rep 8:12953

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Osawa M, Anderson DE, Erickson HP (2008) Reconstitution of contractile FtsZ rings in liposomes. Science 320:792–794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osawa M, Erickson HP (2013) Liposome division by a simple bacterial division machinery. Proc Natl Acad Sci USA 110:11000–11004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Packiam M, Weinrick B, Jacobs WR Jr, Maurelli AT (2015) Structural characterization of muropeptides from Chlamydia trachomatis peptidoglycan by mass spectrometry resolves “chlamydial anomaly”. Proc Natl Acad Sci USA 112:11660–11665

    Article  CAS  Google Scholar 

  • Paradis-Bleau C, Markovski M, Uehara T, Lupoli TJ, Walker S, Kahne DE, Bernhardt TG (2010) Lipoprotein cofactors located in the outer membrane activate bacterial cell wall polymerases. Cell 143:1110–1120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park JT, Uehara T (2008) How bacteria consume their own exoskeletons (turnover and recycling of cell wall peptidoglycan). Microbiol Mol Biol Rev 72:211–227 (table of contents)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pastoret S, Fraipont C, den Blaauwen T, Wolf B, Aarsman ME, Piette A, Thomas A, Brasseur R, Nguyen-Disteche M (2004) Functional analysis of the cell division protein FtsW of Escherichia coli. J Bacteriol 186:8370–8379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pazos M, Peters K, Casanova M, Palacios P, Vannieuwenhze M, Breukink E, Vicente M, Vollmer W (2018) Z-ring membrane anchors associate with cell wall synthases to initiate bacterial cell division. Nat Commun 9:5090

    Google Scholar 

  • Pazos M, Peters K, Vollmer W (2017) Robust peptidoglycan growth by dynamic and variable multi-protein complexes. Curr Opin Microbiol 36:55–61

    Article  CAS  PubMed  Google Scholar 

  • Peltier J, Courtin P, el Meouche I, Lemee L, Chapot-Chartier MP, Pons JL (2011) Clostridium difficile has an original peptidoglycan structure with a high level of N-acetylglucosamine deacetylation and mainly 3-3 cross-links. J Biol Chem 286:29053–29062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pennartz A, Genereux C, Parquet C, Mengin-Lecreulx D, Joris B (2009) Substrate-induced inactivation of the Escherichia coli AmiD N-acetylmuramoyl-l-alanine amidase highlights a new strategy to inhibit this class of enzyme. Antimicrob Agents Chemother 53:2991–2997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pepper ED, Farrell MJ, Finkel SE (2006) Role of penicillin-binding protein 1b in competitive stationary-phase survival of Escherichia coli. FEMS Microbiol Lett 263:61–67

    Article  CAS  PubMed  Google Scholar 

  • Peters K, Kannan S, Rao VA, Biboy J, Vollmer D, Erickson SW, Lewis RJ, Young KD, Vollmer W (2016) The redundancy of peptidoglycan carboxypeptidases ensures robust cell shape maintenance in Escherichia coli. MBio 7:e00819-16

    Google Scholar 

  • Peters K, Pazos M, Edoo Z, Hugonnet JE, Martorana AM, Polissi A, Vannieuwenhze MS, Arthur M, Vollmer W (2018) Copper inhibits peptidoglycan ld-transpeptidases suppressing beta-lactam resistance due to bypass of penicillin-binding proteins. Proc Natl Acad Sci USA 115:10786–10791

    Article  CAS  Google Scholar 

  • Peters NT, Dinh T, Bernhardt TG (2011) A fail-safe mechanism in the septal ring assembly pathway generated by the sequential recruitment of cell separation amidases and their activators. J Bacteriol 193:4973–4983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peters NT, Morlot C, Yang DC, Uehara T, Vernet T, Bernhardt TG (2013) Structure-function analysis of the LytM domain of EnvC, an activator of cell wall remodelling at the Escherichia coli division site. Mol Microbiol 89:690–701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pichoff S, Du S, Lutkenhaus J (2015) The bypass of ZipA by overexpression of FtsN requires a previously unknown conserved FtsN motif essential for FtsA-FtsN interaction supporting a model in which FtsA monomers recruit late cell division proteins to the Z ring. Mol Microbiol 95:971–987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pichoff S, Du S, Lutkenhaus J (2018) Disruption of divisome assembly rescued by FtsN-FtsA interaction in Escherichia coli. Proc Natl Acad Sci USA 115:E6855–E6862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pilhofer M, Aistleitner K, Biboy J, Gray J, Kuru E, Hall E, Brun YV, Vannieuwenhze MS, Vollmer W, Horn M, Jensen GJ (2013) Discovery of chlamydial peptidoglycan reveals bacteria with murein sacculi but without FtsZ. Nat Commun 4:2856

