Abstract
Molecular crowding plays a crucial role in biological and medicinal systems, impacting the structure, behavior, and function of biomolecules within the densely packed environments of cells. This chapter provides an overview of the implications of molecular crowding, exploring how the high concentration of macromolecules such as proteins, nucleic acids, and other biological entities impacts biochemical reactions and cellular processes. The discussion highlights the challenges associated with experimental studies of molecular crowding, including challenges in creating accurate in vitro models, controlling concentrations, and isolating crowding effects from other interactions. To address these challenges, the chapter emphasizes the importance of computational techniques. Various computational approaches, including molecular dynamics simulations, Monte Carlo simulations, Brownian dynamics, lattice-models, finite element analysis, coarse-grained modeling, quantum mechanics/molecular mechanics simulations, and multi-scale modeling, are discussed in detail. Each of these techniques contributes unique insights into the molecular-level impacts of crowding, enhancing our understanding of biophysical processes critical for therapeutic development and biological function. The chapter discusses also quantum computing, machine learning and classical simulations hybrid approaches for future directions around molecular crowding studies.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abbaspour L, Klumpp S (2021) Enhanced diffusion of a tracer particle in a lattice model of a crowded active system. Phys Rev E 103(5):052601. https://doi.org/10.1103/PhysRevE.103.052601
Adcock SA, McCammon JA (2006) Molecular dynamics: survey of methods for simulating the activity of proteins. Chem Rev 106(5):1589–1615. https://doi.org/10.1021/cr040426m
Akbayrak IY, Caglayan SI, Ozcan Z, Uversky VN, Coskuner-Weber O (2020) Current challenges and limitations in the studies of intrinsically disordered proteins in neurodegenerative diseases by computer simulations. Curr Alzheimer Res 17(9):805–818. https://doi.org/10.2174/1567205017666201109094908
Alfano C, Fichou Y, Huber K, Weiss M, Spruijt E, Ebbinghaus S, De Luca G, Morando MA, Vetri V, Temussi PA, Pastore A (2024) Molecular crowding: the history and development of a scientific paradigm. Chem Rev 124(6):3186–3219. https://doi.org/10.1021/acs.chemrev.3c00615
Allison TC, Coskuner O, Gonzalez CA (eds) (2011) Metallic systems: a quantum chemist’s perspective, 0th edn. CRC Press
Al-Obaidi H, Florence AT (2015) Nanoparticle delivery and particle diffusion in confined and complex environments. J Drug Deliv Sci Technol 30:266–277. https://doi.org/10.1016/j.jddst.2015.06.017
Amaro RE, Mulholland AJ (2018) Multiscale methods in drug design bridge chemical and biological complexity in the search for cures. Nat Rev Chem 2(4):0148. https://doi.org/10.1038/s41570-018-0148
Anand R, Agrawal M, Mattaparthi VSK, Swaminathan R, Santra SB (2019) Consequences of heterogeneous crowding on an enzymatic reaction: a residence time Monte Carlo approach. ACS Omega 4(1):727–736. https://doi.org/10.1021/acsomega.8b02863
Ando T, Yu I, Feig M, Sugita Y (2016) Thermodynamics of macromolecular association in heterogeneous crowding environments: theoretical and simulation studies with a simplified model. J Phys Chem B 120(46):11856–11865. https://doi.org/10.1021/acs.jpcb.6b06243
Argyris JH, Balmer H, Doltsinis JST, Dunne PC, Haase M, Kleiber M, Malejannakis GA, Mlejnek H-P, Müller M, Scharpf DW (1979) Finite element method — the natural approach. Comput Methods Appl Mech Eng 17–18:1–106. https://doi.org/10.1016/0045-7825(79)90083-5
Badar MS, Shamsi S, Ahmed J, Alam MA (2022) Molecular dynamics simulations: concept, methods, and applications. In: Rezaei N (ed) Transdisciplinarity. Springer, Cham, pp 131–151
Bairagee D, Panchawat S, Jain N, Pingali S (2024) Controlling the drug release rate and targeted drug delivery to the desired site by molecular simulation. In: Malviya R, Sundram S, Meenakshi DU (eds) Drug delivery systems using quantum computing, 1st edn. Wiley, pp 353–387
Balcells C, Pastor I, Vilaseca E, Madurga S, Cascante M, Mas F (2014) Macromolecular crowding effect upon in vitro enzyme kinetics: mixed activation–diffusion control of the oxidation of NADH by pyruvate catalyzed by lactate dehydrogenase. J Phys Chem B 118(15):4062–4068. https://doi.org/10.1021/jp4118858
