Abstract
Current analytic approaches for querying large collections of chromatin immunoprecipitation followed by sequencing (ChIP-seq) data from multiple cell types rely on individual analysis of each dataset (i.e., peak calling) independently. This approach discards the fact that functional elements are frequently shared among related cell types and leads to overestimation of the extent of divergence between different ChIP-seq samples. Methods geared towards multi-sample investigations have limited applicability in settings that aim to integrate 100s to 1000s of ChIP-seq datasets for query loci (e.g., thousands of genomic loci with a specific binding site). Recently, [1] developed a hierarchical framework for state-space matrix inference and clustering, named MBASIC, to enable joint analysis of user-specified loci across multiple ChIP-seq datasets. Although this versatile framework both estimates the underlying state-space (e.g., bound vs. unbound) and also groups loci with similar patterns together, its Expectation-Maximization based estimation structure hinders its applicability with large numbers of loci and samples. We address this limitation by developing a MAP-based Asymptotic Derivations from Bayes (MAD-Bayes) framework for MBASIC. This results in a K-means-like optimization algorithm which converges rapidly and hence enables exploring multiple initialization schemes and flexibility in tuning. Comparisons with MBASIC indicates that this speed comes at a relatively insignificant loss in estimation accuracy. Although MAD-Bayes MBASIC is specifically designed for the analysis of user-specified loci, it is able to capture overall patterns of histone marks from multiple ChIP-seq datasets similar to those identified by genome-wide segmentation methods such as ChromHMM and Spectacle.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Zuo, C., Hewitt, K.J., Bresnick, E.H., Keleş, S.: A hierarchical framework for state-space matrix inference and clustering. Ann. Appl. Stat. (Revised)
The ENCODE project consortium: an integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012)
Roadmap epigenomics consortium: integrative analysis of 111 reference human epigenomes. Nature 518(7539), 317–330 (2015)
Bardet, A.F., He, Q., Zeitlinger, J., Stark, A.: A computational pipeline for comparative ChIP-seq analyses. Nat. Protoc. 7(1), 45–61 (2012)
Bao, Y., Vinciotti, V., Wit, E., AC’t Hoen, P.: Accounting for immunoprecipitation efficiencies in the statistical analysis of ChIP-seq data. BMC Bioinform. 14(1), 169 (2013)
Zeng, X., Sanalkumar, R., Bresnick, E.H., Li, H., Chang, Q., Keleş, S.: jMOSAiCS: joint analysis of multiple ChIP-seq datasets. Genome Biol. 14, R38 (2013). Highly accessed. An R package for joint analysis of multiple ChIP-seq datasets. Available in Bioconductor http://bioconductor.org/packages/2.12/bioc/html/jmosaics.html
Kuan, P.F., Chung, D., Pan, G., Thomson, J., Stewart, R., Keleş, S.: A statistical framework for the analysis of ChIP-Seq data. J. Am. Stat. Assoc. 106, 891–903 (2011). Software available on Galaxy http://toolshed.g2.bx.psu.edu/ and also on Bioconductor http://bioconductor.org/packages/2.8/bioc/html/mosaics.html
Bao, Y., Vinciotti, V., Wit, E., ’t Hoen, P.: Joint modeling of ChIP-seq data via a Markov random field model. Biostatistics 15(2), 296–310 (2014)