    Article  PubMed  CAS  Google Scholar 

  • Potluri L, Karczmarek A, Verheul J, Piette A, Wilkin JM, Werth N, Banzhaf M, Vollmer W, Young KD, Nguyen-Disteche M, den Blaauwen T (2010) Septal and lateral wall localization of PBP5, the major dd-carboxypeptidase of Escherichia coli, requires substrate recognition and membrane attachment. Mol Microbiol 77:300–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Potluri LP, de Pedro MA, Young KD (2012a) Escherichia coli low-molecular-weight penicillin-binding proteins help orient septal FtsZ, and their absence leads to asymmetric cell division and branching. Mol Microbiol 84:203–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Potluri LP, Kannan S, Young KD (2012b) ZipA is required for FtsZ-dependent preseptal peptidoglycan synthesis prior to invagination during cell division. J Bacteriol 194:5334–5342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Priyadarshini R, Popham DL, Young KD (2006) Daughter cell separation by penicillin-binding proteins and peptidoglycan amidases in Escherichia coli. J Bacteriol 188:5345–5355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pushkaran AC, Nataraj N, Nair N, Gotz F, Biswas R, Mohan CG (2015) Understanding the structure-function relationship of lysozyme resistance in Staphylococcus aureus by peptidoglycan O-acetylation using molecular docking, dynamics, and lysis assay. J Chem Inf Model 55:760–770

    Article  CAS  PubMed  Google Scholar 

  • Qiao Y, Srisuknimit V, Rubino F, Schaefer K, Ruiz N, Walker S, Kahne D (2017) Lipid II overproduction allows direct assay of transpeptidase inhibition by beta-lactams. Nat Chem Biol 13:793–798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radkov AD, Hsu YP, Booher G, Vannieuwenhze MS (2018) Imaging bacterial cell wall biosynthesis. Annu Rev Biochem 87:991–1014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ranjit DK, Young KD (2013) The Rcs stress response and accessory envelope proteins are required for de novo generation of cell shape in Escherichia coli. J Bacteriol 195:2452–2462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rawat S, Zhu L, Lindner E, Dalbey RE, White SH (2015) SecA drives transmembrane insertion of RodZ, an unusual single-span membrane protein. J Mol Biol 427:1023–1037

    Article  CAS  PubMed  Google Scholar 

  • Raymond JB, Mahapatra S, Crick DC, Pavelka MS Jr (2005) Identification of the namH gene, encoding the hydroxylase responsible for the N-glycolylation of the mycobacterial peptidoglycan. J Biol Chem 280:326–333

    Article  PubMed  CAS  Google Scholar 

  • Rismondo J, Wamp S, Aldridge C, Vollmer W, Halbedel S (2018) Stimulation of PgdA-dependent peptidoglycan N-deacetylation by GpsB-PBP A1 in Listeria monocytogenes. Mol Microbiol 107:472–487

    Article  CAS  PubMed  Google Scholar 

  • Rocaboy M, Herman R, Sauvage E, Remaut H, Moonens K, Terrak M, Charlier P, Kerff F (2013) The crystal structure of the cell division amidase AmiC reveals the fold of the AMIN domain, a new peptidoglycan binding domain. Mol Microbiol 90:267–277

    CAS  PubMed  Google Scholar 

  • Rojas ER, Billings G, Odermatt PD, Auer GK, Zhu L, Miguel A, Chang F, Weibel DB, Theriot JA, Huang KC (2018) The outer membrane is an essential load-bearing element in Gram-negative bacteria. Nature 559:617–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romeis T, Höltje JV (1994a) Penicillin-binding protein 7/8 of Escherichia coli is a dd-endopeptidase. Eur J Biochem 224:597–604