Basak S, Sengupta S, Chattopadhyay K (2019) Understanding biochemical processes in the presence of sub-diffusive behavior of biomolecules in solution and living cells. Biophys Rev 11(6):851–872. https://doi.org/10.1007/s12551-019-00580-9
Bhattacherjee A, Krepel D, Levy Y (2016) Coarse-grained models for studying protein diffusion along DNA. WIREs Comput Mol Sci 6(5):515–531. https://doi.org/10.1002/wcms.1262
Bittig AT, Uhrmacher AM (2010) Spatial modeling in cell biology at multiple levels. In: Proceedings of the 2010 Winter simulation conference. IEEE, Baltimore, MD, USA, pp 608–619
Bock LV, Gabrielli S, Kolář MH, Grubmüller H (2023) Simulation of complex biomolecular systems: the ribosome challenge. Annu Rev Biophys 52(1):361–390. https://doi.org/10.1146/annurev-biophys-111622-091147
Bombelli FB, Gambinossi F, Lagi M, Berti D, Caminati G, Brown T, Sciortino F, Nordén B, Baglioni P (2008) DNA closed nanostructures: a structural and Monte Carlo simulation study. J Phys Chem B 112(48):15283–15294. https://doi.org/10.1021/jp804544u
Bonate PL (2001) A brief introduction to Monte Carlo simulation. Clin Pharmacokinet 40(1):15–22. https://doi.org/10.2165/00003088-200140010-00002
Burg MB (2000) Macromolecular crowding as a cell VolumeSensor. Cell Physiol Biochem 10(5–6):251–256. https://doi.org/10.1159/000016371
Burkhart TA, Andrews DM, Dunning CE (2013) Finite element modeling mesh quality, energy balance and validation methods: a review with recommendations associated with the modeling of bone tissue. J Biomech 46(9):1477–1488. https://doi.org/10.1016/j.jbiomech.2013.03.022
Caliskan M, Mandaci SY, Uversky VN, Coskuner-Weber O (2021) Secondary structure dependence of amyloid-β(1-40) on simulation techniques and force field parameters. Chem Biol Drug Des 97(5):1100–1108. https://doi.org/10.1111/cbdd.13830
Cao S, Chen S-J (2005) Predicting RNA folding thermodynamics with a reduced chain representation model. RNA 11(12):1884–1897. https://doi.org/10.1261/rna.2109105
Cascella M, Vanni S (2015) Toward accurate coarse-graining approaches for protein and membrane simulations. In: Springborg M, Joswig J-O (eds) Chemical modelling. Royal Society of Chemistry, Cambridge, pp 1–52
Chen JC, Kim AS (2004) Brownian dynamics, molecular dynamics, and Monte Carlo modeling of colloidal systems. Adv Colloid Interf Sci 112(1–3):159–173. https://doi.org/10.1016/j.cis.2004.10.001
Cheng TMK, Gulati S, Agius R, Bates PA (2012) Understanding cancer mechanisms through network dynamics. Brief Funct Genomics 11(6):543–560. https://doi.org/10.1093/bfgp/els025
Cheung MS, Thirumalai D (2007) Effects of crowding and confinement on the structures of the transition state Ensemble in Proteins. J Phys Chem B 111(28):8250–8257. https://doi.org/10.1021/jp068201y
Choi J-M, Dar F, Pappu RV (2019) LASSI: a lattice model for simulating phase transitions of multivalent proteins. PLoS Comput Biol 15(10):e1007028. https://doi.org/10.1371/journal.pcbi.1007028
Christiansen A, Wang Q, Cheung MS, Wittung-Stafshede P (2013) Effects of macromolecular crowding agents on protein folding in vitro and in silico. Biophys Rev 5(2):137–145. https://doi.org/10.1007/s12551-013-0108-0
Cohen G, Pernet S (2017) Definition of different types of finite elements. In: Finite element and discontinuous Galerkin methods for transient wave equations. Springer, Dordrecht, pp 39–93
Coskuner O, Deiters UK (2007) Hydrophobic interactions of xenon by Monte Carlo simulations. Z Phys Chem 221(6):785–799. https://doi.org/10.1524/zpch.2007.221.6.785
Coveney PV, Fowler PW (2005) Modelling biological complexity: a physical scientist’s perspective. J R Soc Interface 2(4):267–280. https://doi.org/10.1098/rsif.2005.0045
Csizi K, Reiher M (2023) Universal QM/MM approaches for general nanoscale applications. WIREs Comput Mol Sci 13(4):e1656. https://doi.org/10.1002/wcms.1656
Cupelli C, Borchardt T, Steiner T, Paust N, Zengerle R, Santer M (2013) Leukocyte enrichment based on a modified pinched flow fractionation approach. Microfluid Nanofluid 14(3–4):551–563. https://doi.org/10.1007/s10404-012-1073-9
Dada JO, Mendes P (2011) Multi-scale modelling and simulation in systems biology. Integr Biol 3(2):86. https://doi.org/10.1039/c0ib00075b
Dallon JC (2007) Models with lattice-free center-based cells interacting with continuum environment variables. In: Anderson ARA, Chaplain MAJ, Rejniak KA (eds) Single-cell-based models in biology and medicine. Birkhäuser Basel, Basel, pp 197–219