Chen, K.B., Hardison, R., Zhang, Y.: dCaP: detecting differential binding events in multiple conditions and proteins. BMC Genomics 15(9), 1–14 (2014)
Ernst, J., Kellis, M.: Discovery and characterization of chromatin states for systematic annotation of the human genome. Nat. Biotechnol. 28(8), 817–825 (2010)
Hoffman, M.M., Buske, O.J., Wang, J., Weng, Z., Bilmes, J.A., Noble, W.S.: Unsupervised pattern discovery in human chromatin structure through genomic segmentation. Nat. Methods 9, 473–476 (2012)
Song, J., Chen, K.C.: Spectacle: fast chromatin state annotation using spectral learning. Genome Biol. 16(1), 33 (2015)
Sohn, K.A., Ho, J.W.K., Djordjevic, D., Jeong, H.H., Park, P.J., Kim, J.H.: hiHMM: Bayesian non-parametric joint inference of chromatin state maps. Bioinformatics, btv117 (2015)
Liang, K., Keleş, S.: Detecting differential binding of transcription factors with ChIP-seq. Bioinformatics 28(1), 121–122 (2012). Available in Bioconductor (http://www.bioconductor.org/packages/2.12/bioc/html/DBChIP.html)
Mahony, S., Edwards, M.D., Mazzoni, E.O., Sherwood, R.I., Kakumanu, A., Morrison, C.A., Wichterle, H., Gifford, D.K.: An integrated model of multiple-condition ChIP-Seq data reveals predeterminants of Cdx2 binding. PLoS Comput. Biol. 10(3), e1003501 (2014)
Song, Q., Smith, A.D.: Identifying dispersed epigenomic domains from ChIP-Seq data. Bioinformatics 27, 870–1 (2011)
Ferguson, J.P., Cho, J.H., Zhao, H.: A new approach for the joint analysis of multiple ChIP-seq libraries with application to histone modification. Stat. Appl. Genet. Mol. Biol. 11(3), Article 1 (2012)
Taslim, C., Huang, T., Lin, S.: DIME: R-package for identifying differential ChIP-seq based on an ensemble of mixture models. Bioinformatics 27(11), 1569–70 (2011)
Ji, H., Li, X., Wang, Q.F., Ning, Y.: Differential principal component analysis of ChIP-seq. Proc. Nat. Acad. Sci. U.S.A. 110(17), 6789–6794 (2013)
Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Stat. Soc. B Met. 39, 1–38 (1977)
Zuo, C., Keleş, S.: A statistical framework for power calculations in ChIP-seq experiments. Bioinformatics 30(6), 853–860 (2014)
Broderick, T., Kulis, B., Jordan, M.: MAD-Bayes: MAP-based asymptotic derivations from Bayes. In: Proceedings of the 30th International Conference on Machine Learning (2013)
Blackwell, D., MacQueen, J.B.: Ferguson distributions via Polya urn schemes. Ann. Stat. 1(2), 353–355 (1973)
Aldous, D.J.: Exchangeability and related topics. In: Hennequin, P.L. (ed.) École d’Été de Probabilités de Saint-Flour XIII, vol. 1117, pp. 1–198. Springer, Heidelberg (1983)
Hewitt, K.J., Kim, D.H., Devadas, P., Prathibha, R., Zuo, C., Sanalkumar, R., Johnson, K.D., Kang, Y.A., Kim, J.S., Dewey, C.N., Keleş, S., Bresnick, E.: Hematopoietic signaling mechanism revealed from a stem/progenitor cell cistrome. Mol. Cell 59(1), 62–74 (2015)
Johnson, K.D., Hsu, A., Ryu, M.J., Boyer, M.E., Keleş, S., Zhang, J., Lee, Y., Holland, S.M., Bresnick, E.H.: Cis-element mutation in a GATA-2-dependent immunodeficiency syndrome governs hematopoiesis and vascular integrity. J. Clin. Inv. 10(122), 3692–3704 (2012)
Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)
Wei, Y., Li, X., Wang, Q.F., Ji, H.: iASeq: integrative analysis of allele-specificity of protein-DNA interactions in multiple ChIP-seq datasets. BMC Genomics 13, 681 (2012)