    Article  CAS  PubMed  Google Scholar 

  • Romeis T, Höltje JV (1994b) Specific interaction of penicillin-binding proteins 3 and 7/8 with soluble lytic transglycosylase in Escherichia coli. J Biol Chem 269:21603–21607

    CAS  PubMed  Google Scholar 

  • Rubino FA, Kumar S, Ruiz N, Walker S, Kahne DE (2018) Membrane potential is required for MurJ function. J Am Chem Soc 140:4481–4484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruiz N (2008) Bioinformatics identification of MurJ (MviN) as the peptidoglycan lipid II flippase in Escherichia coli. Proc Natl Acad Sci USA 105:15553–15557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruiz N (2009) Streptococcus pyogenes YtgP (Spy_0390) complements Escherichia coli strains depleted of the putative peptidoglycan flippase MurJ. Antimicrob Agents Chemother 53:3604–3605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salje J, van den Ent F, de Boer P, Lowe J (2011) Direct membrane binding by bacterial actin MreB. Mol Cell 43:478–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez M, Kolar SL, Müller S, Reyes CN, Wolf AJ, Ogawa C, Singhania R, de Carvalho DD, Arditi M, Underhill DM, Martins GA, Liu GY (2017) O-acetylation of peptidoglycan limits helper T cell priming and permits Staphylococcus aureus reinfection. Cell Host Microbe 22(543–551):e4

    Google Scholar 

  • Sanders AN, Pavelka MS (2013) Phenotypic analysis of Eschericia coli mutants lacking ld-transpeptidases. Microbiology 159:1842–1852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sathiyamoorthy K, Vijayalakshmi J, Tirupati B, Fan L, Saper MA (2017) Structural analyses of the Haemophilus influenzae peptidoglycan synthase activator LpoA suggest multiple conformations in solution. J Biol Chem 292:17626–17642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sauvage E, Derouaux A, Fraipont C, Joris M, Herman R, Rocaboy M, Schloesser M, Dumas J, Kerff F, Nguyen-Disteche M, Charlier P (2014) Crystal structure of penicillin-binding protein 3 (PBP3) from Escherichia coli. PLoS ONE 9:e98042

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sauvage E, Kerff F, Terrak M, Ayala JA, Charlier P (2008) The penicillin-binding proteins: structure and role in peptidoglycan biosynthesis. FEMS Microbiol Rev 32:234–258

    Article  CAS  PubMed  Google Scholar 

  • Schleifer KH, Kandler O (1972) Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schoenemann KM, Margolin W (2017) Bacterial division: FtsZ treadmills to build a beautiful wall. Curr Biol 27:R301–R303

    Article  CAS  PubMed  Google Scholar 

  • Schumacher MA (2017) Bacterial nucleoid occlusion: multiple mechanisms for preventing chromosome bisection during cell division. Subcell Biochem 84:267–298

    Article  CAS  PubMed  Google Scholar 

  • Schwechheimer C, Rodriguez DL, Kuehn MJ (2015) NlpI-mediated modulation of outer membrane vesicle production through peptidoglycan dynamics in Escherichia coli. Microbiologyopen 4:375–389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Severin A, Figueiredo AM, Tomasz A (1996) Separation of abnormal cell wall composition from penicillin resistance through genetic transformation of Streptococcus pneumoniae. J Bacteriol 178:1788–1792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sham LT, Butler EK, Lebar MD, Kahne D, Bernhardt TG, Ruiz N (2014) Bacterial cell wall. MurJ is the flippase of lipid-linked precursors for peptidoglycan biogenesis. Science 345:220–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sham LT, Zheng S, Yakhnina AA, Kruse AC, Bernhardt TG (2018) Loss of specificity variants of WzxC suggest that substrate recognition is coupled with transporter opening in MOP-family flippases. Mol Microbiol 109:633–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheikh J, Hicks S, Dall’Agnol M, Phillips AD, Nataro JP (2001) Roles for Fis and YafK in biofilm formation by enteroaggregative Escherichia coli. Mol Microbiol 41:983–997