Derreumaux P, Mousseau N (2007) Coarse-grained protein molecular dynamics simulations. J Chem Phys 126(2):025101. https://doi.org/10.1063/1.2408414
Dickinson E (1985) Brownian dynamic with hydrodynamic interactions: the application to protein diffusional problems. Chem Soc Rev 14(4):421. https://doi.org/10.1039/cs9851400421
Długosz M, Trylska J (2011) Diffusion in crowded biological environments: applications of Brownian dynamics. BMC Biophys 4(1):3. https://doi.org/10.1186/2046-1682-4-3
Dumont ER, Grosse IR, Slater GJ (2009) Requirements for comparing the performance of finite element models of biological structures. J Theor Biol 256(1):96–103. https://doi.org/10.1016/j.jtbi.2008.08.017
Echeverria C, Kapral R (2015) Enzyme kinetics and transport in a system crowded by mobile macromolecules. Phys Chem Chem Phys 17(43):29243–29250. https://doi.org/10.1039/C5CP05056A
Feig M, Sugita Y (2019) Whole-cell models and simulations in molecular detail. Annu Rev Cell Dev Biol 35(1):191–211. https://doi.org/10.1146/annurev-cellbio-100617-062542
Feig M, Yu I, Wang P, Nawrocki G, Sugita Y (2017) Crowding in cellular environments at an atomistic level from computer simulations. J Phys Chem B 121(34):8009–8025. https://doi.org/10.1021/acs.jpcb.7b03570
Feng F, Klug WS (2006) Finite element modeling of lipid bilayer membranes. J Comput Phys 220(1):394–408. https://doi.org/10.1016/j.jcp.2006.05.023
Friswell MI, Mottershead JE (1995) Finite element modelling. In: Finite element model updating in structural dynamics. Springer, Dordrecht, pp 7–35
George AZ, Robinson BA, Dash ZV, Trease V (1997) Summary of the models and methods for the FEHM application-a finite-element heat- and mass-transfer code
Gherman BF, Goldberg SD, Cornish VW, Friesner RA (2004) Mixed quantum mechanical/molecular mechanical (QM/MM) study of the Deacylation reaction in a penicillin binding protein (PBP) versus in a class C β-lactamase. J Am Chem Soc 126(24):7652–7664. https://doi.org/10.1021/ja036879a
Ghosh D, Biswas A, Radhakrishna M (2024) Advanced computational approaches to understand protein aggregation. Biophys Rev 5(2):021302. https://doi.org/10.1063/5.0180691
Givoli D, Keller JB (1989) A finite element method for large domains. Comput Methods Appl Mech Eng 76(1):41–66. https://doi.org/10.1016/0045-7825(89)90140-0
Gkionis K, Kruse H, Šponer J (2016) Derivation of reliable geometries in QM calculations of DNA structures: explicit solvent QM/MM and restrained implicit solvent QM optimizations of G-Quadruplexes. J Chem Theory Comput 12(4):2000–2016. https://doi.org/10.1021/acs.jctc.5b01025
Gniewek P, Kolinski A (2010) Coarse-grained Monte Carlo simulations of mucus: structure, dynamics, and thermodynamics. Biophys J 99(11):3507–3516. https://doi.org/10.1016/j.bpj.2010.09.047
Gobet E (2016) Monte-Carlo methods and stochastic processes: from linear to non-linear, 1st edn. Chapman and Hall/CRC
Grassmann G, Miotto M, Desantis F, Di Rienzo L, Tartaglia GG, Pastore A, Ruocco G, Monti M, Milanetti E (2024) Computational approaches to predict protein-protein interactions in crowded cellular environments. Chem Rev 124(7):3932–3977. https://doi.org/10.1021/acs.chemrev.3c00550
Grime JMA, Dama JF, Ganser-Pornillos BK, Woodward CL, Jensen GJ, Yeager M, Voth GA (2016) Coarse-grained simulation reveals key features of HIV-1 capsid self-assembly. Nat Commun 7(1):11568. https://doi.org/10.1038/ncomms11568
Guardiani C, Cencini M, Cecconi F (2014) Coarse-grained modeling of protein unspecifically bound to DNA. Phys Biol 11(2):026003. https://doi.org/10.1088/1478-3975/11/2/026003
Guigas G, Weiss M (2016) Effects of protein crowding on membrane systems. Biochimica et Biophysica Acta (BBA) Biomembr 1858(10):2441–2450. https://doi.org/10.1016/j.bbamem.2015.12.021
Haji Dehabadi M, Saidi H, Zafari F, Irani M (2024) Assessing the accuracy and efficacy of multiscale computational methods in predicting reaction mechanisms and kinetics of SN2 reactions and Claisen rearrangement. Sci Rep 14(1):16791. https://doi.org/10.1038/s41598-024-67468-x
Haldar S, Comitani F, Saladino G, Woods C, Van Der Kamp MW, Mulholland AJ, Gervasio FL (2018) A Multiscale Simulation Approach to Modeling Drug–Protein Binding Kinetics. J Chem Theory Comput 14(11):6093–6101. https://doi.org/10.1021/acs.jctc.8b00687
Hall D, Hoshino M (2010) Effects of macromolecular crowding on intracellular diffusion from a single particle perspective. Biophys Rev 2(1):39–53. https://doi.org/10.1007/s12551-010-0029-0