Gerstein, M.B., Kundaje, A., Hariharan, M., Landt, S.G., Yan, K.K., Cheng, C., Mu, X.J., Khurana, E., Rozowsky, J., Alexander, R., Min, R., Alves, P., Abyzov, A., Addleman, N., Bhardwaj, N., Boyle, A.P., Cayting, P., Charos, A., Chen, D.Z., Cheng, Y., Clarke, D., Eastman, C., Euskirchen, G., Frietze, S., Fu, Y., Gertz, J., Grubert, F., Harmanci, A., Jain, P., Kasowski, M., Lacroute, P., Leng, J., Lian, J., Monahan, H., O’Geen, H., Ouyang, Z., Partridge, E.C., Patacsil, D., Pauli, F., Raha, D., Ramirez, L., Reddy, T.E., Reed, B., Shi, M., Slifer, T., Wang, J., Wu, L., Yang, X., Yip, K.Y., Zilberman-Schapira, G., Batzoglou, S., Sidow, A., Farnham, P.J., Myers, R.M., Weissman, S.M., Snyder, M.: Architecture of the human regulatory network derived from ENCODE data. Nature 489(7414), 91–100 (2012)
Wei, Y., Tenzen, T., Ji, H.: Joint analysis of differential gene expression in multiple studies using correlation motifs. Biostatistics 16(1), 31–46 (2015)
Rand, W.M.: Objective criteria for the evaluation of clustering methods. J. Am. Stat. Assoc. 66(336), 846–850 (1971)
Tan, P.N., Steinbach, M., Kumar, V.: Cluster analysis: basic concepts and algorithms. In: Introduction to Data Mining, chap. 8 (2005)
Landt, S.G., Marinov, G.K., Kundaje, A., Kheradpour, P., Pauli, F., Batzoglou, S., Bernstein, B.E., Bickel, P., Brown, J.B., Cayting, P., et al.: ChIP-seq guidelines and practices of the encode and modencode consortia. Genome Res. 22(9), 1813–1831 (2012)
Banerjee, A.: Clustering with Bregman divergences. J. Mach. Learn. Res. 6, 1705–1749 (2005)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Appendix
Appendix
A graphical interpretation of the conjugacy between \(\lambda _r\) and J. We use the K-means initialization to compute surrogate values for L(J) for a large collection of \(J \ge 1\). The \(\lambda _r\) value that can yield J clusters in the global solution must satisfy: \(\sup _{J'>J}\frac{L(J)-L(J')}{J-J'}\le \lambda _r\le \inf _{J'>J}\frac{L(J')-L(J)}{J'-J}\). When \(\lambda _r\) satisfies this condition, a line with slope \(-\lambda _r\) passing through (J, L(J)) on the graph should be tangent to the trace of all L(J) values. Although using the surrogate L(J) values can lead to the curve connecting the L(J) values to be con-convex, making the solution for \(\lambda _r\) not hold for some J, we can use a convex approximation to the trace of L(J) so that so that a \(\lambda _r\) exists for each J. A simpler approach is to order the L(J) from largest to smallest and require the following condition for \(\lambda _r\). \(L(J) - L(J+1) \le \lambda _r \le L(J-1)-L(J)\). Algorithm 2 essentially applies this idea to select the \(\lambda _r\) values. Each J corresponds to a \(\lambda _r\) of value \([L(J-1)-L(J+1)]/2\) that satisfies the conjugacy inequality. The algorithm essentially tries to identify the range of \(\lambda _r\) that leads up to \(\sqrt{I}\) number of clusters.
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Zuo, C., Chen, K., Keleş, S. (2016). A MAD-Bayes Algorithm for State-Space Inference and Clustering with Application to Querying Large Collections of ChIP-Seq Data Sets. In: Singh, M. (eds) Research in Computational Molecular Biology. RECOMB 2016. Lecture Notes in Computer Science(), vol 9649. Springer, Cham. https://doi.org/10.1007/978-3-319-31957-5_2
Download citation
DOI: https://doi.org/10.1007/978-3-319-31957-5_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-31956-8
Online ISBN: 978-3-319-31957-5
eBook Packages: Computer ScienceComputer Science (R0)