    Article  CAS  PubMed  Google Scholar 

  • Shi H, Bratton BP, Gitai Z, Huang KC (2018) How to build a bacterial cell: MreB as the foreman of E. coli construction. Cell 172:1294–1305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimada T, Park BG, Wolf AJ, Brikos C, Goodridge HS, Becker CA, Reyes CN, Miao EA, Aderem A, Gotz F, Liu GY, Underhill DM (2010) Staphylococcus aureus evades lysozyme-based peptidoglycan digestion that links phagocytosis, inflammasome activation, and IL-1beta secretion. Cell Host Microbe 7:38–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh SK, Parveen S, Saisree L, Reddy M (2015) Regulated proteolysis of a cross-link-specific peptidoglycan hydrolase contributes to bacterial morphogenesis. Proc Natl Acad Sci USA 112:10956–10961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh SK, Saisree L, Amrutha RN, Reddy M (2012) Three redundant murein endopeptidases catalyse an essential cleavage step in peptidoglycan synthesis of Escherichia coli K12. Mol Microbiol 86:1036–1051

    Article  CAS  PubMed  Google Scholar 

  • Sjodt M, Brock K, Dobihal G, Rohs PDA, Green AG, Hopf TA, Meeske AJ, Srisuknimit V, Kahne D, Walker S, Marks DS, Bernhardt TG, Rudner DZ, Kruse AC (2018) Structure of the peptidoglycan polymerase RodA resolved by evolutionary coupling analysis. Nature 556:118–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soderstrom B, Chan H, Shilling PJ, Skoglund U, Daley DO (2018) Spatial separation of FtsZ and FtsN during cell division. Mol Microbiol 107:387–401

    Article  PubMed  CAS  Google Scholar 

  • Soderstrom B, Mirzadeh K, Toddo S, von Heijne G, Skoglund U, Daley DO (2016) Coordinated disassembly of the divisome complex in Escherichia coli. Mol Microbiol 101:425–438

    Article  PubMed  CAS  Google Scholar 

  • Soderstrom B, Skoog K, Blom H, Weiss DS, von Heijne G, Daley DO (2014) Disassembly of the divisome in Escherichia coli: evidence that FtsZ dissociates before compartmentalization. Mol Microbiol 92:1–9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Spratt BG (1975) Distinct penicillin binding proteins involved in the division, elongation, and shape of Escherichia coli K12. Proc Natl Acad Sci USA 72:2999–3003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stranden AM, Ehlert K, Labischinski H, Berger-Bachi B (1997) Cell wall monoglycine cross-bridges and methicillin hypersusceptibility in a femAB null mutant of methicillin-resistant Staphylococcus aureus. J Bacteriol 179:9–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su MY, Som N, Wu CY, Su SC, Kuo YT, Ke LC, Ho MR, Tzeng SR, Teng CH, Mengin-Lecreulx D, Reddy M, Chang CI (2017) Structural basis of adaptor-mediated protein degradation by the tail-specific PDZ-protease Prc. Nat Commun 8:1516

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sung MT, Lai YT, Huang CY, Chou LY, Shih HW, Cheng WC, Wong CH, Ma C (2009) Crystal structure of the membrane-bound bifunctional transglycosylase PBP1b from Escherichia coli. Proc Natl Acad Sci USA 106:8824–8829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sutterlin L, Edoo Z, Hugonnet JE, Mainardi JL, Arthur M (2018) Peptidoglycan cross-linking activity of ld-transpeptidases from Clostridium difficile and inactivation of these enzymes by beta-lactams. Antimicrob Agents Chemother 62

    Google Scholar 

  • Taguchi A, Welsh MA, Marmont LS, Lee W, Kahne D, Bernhardt TG, Walker S (2018) FtsW is a peptidoglycan polymerase that is activated by its cognate penicillin-binding protein. Preprint at. https://www.biorxiv.org/content/early/2018/06/29/358663

  • Tatar LD, Marolda CL, Polischuk AN, van Leeuwen D, Valvano MA (2007) An Escherichia coli undecaprenyl-pyrophosphate phosphatase implicated in undecaprenyl phosphate recycling. Microbiology 153:2518–2529

    Article  CAS  PubMed  Google Scholar 

  • Templin MF, Edwards DH, Höltje JV (1992) A murein hydrolase is the specific target of bulgecin in Escherichia coli. J Biol Chem 267:20039–20043