Hänggi P, Marchesoni F (2005) Introduction: 100years of Brownian motion. Chaos: an interdisciplinary. J Nonlinear Sci 15(2):026101. https://doi.org/10.1063/1.1895505
Harada R, Sugita Y, Feig M (2012) Protein crowding affects hydration structure and dynamics. J Am Chem Soc 134(10):4842–4849. https://doi.org/10.1021/ja211115q
Haspinger DC, Klinge S, Holzapfel GA (2021) Numerical analysis of the impact of cytoskeletal actin filament density alterations onto the diffusive vesicle-mediated cell transport. PLoS Comput Biol 17(5):e1008784. https://doi.org/10.1371/journal.pcbi.1008784
Heo L, Sugita Y, Feig M (2022) Protein assembly and crowding simulations. Curr Opin Struct Biol 73:102340. https://doi.org/10.1016/j.sbi.2022.102340
Hollingsworth SA, Dror RO (2018) Molecular dynamics simulation for all. Neuron 99(6):1129–1143. https://doi.org/10.1016/j.neuron.2018.08.011
Hong F, Schreck JS, Šulc P (2020) Understanding DNA interactions in crowded environments with a coarse-grained model. Nucleic Acids Res 48(19):10726–10738. https://doi.org/10.1093/nar/gkaa854
Horstemeyer MF (2009) Multiscale modeling: a review. In: Leszczynski J, Shukla MK (eds) Practical aspects of computational chemistry. Springer, Dordrecht, pp 87–135
Huber GA, McCammon JA (2019) Brownian dynamics simulations of biological molecules. Trends Chem 1(8):727–738. https://doi.org/10.1016/j.trechm.2019.07.008
Huggins DJ, Biggin PC, Dämgen MA, Essex JW, Harris SA, Henchman RH, Khalid S, Kuzmanic A, Laughton CA, Michel J, Mulholland AJ, Rosta E, Sansom MSP, Van Der Kamp MW (2019) Biomolecular simulations: from dynamics and mechanisms to computational assays of biological activity. WIREs Comput Mol Sci 9(3):e1393. https://doi.org/10.1002/wcms.1393
Hyeon C, Thirumalai D (2011) Capturing the essence of folding and functions of biomolecules using coarse-grained models. Nat Commun 2(1):487. https://doi.org/10.1038/ncomms1481
Iakovliev A, Dasmahapatra S, Bhaskar A (2018) Structural stability of a Mitotic Spindle: parametric Finite element approach. https://doi.org/10.13140/RG.2.2.16352.12808
Ingólfsson HI, Lopez CA, Uusitalo JJ, De Jong DH, Gopal SM, Periole X, Marrink SJ (2014) The power of coarse graining in biomolecular simulations. WIREs Comput Mol Sci 4(3):225–248. https://doi.org/10.1002/wcms.1169
Izvekov S, Voth GA (2005) A multiscale coarse-graining method for biomolecular systems. J Phys Chem B 109(7):2469–2473. https://doi.org/10.1021/jp044629q
Janssen H (2013) Monte-Carlo based uncertainty analysis: sampling efficiency and sampling convergence. Reliab Eng Syst Saf 109:123–132. https://doi.org/10.1016/j.ress.2012.08.003
Jebahi M, Dau F, Charles J-L, Iordanoff I (2016) Multiscale modeling of complex dynamic problems: an overview and recent developments. Arch Computat Methods Eng 23(1):101–138. https://doi.org/10.1007/s11831-014-9136-6
Johnson ME, Chen A, Faeder JR, Henning P, Moraru II, Meier-Schellersheim M, Murphy RF, Prüstel T, Theriot JA, Uhrmacher AM (2021) Quantifying the roles of space and stochasticity in computer simulations for cell biology and cellular biochemistry. MBoC 32(2):186–210. https://doi.org/10.1091/mbc.E20-08-0530
Karimnejad S, Delouei AA, Basagaoglu H, Nazari M, Shahmardan MM, Falcucci G, Lauricella M, Succi S (2022) A review on contact and collision methods for multi-body hydrodynamic problems in complex flows. https://doi.org/10.48550/ARXIV.2211.11728
Knop J-M, Mukherjee S, Jaworek MW, Kriegler S, Manisegaran M, Fetahaj Z, Ostermeier L, Oliva R, Gault S, Cockell CS, Winter R (2023) Life in multi-extreme environments: brines, osmotic and hydrostatic pressure─a physicochemical view. Chem Rev 123(1):73–104. https://doi.org/10.1021/acs.chemrev.2c00491
Kolston PJ (2000) Finite-element modelling: a new tool for the biologist. Philos Trans R Soc London, Ser A 358(1766):611–631. https://doi.org/10.1098/rsta.2000.0548
König PH, Hoffmann M, Frauenheim T, Cui Q (2005) A critical evaluation of different QM/MM frontier treatments with SCC-DFTB as the QM method. J Phys Chem B 109(18):9082–9095. https://doi.org/10.1021/jp0442347
Kroupa KR, Gangi LR, Zimmerman BK, Hung CT, Ateshian GA (2023) Superficial zone chondrocytes can get compacted under physiological loading: a multiscale finite element analysis. Acta Biomater 163:248–258. https://doi.org/10.1016/j.actbio.2022.10.013
Kuznetsova IM, Turoverov KK, Uversky VN (2014) What macromolecular crowding can do to a protein. Int J Mol Sci 15(12):23090–23140. https://doi.org/10.3390/ijms151223090
