Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

Lakes and Reservoir Water Quality Indices: Evolution, Applications, and Future Directions

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Anthropogenic activities severely degrade water quality and cause environmental pollution that threatens the quality of limited water resources. Water Quality Indices (WQIs) have been widely utilized to simplify datasets, and their evolution from traditional to advanced methods requires a systematic analysis to guide effective application. A comprehensive review of WQIs, systematic analysis of the WQI progression—from conventional indices to advanced statistical, machine learning, and artificial intelligence methods. Our key findings detail the genesis, background, leverage, and applications of these tools to manage dynamic water quality challenges, providing valuable insights for policy-makers through a systematic lens. The proposed platform supports decision-makers of lakes and reservoirs in selecting efficient and cost-effective models. Optimized monitoring strategies, policies, pollution control, and adoption of advanced WQIs deliver significant reductions in operational costs and eliminate redundant testing while maintaining protection standards. This review paves the way for designing more robust and globally applicable water quality assessment tools.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1

(Adopted from Kumar et al., 2024)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data and models generated during the study are available from the corresponding author by request.

Abbreviations

WQIs:

Water Quality indices

BCWQI:

British Columbia water quality index

OWQI:

Oregon Water quality index

CCMEWQI:

Canadian council of ministers of the environment water quality index

NSFWQI:

National Sanitation foundation water quality index

T:

Temperature

TP:

Total Phosphorus

DO:

Dissolved oxygen

BOD:

Biochemical oxygen demand

HMs:

Heavy Metals

CPI:

Comprehensive Pollution Index

CI:

Contamination Index

OIP:

Overall Index of pollution

EC:

Electrical conductivity

TDS:

Total Dissolved solids

TH:

Total Hardness

NO3 − :

Nitrate

Na + :

Sodium

SO42 − :

Sulfate

Mg2 + :

Magnesium

Fe2 + :

Iron

Ca2 + :

Calcium

Cl − :

Chloride

TN:

Total nitrogen

NPI:

Nemerow pollution index

COD:

Chemical oxygen demand

TSS:

Total Suspended solids

PO43 − :

Phosphate

NH3:

Ammonia

EF:

EnrichmEnt factor

Igeo:

Geo-Accumulation index

HPI:

Heavy Metal pollution index

HEI:

Heavy Metal evaluation index

TSI:

Carlson Trophic state index

CMTSI:

Carlson Modified trophic index

ICOTRO:

Trophic Contamination index

TRIX:

Trophic Index

TSILamp:

Trophic State index

Chla:

Chlorophyll

SD:

Secchi Depth

LCI:

Hulbert's Lake condition index

mWQI:

Microbiological water quality index

DWQI:

Dinius Water quality index

C-BSQGs:

Consensus-based SQGs

CCPI:

CommunIty conservation perception index

GFDMWQI:

Group Fuzzy decision-making water quality index

AI:

Artificial Intelligence

ML:

Machine Learning

ML:

Support Vector regression

RF:

Random Forest

Xgboost:

Extreme Gradient boosting

GB:

Gradient Boosting

AdaBoost:

Adaptive Boosting

KNN:

K-Nearest neighbor

DT:

Decision Tree

MLP:

Multi-Layer perceptron

PCA:

Principal Components analysis

FA:

Factor Analysis

CA:

Cluster Analysis

CDFs:

Cumulative distribution functions

mPECQs:

Mean Probable effect concentration quotients

ANNs:

Artificial Neural networks

BQI:

Benthic Quality index

CWQI:

Climate-oriented water quality index

SCWQI:

Specific Combinatory water quality index

WQI-DET:

Novel Water quality index

SSPI:

Source-Sink landscape pattern index

IPCC:

IntergovErnmental panel for climate change

MPC:

MaximuM permissible concentration

References

  • Abbasi, T., & Abbasi, S. A. (2012). Water quality indices (p. 361). Elsevier.

    Google Scholar 

  • Acuña-Alonso, C., Álvarez, X., Valero, E., & Pacheco, F. A. L. (2022). Modelling of threats that affect cyano-HABs in an eutrophicated reservoir: First phase towards water security and environmental governance in watersheds. Science of the Total Environment, 809, Article 152155.