    CAS  PubMed  Google Scholar 

  • Thunnissen AM, Dijkstra AJ, Kalk KH, Rozeboom HJ, Engel H, Keck W, Dijkstra BW (1994) Doughnut-shaped structure of a bacterial muramidase revealed by X-ray crystallography. Nature 367:750–753

    Article  CAS  PubMed  Google Scholar 

  • Thunnissen AM, Rozeboom HJ, Kalk KH, Dijkstra BW (1995) Structure of the 70-kDa soluble lytic transglycosylase complexed with bulgecin A. Implications for the enzymatic mechanism. Biochemistry 34:12729–12737

    Article  CAS  PubMed  Google Scholar 

  • Tomioka S, Matsuhashi M (1978) Purification of penicillin-insensitive dd-endopeptidase, a new cell wall peptidoglycan-hydrolyzing enzyme in Escherichia coli, and its inhibition by deoxyribonucleic acids. Biochem Biophys Res Commun 84:978–984

    Article  CAS  PubMed  Google Scholar 

  • Touze T, Blanot D, Mengin-Lecreulx D (2008) Substrate specificity and membrane topology of Escherichia coli PgpB, an undecaprenyl pyrophosphate phosphatase. J Biol Chem 283:16573–16583

    Article  CAS  PubMed  Google Scholar 

  • Tsang MJ, Bernhardt TG (2015) A role for the FtsQLB complex in cytokinetic ring activation revealed by an ftsL allele that accelerates division. Mol Microbiol 95:925–944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsang MJ, Yakhnina AA, Bernhardt TG (2017) NlpD links cell wall remodeling and outer membrane invagination during cytokinesis in Escherichia coli. PLoS Genet 13:e1006888

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Turner RD, Mesnage S, Hobbs JK, Foster SJ (2018) Molecular imaging of glycan chains couples cell-wall polysaccharide architecture to bacterial cell morphology. Nat Commun 9:1263

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tuson HH, Auer GK, Renner LD, Hasebe M, Tropini C, Salick M, Crone WC, Gopinathan A, Huang KC, Weibel DB (2012) Measuring the stiffness of bacterial cells from growth rates in hydrogels of tunable elasticity. Mol Microbiol 84:874–891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Typas A, Banzhaf M, Gross CA, Vollmer W (2011) From the regulation of peptidoglycan synthesis to bacterial growth and morphology. Nat Rev Microbiol 10:123–136

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Typas A, Banzhaf M, Van Den Berg Van Saparoea B, Verheul J, Biboy J, Nichols RJ, Zietek M, Beilharz K, Kannenberg K, Von Rechenberg M, Breukink E, Den Blaauwen T, Gross CA, Vollmer W (2010). Regulation of peptidoglycan synthesis by outer-membrane proteins. Cell 143:1097–1109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uehara T, Dinh T, Bernhardt TG (2009) LytM-domain factors are required for daughter cell separation and rapid ampicillin-induced lysis in Escherichia coli. J Bacteriol 191:5094–5107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uehara T, Park JT (2007) An anhydro-N-acetylmuramyl-l-alanine amidase with broad specificity tethered to the outer membrane of Escherichia coli. J Bacteriol 189:5634–5641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uehara T, Parzych KR, Dinh T, Bernhardt TG (2010) Daughter cell separation is controlled by cytokinetic ring-activated cell wall hydrolysis. EMBO J 29:1412–1422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ursell TS, Nguyen J, Monds RD, Colavin A, Billings G, Ouzounov N, Gitai Z, Shaevitz JW, Huang KC (2014) Rod-like bacterial shape is maintained by feedback between cell curvature and cytoskeletal localization. Proc Natl Acad Sci USA 111:E1025–E1034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ursinus A, van den Ent F, Brechtel S, de Pedro M, Höltje JV, Lowe J, Vollmer W (2004) Murein (peptidoglycan) binding property of the essential cell division protein FtsN from Escherichia coli. J Bacteriol 186:6728–6737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Asselt EJ, Thunnissen AM, Dijkstra BW (1999) High resolution crystal structures of the Escherichia coli lytic transglycosylase Slt70 and its complex with a peptidoglycan fragment. J Mol Biol 291:877–898

    Article  PubMed  Google Scholar 

  • van den Bogaart G, Hermans N, Krasnikov V, Poolman B (2007) Protein mobility and diffusive barriers in Escherichia coli: consequences of osmotic stress. Mol Microbiol 64:858–871