Kwak KJ, Valincius G, Liao W-C, Hu X, Wen X, Lee A, Yu B, Vanderah DJ, Lu W, Lee LJ (2010) Formation and finite element analysis of tethered bilayer lipid structures. Langmuir 26(23):18199–18208. https://doi.org/10.1021/la1021802
Lane TJ, Shukla D, Beauchamp KA, Pande VS (2013) To milliseconds and beyond: challenges in the simulation of protein folding. Curr Opin Struct Biol 23(1):58–65. https://doi.org/10.1016/j.sbi.2012.11.002
Li S, Dutta B, Cannon S, Daymude JJ, Avinery R, Aydin E, Richa AW, Goldman DI, Randall D (2021) Programming active cohesive granular matter with mechanically induced phase changes. Sci Adv 7(17):eabe8494. https://doi.org/10.1126/sciadv.abe8494
Mandaci SY, Caliskan M, Sariaslan MF, Uversky VN, Coskuner-Weber O (2020) Epitope region identification challenges of intrinsically disordered proteins in neurodegenerative diseases: secondary structure dependence of α-synuclein on simulation techniques and force field parameters. Chem Biol Drug Des cbdd.13662. https://doi.org/10.1111/cbdd.13662
Marrink SJ, Monticelli L, Melo MN, Alessandri R, Tieleman DP, Souza PCT (2023) Two decades of martini: better beads, broader scope. WIREs Comput Mol Sci 13(1):e1620. https://doi.org/10.1002/wcms.1620
Mathur A, Ghosh R, Nunes-Alves A (2024) Recent progress in modeling and simulation of biomolecular crowding and condensation inside cells
Minton AP (2001) The influence of macromolecular crowding and macromolecular confinement on biochemical reactions in physiological media. J Biol Chem 276(14):10577–10580. https://doi.org/10.1074/jbc.R100005200
Mittal S, Chowhan RK, Singh LR (2015) Macromolecular crowding: macromolecules friend or foe. Biochim Biophys Acta Gen Subj 1850(9):1822–1831. https://doi.org/10.1016/j.bbagen.2015.05.002
Mohanty S (2020) Aggregation and coacervation with Monte Carlo simulations. In: Progress in molecular biology and translational science. Elsevier, pp 505–520
Monard G, Merz KM (1999) Combined quantum mechanical/molecular mechanical methodologies applied to biomolecular systems. Acc Chem Res 32(10):904–911. https://doi.org/10.1021/ar970218z
Montiel Ross OH (2020) A review of quantum-inspired metaheuristics: going from classical computers to real quantum computers. IEEE Access 8:814–838. https://doi.org/10.1109/ACCESS.2019.2962155
Morriss-Andrews A, Shea J-E (2015) Computational studies of protein aggregation: methods and applications. Annu Rev Phys Chem 66(1):643–666. https://doi.org/10.1146/annurev-physchem-040513-103738
Morzan UN, Alonso De Armiño DJ, Foglia NO, Ramírez F, González Lebrero MC, Scherlis DA, Estrin DA (2018) Spectroscopy in complex environments from QM–MM simulations. Chem Rev 118(7):4071–4113. https://doi.org/10.1021/acs.chemrev.8b00026
Motta M, Rice JE (2022) Emerging quantum computing algorithms for quantum chemistry. WIREs Comput Mol Sci 12(3):e1580. https://doi.org/10.1002/wcms.1580
Muñiz-Chicharro A, Votapka LW, Amaro RE, Wade RC (2023) Brownian dynamics simulations of biomolecular diffusional association processes. WIREs Comput Mol Sci 13(3):e1649. https://doi.org/10.1002/wcms.1649
Muratov EN, Amaro R, Andrade CH, Brown N, Ekins S, Fourches D, Isayev O, Kozakov D, Medina-Franco JL, Merz KM, Oprea TI, Poroikov V, Schneider G, Todd MH, Varnek A, Winkler DA, Zakharov AV, Cherkasov A, Tropsha A (2021) A critical overview of computational approaches employed for COVID-19 drug discovery. Chem Soc Rev 50(16):9121–9151. https://doi.org/10.1039/D0CS01065K
Musiani F, Giorgetti A (2017) Protein aggregation and molecular crowding. In: International review of cell and molecular biology. Elsevier, pp 49–77
Nakano S, Miyoshi D, Sugimoto N (2014) Effects of molecular crowding on the structures, interactions, and functions of nucleic acids. Chem Rev 114(5):2733–2758. https://doi.org/10.1021/cr400113m
Nicholson JK, Holmes E, Lindon JC, Wilson ID (2004) The challenges of modeling mammalian biocomplexity. Nat Biotechnol 22(10):1268–1274. https://doi.org/10.1038/nbt1015
Nikolić M, Karavelić E, Ibrahimbegovic A, Miščević P (2018) Lattice element models and their peculiarities. Arch Computat Methods Eng 25(3):753–784. https://doi.org/10.1007/s11831-017-9210-y
Noid WG (2013) Perspective: coarse-grained models for biomolecular systems. J Chem Phys 139(9):090901. https://doi.org/10.1063/1.4818908
Okereke M, Keates S (2018) Finite Element Applications. Springer International Publishing, Cham
