Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

Life in crowded conditions

Molecular crowding and beyond

  • Review
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Molecular crowding is ubiquitous in cells, which are rather densely packed with macromolecules. The effects of such crowded conditions on biophysical processes can be complex and puzzling. Here, we review these effects in a step-by-step manner. We start with excluded volume effects on elementary physical processes: diffusion, binding, reactions, and polymer compaction. We then discuss the binding of a transcription factor to a binding site on DNA as an example of a more complex process and consider effects of attractive interactions and active processes. We also give an outlook to larger-scale crowded systems such as suspensions of cells, biofilms, and tissues, which can be described using similar approaches as molecular crowded systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.B. Zimmerman, A.P. Minton, Annu. Rev. Biophys. Biomol. Struct. 22, 27 (1993)

    Article  Google Scholar 

  2. R.J. Ellis, Trends Biochem. Sci. 26, 597 (2001)

    Article  Google Scholar 

  3. G. Rivas, A.P. Minton, Trends Biochem. Sci. 41, 970 (2016)

    Article  Google Scholar 

  4. F. Neidhard, J. Ingraham, M. Schaechter, Physiology of the Bacterial Cell: A Molecular Approach (Sinauer, MA, 1990)

  5. O. Medalia et al., Science 298, 1209 (2002)

    Article  ADS  Google Scholar 

  6. D.S. Goodsell, The Machinery of Life (Springer, NY, 1992)

  7. M. Kumar, M.S. Mommer, V. Sourjik, Biophys. J. 98, 552 (2010)

    Article  Google Scholar 

  8. B.R. Parry et al., Cell 156, 183 (2014)

    Article  Google Scholar 

  9. S.R. McGuffee, A.H. Elcock, PLoS Comput. Biol. 6, e1000694 (2010)

    Article  ADS  Google Scholar 

  10. I. Yu et al., eLife 5, e19274 (2016)

    Article  Google Scholar 

  11. D. Gnutt, M. Gao, O. Brylski, M. Heyden, S. Ebbinghaus, Angew. Chem. 127, 2578 (2015)

    Article  Google Scholar 

  12. A.J. Boersma, I.S. Zuhorn, B. Poolman, Nat. Methods 12, 227 (2015)

    Article  Google Scholar 

  13. M.C. Konopka et al., J. Bacteriol. 191, 231 (2009)

    Article  Google Scholar 

  14. A.P. Minton, J. Cell Sci. 119, 2863 (2006)

    Article  Google Scholar 

  15. H.X. Zhou, G. Rivas, A.P. Minton, Annu. Rev. Biophys. 37, 375 (2008)

    Article  Google Scholar 

  16. A. Christiansen, Q. Wang, M.S. Cheung, P. Wittung-Stafshede, Biophys. Rev. 5, 137 (2013)

    Article  Google Scholar 

  17. M. Tabaka, T. Kalwarczyk, J. Szymanski, S. Hou, R. Holyst, Front. Phys. 2, 54 (2014)

    Article  Google Scholar 

  18. R. Phillips, J. Kondev, J. Theriot, Physical Biology of the Cell (Garland, 2008)

  19. D. Gomez, S. Klumpp, Front. Phys. 3, 45 (2015)

    Article  Google Scholar 

  20. L.A. Ferreira et al., Int. J. Mol. Sci. 16, 13528 (2015)

    Article  Google Scholar 

  21. J.S. van Zon, M.J. Morelli, S. Tǎnase-Nicola, P.R. ten Wolde, Biophys. J. 91, 4350 (2006)

    Article  Google Scholar 

  22. M.J. Morelli, R.J. Allen, P.R. Ten Wolde, Biophys. J. 101, 2882 (2011)

    Article  ADS  Google Scholar 

  23. N. Muramatsu, A.P. Minton, Proc. Natl. Acad. Sci. USA 85, 2984 (1988)

    Article  ADS  Google Scholar 

  24. K. Luby-Phelps, Int. Rev. Cytol. 192, 189 (1999)

    Article  Google Scholar 

  25. M.B. Elowitz, M.G. Surette, P.E. Wolf, J.B. Stock, S. Leibler, J. Bacteriol. 181, 197 (1999)

    Google Scholar 

  26. S. Klumpp, M. Scott, S. Pedersen, T. Hwa, Proc. Natl. Acad. Sci. USA 110, 16754 (2013)

    Article  ADS  Google Scholar 

  27. X. Dai et al., Nat. Microbiol. 2, 16231 (2017)

    Article  Google Scholar 

  28. G. Cannarozzi et al., Cell 141, 355 (2010)

    Article  Google Scholar 

  29. M. Mustafi, J.C. Weisshaar, mBio 9, e02143–17 (2018)

    Article  Google Scholar 

  30. E. Barkai, Y. Garini, R. Metzler, Phys. Today 65, 29 (2012)

    Article  Google Scholar 

  31. I. Golding, E.C. Cox, Phys. Rev. Lett. 96, 098102 (2006)

    Article  ADS  Google Scholar 

  32. J.H. Jeon et al., Phys. Rev. Lett. 106, 048103 (2011)

    Article  ADS  Google Scholar 

  33. N. Pawar, C. Donth, M. Weiss, Curr. Biol. 24, 1905 2014

  34. M.S. Cheung, D. Klimov, D. Thirumalai, Proc. Natl. Acad. Sci. USA 102, 4753 (2005)

    Article  ADS  Google Scholar 