    Article  PubMed  CAS  Google Scholar 

  • van den Ent F, Izore T, Bharat TA, Johnson CM, Lowe J (2014) Bacterial actin MreB forms antiparallel double filaments. Elife 3:e02634

    Article  PubMed  PubMed Central  Google Scholar 

  • van Heijenoort J (2011) Peptidoglycan hydrolases of Escherichia coli. Microbiol Mol Biol Rev 75:636–663

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Teeffelen S, Wang S, Furchtgott L, Huang KC, Wingreen NS, Shaevitz JW, Gitai Z (2011) The bacterial actin MreB rotates, and rotation depends on cell-wall assembly. Proc Natl Acad Sci USA 108:15822–15827

    Article  PubMed  PubMed Central  Google Scholar 

  • Varma A, de Pedro MA, Young KD (2007) FtsZ directs a second mode of peptidoglycan synthesis in Escherichia coli. J Bacteriol 189:5692–5704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varma A, Young KD (2004) FtsZ collaborates with penicillin binding proteins to generate bacterial cell shape in Escherichia coli. J Bacteriol 186:6768–6774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vega D, Ayala JA (2006) The dd-carboxypeptidase activity encoded by pbp4B is not essential for the cell growth of Escherichia coli. Arch Microbiol 185:23–27

    Article  CAS  PubMed  Google Scholar 

  • Vinella D, Joseleau-Petit D, Thevenet D, Bouloc P, D’Ari R (1993) Penicillin-binding protein 2 inactivation in Escherichia coli results in cell division inhibition, which is relieved by FtsZ overexpression. J Bacteriol 175:6704–6710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vollmer W (2008) Structural variation in the glycan strands of bacterial peptidoglycan. FEMS Microbiol Rev 32:287–306

    Article  CAS  PubMed  Google Scholar 

  • Vollmer W, Bertsche U (2008) Murein (peptidoglycan) structure, architecture and biosynthesis in Escherichia coli. Biochim Biophys Acta 1778:1714–1734

    Article  CAS  PubMed  Google Scholar 

  • Vollmer W, Blanot D, de Pedro MA (2008a) Peptidoglycan structure and architecture. FEMS Microbiol Rev 32:149–167

    Article  CAS  PubMed  Google Scholar 

  • Vollmer W, Joris B, Charlier P, Foster S (2008b) Bacterial peptidoglycan (murein) hydrolases. FEMS Microbiol Rev 32:259–286

    Article  CAS  PubMed  Google Scholar 

  • Vollmer W, Tomasz A (2000) The pgdA gene encodes for a peptidoglycan N-acetylglucosamine deacetylase in Streptococcus pneumoniae. J Biol Chem 275:20496–20501

    Article  CAS  PubMed  Google Scholar 

  • von Rechenberg M, Ursinus A, Höltje JV (1996) Affinity chromatography as a means to study multienzyme complexes involved in murein synthesis. Microb Drug Resist 2:155–157

    Article  Google Scholar 

  • Weadge JT, Clarke AJ (2006) Identification and characterization of O-acetylpeptidoglycan esterase: a novel enzyme discovered in Neisseria gonorrhoeae. Biochemistry 45:839–851

    Article  CAS  PubMed  Google Scholar 

  • Weadge JT, Pfeffer JM, Clarke AJ (2005) Identification of a new family of enzymes with potential O-acetylpeptidoglycan esterase activity in both Gram-positive and Gram-negative bacteria. BMC Microbiol 5:49

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wettmann L, Kruse K (2018) The Min-protein oscillations in Escherichia coli: an example of self-organized cellular protein waves. Philos Trans R Soc Lond B Biol Sci 373

    Article  CAS  Google Scholar 

  • Whatmore AM, Reed RH (1990) Determination of turgor pressure in Bacillus subtilis: a possible role for K+ in turgor regulation. J Gen Microbiol 136:2521–2526