Omer A, Suryanarayanan V, Selvaraj C, Singh SK, Singh P (2015) Explicit drug re-positioning. In: Advances in protein chemistry and structural biology. Elsevier, pp 89–112
Ostrowska N, Feig M, Trylska J (2019) Modeling crowded environment in molecular simulations. Front Mol Biosci 6:86. https://doi.org/10.3389/fmolb.2019.00086
Ozboyaci M, Kokh DB, Corni S, Wade RC (2016) Modeling and simulation of protein–surface interactions: achievements and challenges. Q Rev Biophys 49:e4. https://doi.org/10.1017/S0033583515000256
Pak AJ, Voth GA (2018) Advances in coarse-grained modeling of macromolecular complexes. Curr Opin Struct Biol 52:119–126. https://doi.org/10.1016/j.sbi.2018.11.005
Paquet E, Viktor HL (2015) Molecular dynamics, Monte Carlo simulations, and Langevin dynamics: a computational review. Biomed Res Int 2015:1–18. https://doi.org/10.1155/2015/183918
Park BH, Levitt M (1995) The complexity and accuracy of discrete state models of protein structure. J Mol Biol 249(2):493–507. https://doi.org/10.1006/jmbi.1995.0311
Pastore A, Rivas Caballero G, Temussi PA (2024) Introduction: molecular crowding. Chem Rev 124(11):6697–6699. https://doi.org/10.1021/acs.chemrev.4c00287
Peters J, Oliva R, Caliò A, Oger P, Winter R (2023) Effects of crowding and cosolutes on biomolecular function at extreme environmental conditions. Chem Rev 123(23):13441–13488. https://doi.org/10.1021/acs.chemrev.3c00432
Philipse AP (2018) Brownian motion: elements of colloid dynamics. Springer, Cham
Ponder JW, Case DA (2003) Force fields for protein simulations. In: Advances in protein chemistry. Elsevier, pp 27–85
Prytkova V, Heyden M, Khago D, Freites JA, Butts CT, Martin RW, Tobias DJ (2016) Multi-conformation Monte Carlo: a method for introducing flexibility in efficient simulations of many-protein systems. J Phys Chem B 120(33):8115–8126. https://doi.org/10.1021/acs.jpcb.6b00827
Qu Z, Garfinkel A, Weiss JN, Nivala M (2011) Multi-scale modeling in biology: how to bridge the gaps between scales? Prog Biophys Mol Biol 107(1):21–31. https://doi.org/10.1016/j.pbiomolbio.2011.06.004
Rakers C, Bermudez M, Keller BG, Mortier J, Wolber G (2015) Computational close up on protein–protein interactions: how to unravel the invisible using molecular dynamics simulations? WIREs Comput Mol Sci 5(5):345–359. https://doi.org/10.1002/wcms.1222
Rhodes NR, Tschopp MA, Solanki KN (2013) Quantifying the energetics and length scales of carbon segregation to α -Fe symmetric tilt grain boundaries using atomistic simulations. Modelling Simul Mater Sci Eng 21(3):035009. https://doi.org/10.1088/0965-0393/21/3/035009
Ridgway D, Broderick G, Lopez-Campistrous A, Ruaini M, Winter P, Hamilton M, Boulanger P, Kovalenko A, Ellison MJ (2008) Coarse-grained molecular simulation of diffusion and reaction kinetics in a crowded virtual cytoplasm. Biophys J 94(10):3748–3759. https://doi.org/10.1529/biophysj.107.116053
Rivas G, Minton AP (2016) Macromolecular crowding in vitro, in vivo, and in between. Trends Biochem Sci 41(11):970–981. https://doi.org/10.1016/j.tibs.2016.08.013
Robustelli P, Kohlhoff K, Cavalli A, Vendruscolo M (2010) Using NMR chemical shifts as structural restraints in molecular dynamics simulations of proteins. Structure 18(8):923–933. https://doi.org/10.1016/j.str.2010.04.016
Rodenhizer D, Dean T, D’Arcangelo E, McGuigan AP (2018) The current landscape of 3D in vitro tumor models: what cancer hallmarks are accessible for drug discovery? Adv Healthc Mater 7(8):1701174. https://doi.org/10.1002/adhm.201701174
Rojnuckarin A, Kim S, Subramaniam S (1998) Brownian dynamics simulations of protein folding: access to milliseconds time scale and beyond. Proc Natl Acad Sci USA 95(8):4288–4292. https://doi.org/10.1073/pnas.95.8.4288
Ryde U (2016) QM/MM calculations on proteins. In: Methods in enzymology. Elsevier, pp 119–158
Samiotakis A, Wittung-Stafshede P, Cheung MS (2009) Folding, stability and shape of proteins in crowded environments: experimental and computational approaches. IJMS 10(2):572–588. https://doi.org/10.3390/ijms10020572
Schaffer LV, Ideker T (2021) Mapping the multiscale structure of biological systems. Cell Syst 12(6):622–635. https://doi.org/10.1016/j.cels.2021.05.012
Schlick T, Barth E, Mandziuk M (1997) Biomolecular dynamics at long timesteps: bridging the timescale gap between simulation and experimentation. Annu Rev Biophys Biomol Struct 26(1):181–222. https://doi.org/10.1146/annurev.biophys.26.1.181