    Article  Google Scholar 

  • Aradpour, S., Noori, R., Vesali Naseh, M. R., Hosseinzadeh, M., Safavi, S., Ghahraman-Rozegar, F., & Maghrebi, M. (2021). Alarming carcinogenic and non-carcinogenic risk of heavy metals in Sabalan dam reservoir, Northwest of Iran. Environmental Pollutants and Bioavailability, 33(1), 278–291.

    Article  CAS  Google Scholar 

  • Azevêdo, E. D. L., Alves, R. R. N., Dias, T. L. P., Álvaro, É. L. F., Barbosa, J. E. D. L., & Molozzi, J. (2022). Perception of the local community: What is their relationship with environmental quality indicators of reservoirs? PLoS ONE, 17(1), Article e0261945.

    Article  Google Scholar 

  • Bhateria, R., & Jain, D. (2016). Water quality assessment of lake water: A review. Sustainable Water Resources Management, 2, 161–173.

    Article  Google Scholar 

  • Brown, R. M., McClelland, N. I., Deininger, R. A., & Tozer, R. G. (1970). A water quality index-do we dare. Water and sewage works, 117(10), 349–354.

  • Brown, J. S., Sutula, M., Stransky, C., & Rudolph, J. (2008). Sediment contaminant chemistry and toxicity of freshwater urban wetlands. In S. Weisberg, & K. Miller (Eds.), Southern California Coastal Water Research Project Annual Report 2008 (pp. 271–287). Costa Mesa, CA.

  • Bryers, G., & Bowman, E. (2000). Protocol for monitoring trophic levels of New Zealand lakes and reservoirs. Auckland, New Zealand.

    Google Scholar 

  • Bucci, M. M. H. S., Delgado, F. E. D. F., & de Oliveira, L. F. C. (2015). Water quality and trophic state of a tropical urban reservoir for drinking water supply (Juiz de Fora, Brazil). Lake and Reservoir Management, 31(2), 134–144.

    Article  CAS  Google Scholar 

  • Chidiac, S., El Najjar, P., Ouaini, N., El Rayess, Y., & El Azzi, D. (2023). A comprehensive review of water quality indices (WQIs): History, models, attempts and perspectives. Reviews in Environmental Science and Bio/technology, 22(2), 349–395.

    Article  CAS  Google Scholar 

  • Cho, Y. C., Im, J. K., Han, J., Kim, S. H., Kang, T., & Lee, S. (2023). Comprehensive water quality assessment using Korean water quality indices and multivariate statistical techniques for sustainable water management of the Paldang Reservoir, South Korea. Water (Basel), 15(3), Article 509.

    CAS  Google Scholar 

  • Chu, H. J., He, Y. C., Chusnah, W. N. U., Jaelani, L. M., & Chang, C. H. (2021). Multi-reservoir water quality mapping from remote sensing using spatial regression. Sustainability, 13(11), 6416.

    Article  Google Scholar 

  • Clews, E., Low, E. W., Belle, C. C., Todd, P. A., Eikaas, H. S., & Ng, P. K. (2014). A pilot macroinvertebrate index of the water quality of Singapore’s reservoirs. Ecological Indicators, 38, 90–103.

    Article  CAS  Google Scholar 

  • Cordoba, E. B., Martinez, A. C., & Ferrer, E. V. (2010). Water quality indicators: Comparison of a probabilistic index and a general quality index. The case of the Confederación Hidrográfica del Júcar (Spain). Ecological Indicators, 10(5), 1049–1054.

    Article  Google Scholar 

  • Ćurčić, S. S., & Čomić, L. R. (2002). Microbiological index of water quality (mWQI) tested on the Gruza reservoir. Archives of Biological Sciences, 54(3–4), 75–78.

    Article  Google Scholar 

  • Dawn, A., Hinge, G., Kumar, A., Nikoo, M. R., & Hamouda, M. A. (2025). Assessment of water quality in urban lakes using multi-source data and modeling techniques. Sustainability, 17(16), 7258.