  35. A. Soranno et al., Proc. Natl. Acad. Sci. USA 111, 4874 (2014)

    Article  ADS  Google Scholar 

  36. C. Navarro-Retamal et al., Phys. Chem. Chem. Phys. 18, 25806 (2016)

    Article  Google Scholar 

  37. P.H. vonHippel, O.G. Berg, J. Biol. Chem. 264, 675 (1989)

    Google Scholar 

  38. S.E. Halford, J.F. Marko, Nucleic Acids Res. 32, 3040 (2004)

    Article  Google Scholar 

  39. J. Elf, G.W. Li, X.S. Xie, Science 316, 1191 (2007)

    Article  ADS  Google Scholar 

  40. M. Smoluchowski, Z. Phys. Chem. 92, 129 (1917)

    Google Scholar 

  41. R.B. Winter, O.G. Berg, P.H. Von Hippel, Biochemistry 20, 6961 (1981)

    Article  Google Scholar 

  42. M. Bauer, R. Metzler, PloS One 8, e53956 (2013)

    Article  ADS  Google Scholar 

  43. C. Brackley, M. Cates, D. Marenduzzo, Phys. Rev. Lett. 111, 108101 (2013)

    Article  ADS  Google Scholar 

  44. D. Krepel, D. Gomez, S. Klumpp, Y. Levy, J. Phys. Chem. B 120, 11113 (2016)

    Article  Google Scholar 

  45. D. Gomez, S. Klumpp, Phys. Chem. Chem. Phys. 18, 11184 (2016)

    Article  Google Scholar 

  46. A. Shvets, M. Kochugaeva, A.B. Kolomeisky, J. Phys. Chem. B 120, 5802 (2015)

    Article  Google Scholar 

  47. A.A. Shvets, A.B. Kolomeisky, J. Phys. Chem. Lett. 7, 2502 (2016)

    Article  Google Scholar 

  48. P.H. Von Hippel, A. Revzin, C.A. Gross, A.C. Wang, Proc. Natl. Acad. Sci. USA 71,4808 (1974)

    Article  ADS  Google Scholar 

  49. E.J. Deeds, O. Ashenberg, J. Gerardin, E.I. Shakhnovich, Proc. Natl. Acad. Sci. USA 104, 14952 (2007)

    Article  ADS  Google Scholar 

  50. S. Klumpp, T. Hwa, Proc. Natl. Acad. Sci. USA 105, 20245 (2008)

    Article  ADS  Google Scholar 

  51. I.M. Kuznetsova, B.Y. Zaslavsky, L. Breydo, K.K. Turoverov, V.N. Uversky, Molecules 20, 1377 (2015)

    Article  Google Scholar 

  52. D. Gnutt, S. Ebbinghaus, Biol. Chem. 397, 37 (2016)

    Article  Google Scholar 

  53. D.L. Schmitt, S. An, Biochemistry 56, 3184 (2017)

    Article  Google Scholar 

  54. M.Z. Wilson, Z. Gitai, Curr. Opin. Microbiol. 16, 177 (2013)

    Article  Google Scholar 

  55. S. Bhattacharyya et al., elife 5, e20309 (2016)

    Article  Google Scholar 

  56. C.P. Brangwynne et al., Science 324, 1729 (2009)

    Article  ADS  Google Scholar 

  57. A.A. Hyman, C.A. Weber, F. Jülicher, Annu. Rev. Cell Dev. Biol. 30, 39 (2014)

    Article  Google Scholar 

  58. D. Zwicker, R. Seyboldt, C.A. Weber, A.A. Hyman, F. Jülicher, Nat. Phys. 13, 408 (2017)

    Article  Google Scholar 

  59. R. Lipowsky, S. Klumpp, Physica A 352, 53 (2005)

    Article  ADS  Google Scholar 

  60. D. Mizuno, C. Tardin, C.F. Schmidt, F.C. MacKintosh, Science 315, 370 (2007)

    Article  ADS  Google Scholar 

  61. X.L. Wu, A. Libchaber, Phys. Rev. Lett. 84, 3017 (2000)

    Article  ADS  Google Scholar 

  62. G. Mino et al., Phys. Rev. Lett. 106, 048102 (2011)

    Article  ADS  Google Scholar 

  63. A. Jepson, V.A. Martinez, J. Schwarz-Linek, A. Morozov, W.C. Poon, Phys. Rev. E 88, 041002 (2013)

    Article  ADS  Google Scholar 

  64. E.W. Burkholder, J.F. Brady, Phys. Rev. E 95, 052605 (2017)

    Article  ADS  Google Scholar 

  65. P. Puri, S. Klumpp (2018), endrefcommentnewblock unpublished

  66. S. Sengupta et al., J. Am. Chem. Soc. 135, 1406 (2013)

    Article  Google Scholar 

  67. C. Riedel et al., Nature 517, 227 (2015)

    Article  ADS  Google Scholar 

  68. P. Illien et al., Nano Lett. 17, 4415 (2017)

    Article  ADS  Google Scholar 

  69. D. Bi, X. Yang, M.C. Marchetti, M.L. Manning, Phys. Rev. X 6, 021011 (2016)

    Google Scholar 

  70. M. Delarue et al., Nat. Phys. 12, 762 (2016)

    Article  Google Scholar 

  71. D. Matoz-Fernandez, K. Martens, R. Sknepnek, J. Barrat, S. Henkes, Soft Matter 13, 3205 (2017)

    Article  ADS  Google Scholar 

  72. K. Drescher et al., Proc. Natl. Acad. Sci. USA 113, E2066 (2016)

    Article  Google Scholar 

  73. M.C. Duvernoy et al., Nat. Commun. 9, 1120 (2018)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Klumpp.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klumpp, S., Bode, W. & Puri, P. Life in crowded conditions. Eur. Phys. J. Spec. Top. 227, 2315–2328 (2019). https://doi.org/10.1140/epjst/e2018-800088-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1140/epjst/e2018-800088-6

Profiles

  1. Stefan Klumpp