Schnell S, Turner TE (2004) Reaction kinetics in intracellular environments with macromolecular crowding: simulations and rate laws. Prog Biophys Mol Biol 85(2–3):235–260. https://doi.org/10.1016/j.pbiomolbio.2004.01.012
Schuss Z (2013) Brownian dynamics at boundaries and interfaces. In: Physics, chemistry, and biology. Springer, New York
Sedeh RS, Yun G, Lee JY, Bathe K-J, Kim D-N (2018) A framework of finite element procedures for the analysis of proteins. Comput Struct 196:24–35. https://doi.org/10.1016/j.compstruc.2017.10.015
Senn HM, Thiel W (2009) QM/MM methods for biomolecular systems. Angew Chem Int Ed 48(7):1198–1229. https://doi.org/10.1002/anie.200802019
Shaik S, Cohen S, Wang Y, Chen H, Kumar D, Thiel W (2010) P450 enzymes: their structure, reactivity, and selectivity—modeled by QM/MM calculations. Chem Rev 110(2):949–1017. https://doi.org/10.1021/cr900121s
Shim AR, Nap RJ, Huang K, Almassalha LM, Matusda H, Backman V, Szleifer I (2020) Dynamic crowding regulates transcription. Biophys J 118(9):2117–2129. https://doi.org/10.1016/j.bpj.2019.11.007
Shurki A, Warshel A (2003) Structure/function correlations of proteins using MM, QM/MM, and related approaches: methods, concepts, pitfalls, and current progress. In: Advances in protein chemistry. Elsevier, pp 249–313
Sinnecker S, Neese F (2006) QM/MM calculations with DFT for taking into account protein effects on the EPR and optical spectra of metalloproteins. Plastocyanin as a case study. J Comput Chem 27(12):1463–1475. https://doi.org/10.1002/jcc.20426
Skolnick J, Kolinski A (1991) Dynamic Monte Carlo simulations of a new lattice model of globular protein folding, structure and dynamics. J Mol Biol 221(2):499–531. https://doi.org/10.1016/0022-2836(91)80070-B
Sloot PMA, Hoekstra AG (2010) Multi-scale modelling in computational biomedicine. Brief Bioinform 11(1):142–152. https://doi.org/10.1093/bib/bbp038
Solernou A, Hanson BS, Richardson RA, Welch R, Read DJ, Harlen OG, Harris SA (2018) Fluctuating finite element analysis (FFEA): a continuum mechanics software tool for mesoscale simulation of biomolecules. PLoS Comput Biol 14(3):e1005897. https://doi.org/10.1371/journal.pcbi.1005897
Southern J, Pitt-Francis J, Whiteley J, Stokeley D, Kobashi H, Nobes R, Kadooka Y, Gavaghan D (2008) Multi-scale computational modelling in biology and physiology. Prog Biophys Mol Biol 96(1–3):60–89. https://doi.org/10.1016/j.pbiomolbio.2007.07.019
Šponer J, Bussi G, Krepl M, Banáš P, Bottaro S, Cunha RA, Gil-Ley A, Pinamonti G, Poblete S, Jurečka P, Walter NG, Otyepka M (2018) RNA structural dynamics as captured by molecular simulations: a comprehensive overview. Chem Rev 118(8):4177–4338. https://doi.org/10.1021/acs.chemrev.7b00427
Srirekha A, Bashetty K (2010) Infinite to finite: an overview of finite element analysis. Indian J Dent Res 21(3):425. https://doi.org/10.4103/0970-9290.70813
Sun Z, Chew JW, Hills NJ, Volkov KN, Barnes CJ (2010) Efficient finite element analysis/computational fluid dynamics thermal coupling for engineering applications. J Turbomach 132(3):031016. https://doi.org/10.1115/1.3147105
Sung W (2018) Brownian motions. In: Statistical physics for biological matter. Springer, Dordrecht, pp 241–268
Tabaka M, Kalwarczyk T, Szymanski J, Hou S, Holyst R (2014) The effect of macromolecular crowding on mobility of biomolecules, association kinetics, and gene expression in living cells. Front Phys 2. https://doi.org/10.3389/fphy.2014.00054
Takada S, Kanada R, Tan C, Terakawa T, Li W, Kenzaki H (2015) Modeling structural dynamics of biomolecular complexes by coarse-grained molecular simulations. Acc Chem Res 48(12):3026–3035. https://doi.org/10.1021/acs.accounts.5b00338
Takahashi K, Arjunan SNV, Tomita M (2005) Space in systems biology of signaling pathways—towards intracellular molecular crowding in silico. FEBS Lett 579(8):1783–1788. https://doi.org/10.1016/j.febslet.2005.01.072
Tozzini V (2010) Multiscale modeling of proteins. Acc Chem Res 43(2):220–230. https://doi.org/10.1021/ar9001476
Tzeliou CE, Mermigki MA, Tzeli D (2022) Review on the QM/MM methodologies and their application to Metalloproteins. Molecules 27(9):2660. https://doi.org/10.3390/molecules27092660
Van Der Kamp MW, Mulholland AJ (2013) Combined quantum mechanics/molecular mechanics (QM/MM) methods in computational enzymology. Biochemistry 52(16):2708–2728. https://doi.org/10.1021/bi400215w