    Article  CAS  PubMed  Google Scholar 

  • Wheeler R, Turner RD, Bailey RG, Salamaga B, Mesnage S, Mohamad SA, Hayhurst EJ, Horsburgh M, Hobbs JK, Foster SJ (2015) Bacterial cell enlargement requires control of cell wall stiffness mediated by peptidoglycan hydrolases. MBio 6:e00660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams AH, Wheeler R, Rateau L, Malosse C, Chamot-Rooke J, Haouz A, Taha MK, Boneca IG (2018) A step-by-step in crystallo guide to bond cleavage and 1,6-anhydro-sugar product synthesis by a peptidoglycan-degrading lytic transglycosylase. J Biol Chem 293:6000–6010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Workman SD, Worrall LJ, Strynadka NCJ (2018) Crystal structure of an intramembranal phosphatase central to bacterial cell-wall peptidoglycan biosynthesis and lipid recycling. Nat Commun 9:1159

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xiao J, Goley ED (2016) Redefining the roles of the FtsZ-ring in bacterial cytokinesis. Curr Opin Microbiol 34:90–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav AK, Espaillat A, Cava F (2018) Bacterial strategies to preserve cell wall integrity against environmental threats. Front Microbiol 9:2064

    Article  PubMed  PubMed Central  Google Scholar 

  • Yahashiri A, Jorgenson MA, Weiss DS (2015) Bacterial SPOR domains are recruited to septal peptidoglycan by binding to glycan strands that lack stem peptides. Proc Natl Acad Sci USA 112:11347–11352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yakhnina AA, McManus HR, Bernhardt TG (2015) The cell wall amidase AmiB is essential for Pseudomonas aeruginosa cell division, drug resistance and viability. Mol Microbiol 97:957–973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yanagihara Y, Kamisango K, Yasuda S, Kobayashi S, Mifuchi I, Azuma I, Yamamura Y, Johnson RC (1984) Chemical compositions of cell walls and polysaccharide fractions of spirochetes. Microbiol Immunol 28:535–544

    Article  CAS  PubMed  Google Scholar 

  • Yang DC, Peters NT, Parzych KR, Uehara T, Markovski M, Bernhardt TG (2011) An ATP-binding cassette transporter-like complex governs cell-wall hydrolysis at the bacterial cytokinetic ring. Proc Natl Acad Sci USA 108:E1052–E1060

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang DC, Tan K, Joachimiak A, Bernhardt TG (2012) A conformational switch controls cell wall-remodelling enzymes required for bacterial cell division. Mol Microbiol 85:768–781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang X, Lyu Z, Miguel A, McQuillen R, Huang KC, Xiao J (2017) GTPase activity-coupled treadmilling of the bacterial tubulin FtsZ organizes septal cell wall synthesis. Science 355:744–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao X, Jericho M, Pink D, Beveridge T (1999) Thickness and elasticity of gram-negative murein sacculi measured by atomic force microscopy. J Bacteriol 181:6865–6875

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yousif SY, Broome-Smith JK, Spratt BG (1985) Lysis of Escherichia coli by beta-lactam antibiotics: deletion analysis of the role of penicillin-binding proteins 1A and 1B. J Gen Microbiol 131:2839–2845

    CAS  PubMed  Google Scholar 

  • Yuan Y, Barrett D, Zhang Y, Kahne D, Sliz P, Walker S (2007) Crystal structure of a peptidoglycan glycosyltransferase suggests a model for processive glycan chain synthesis. Proc Natl Acad Sci USA 104:5348–5353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zapun A, Philippe J, Abrahams KA, Signor L, Roper DI, Breukink E, Vernet T (2013) In vitro reconstitution of peptidoglycan assembly from the Gram-positive pathogen Streptococcus pneumoniae. ACS Chem Biol 8:2688–2696

    Article  CAS  PubMed  Google Scholar 

  • Zheng S, Sham LT, Rubino FA, Brock KP, Robins WP, Mekalanos JJ, Marks DS, Bernhardt TG, Kruse AC (2018) Structure and mutagenic analysis of the lipid II flippase MurJ from Escherichia coli. Proc Natl Acad Sci USA 115:6709–6714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Professor Waldemar Vollmer at Newcastle University for critical reading this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Pazos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pazos, M., Peters, K. (2019). Peptidoglycan. In: Kuhn, A. (eds) Bacterial Cell Walls and Membranes . Subcellular Biochemistry, vol 92. Springer, Cham. https://doi.org/10.1007/978-3-030-18768-2_5

Download citation

Keywords

Publish with us

Policies and ethics