Van Liedekerke P, Palm MM, Jagiella N, Drasdo D (2015) Simulating tissue mechanics with agent-based models: concepts, perspectives and some novel results. Comp Part Mech 2(4):401–444. https://doi.org/10.1007/s40571-015-0082-3
Velázquez-Libera JL, Caballero J, Tuñón I, Hernández-Rodríguez EW, Ruiz-Pernía JJ (2020) On the nature of the enzyme–substrate complex and the reaction mechanism in human arginase I. A combined molecular dynamics and QM/MM study. ACS Catal 10(15):8321–8333. https://doi.org/10.1021/acscatal.0c00981
Verdian Doghaei A, Housaindokht MR, Bozorgmehr MR (2015) Molecular crowding effects on conformation and stability of G-quadruplex DNA structure: insights from molecular dynamics simulation. J Theor Biol 364:103–112. https://doi.org/10.1016/j.jtbi.2014.09.015
Visser BS, Lipiński WP, Spruijt E (2024) The role of biomolecular condensates in protein aggregation. Nat Rev Chem 8(9):686–700. https://doi.org/10.1038/s41570-024-00635-w
Vitalis A, Pappu RV (2009) Chapter 3: methods for Monte Carlo simulations of biomacromolecules. In: Annual reports in computational chemistry. Elsevier, pp 49–76
Wang H, Yan H, Rong C, Yuan Y, Jiang F, Han Z, Sui H, Jin D, Li Y (2024) Multi-scale simulation of complex systems: a perspective of integrating knowledge and data. ACM Comput Surv 56(12):1–38. https://doi.org/10.1145/3654662
Wassenaar TA, Pluhackova K, Böckmann RA, Marrink SJ, Tieleman DP (2014) Going backward: a flexible geometric approach to reverse transformation from coarse grained to atomistic models. J Chem Theory Comput 10(2):676–690. https://doi.org/10.1021/ct400617g
Watanabe HC, Cui Q (2019) Quantitative analysis of QM/MM boundary artifacts and correction in adaptive QM/MM simulations. J Chem Theory Comput 15(7):3917–3928. https://doi.org/10.1021/acs.jctc.9b00180
Weilandt DR, Hatzimanikatis V (2019) Particle-based simulation reveals macromolecular crowding effects on the Michaelis-Menten mechanism. Biophys J 117(2):355–368. https://doi.org/10.1016/j.bpj.2019.06.017
Weiss M (2014) Crowding, diffusion, and biochemical reactions. In: International review of cell and molecular biology. Elsevier, pp 383–417
Widmer LA, Stelling J (2018) Bridging intracellular scales by mechanistic computational models. Curr Opin Biotechnol 52:17–24. https://doi.org/10.1016/j.copbio.2018.02.005
Wise O, Coskuner O (2014) New force field parameters for metalloproteins I: divalent copper ion centers including three histidine residues and an oxygen-ligated amino acid residue. J Comput Chem 35(17):1278–1289. https://doi.org/10.1002/jcc.23622
Xie Z-R, Chen J, Wu Y (2014) A coarse-grained model for the simulations of biomolecular interactions in cellular environments. J Chem Phys 140(5):054112. https://doi.org/10.1063/1.4863992
Zangooei MH, Margolis R, Hoyt K (2021) Multiscale computational modeling of cancer growth using features derived from microCT images. Sci Rep 11(1):18524. https://doi.org/10.1038/s41598-021-97966-1
Zhang J, Li W, Wang J, Qin M, Wu L, Yan Z, Xu W, Zuo G, Wang W (2009) Protein folding simulations: from coarse-grained model to all-atom model. IUBMB Life 61(6):627–643. https://doi.org/10.1002/iub.223
Zhang Y, Ma Y, Zhang K, Wang C-K, Lin L, Fan J (2020) Insights on aggregation induced room temperature phosphorescence properties: a QM/MM study. J Lumin 221:117046. https://doi.org/10.1016/j.jlumin.2020.117046
Zhou H-X, Qin S (2013) Simulation and modeling of crowding effects on the thermodynamic and kinetic properties of proteins with atomic details. Biophys Rev 5(2):207–215. https://doi.org/10.1007/s12551-013-0101-7
Zhou J, Thorpe IF, Izvekov S, Voth GA (2007) Coarse-grained peptide modeling using a systematic multiscale approach. Biophys J 92(12):4289–4303. https://doi.org/10.1529/biophysj.106.094425
Zhou H-X, Rivas G, Minton AP (2008) Macromolecular crowding and confinement: biochemical, biophysical, and potential physiological consequences. Annu Rev Biophys 37(1):375–397. https://doi.org/10.1146/annurev.biophys.37.032807.125817
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Coskuner-Weber, O., Koca, M., Uversky, V.N. (2025). Molecular Crowding by Computational Approaches. In: Uversky, V.N. (eds) (Macro)Molecular Crowding. Subcellular Biochemistry, vol 109. Springer, Cham. https://doi.org/10.1007/978-3-032-03370-3_21
Download citation
DOI: https://doi.org/10.1007/978-3-032-03370-3_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-032-03369-7
Online ISBN: 978-3-032-03370-3
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)