    Article  Google Scholar 

  • de Oliveira, K. L., Ramos, R. L., Oliveira, S. C., & Christofaro, C. (2021). Water quality index and spatio-temporal perspective of a large Brazilian water reservoir. Water Supply, 21(3), 971–982.

    Article  Google Scholar 

  • Dinius, S. H. (1972). Social accounting system for evaluating water resources. Water Resources Research, 8(5), 1159–1177.

    Article  Google Scholar 

  • Dinius, S. H. (1987). Design of an index of water quality 1. JAWRA Journal of the American Water Resources Association, 23(5), 833–843.

    Article  CAS  Google Scholar 

  • Doaemo, W., Betasolo, M., Montenegro, J. F., Pizzigoni, S., Kvashuk, A., Femeena, P. V., & Mohan, M. (2023). Evaluating the impacts of environmental and anthropogenic factors on water quality in the Bumbu River watershed, Papua New Guinea. Water (Basel), 15(3), Article 489.

    CAS  Google Scholar 

  • Ebrahimi Sarindizaj, E., & Karamouz, M. (2022). Dynamic water balance accounting-based vulnerability evaluation considering social aspects. Water Resources Management, 36(2), 659–681.

    Article  Google Scholar 

  • Egun, N. K., & Oboh, I. P. (2022). Surface water quality evaluation of Ikpoba reservoir, Edo State, Nigeria. International Journal of Energy and Water Resources, 6(4), 509–519.

    Article  Google Scholar 

  • Elshemy, M., & Meon, G. (2017). Water quality assessment of aswan high dam reservoir. In A. M Negm (Ed.), The Nile River (pp. 105–143). Springer International Publishing, Cham.

  • Fant, C., Srinivasan, R., Boehlert, B., Rennels, L., Chapra, S. C., Strzepek, K. M., Chapra, S., Strzepek, K., Corona, J., Allen, A., & Martinich, J. (2017). Climate change impacts on US water quality using two models: HAWQS and US basins. Water (Basel), 9(2), Article 118.

    Google Scholar 

  • Farzana, S. Z., Paudyal, D. R., Chadalavada, S., & Alam, M. J. (2023). Prediction of water quality in reservoirs: A comparative assessment of machine learning and deep learning approaches in the case of Toowoomba, Queensland, Australia. Geosciences, 13(10), Article 293.

    Article  CAS  Google Scholar 

  • Fashina, L., Luffman, I., Nandi, A., & Joyner, T. A. (2023). Evaluation of karst spring water quality in northeast Tennessee using water quality indices. Agrosystems, Geosciences & Environment, 6(4), Article e20429.

    Article  CAS  Google Scholar 

  • Fortes, A. C. C., Barrocas, P. R. G., & Kligerman, D. C. (2023). Water quality indices: Construction, potential, and limitations. Ecological Indicators, 157, Article 111187.

    Article  Google Scholar 

  • Guo, S., Wen, Y., & Zhang, X. (2023). Study on the simulation of reservoir water environment and the optimization of ecological water replenishment effect: Taking Luhun Reservoir as an example. Water Supply, 23(8), 3078–3096.

    Article  CAS  Google Scholar 

  • Hameed, M., Sharqi, S. S., Yaseen, Z. M., Afan, H. A., Hussain, A., & Elshafie, A. (2017). Application of artificial intelligence (AI) techniques in water quality index prediction: A case study in tropical region, Malaysia. Neural Computing and Applications, 28, 893–905.

    Article  Google Scholar 

  • Hamlat, A., Guidoum, A., & Koulala, I. (2017). Status and trends of water quality in the Tafna catchment: A comparative study using water quality indices. Journal of Water Reuse and Desalination, 7(2), 228–245.

    Article  Google Scholar 

  • HaRa, J., Atique, U., & An, K. G. (2020). Multiyear links between water chemistry, algal chlorophyll, drought-flood regime, and nutrient enrichment in a morphologically complex reservoir. International Journal of Environmental Research and Public Health, 17(9), 3139.

    Article  CAS  Google Scholar 

  • Hosseini, H., Shakeri, A., Rezaei, M., Dashti Barmaki, M., & Rastegari Mehr, M. (2020). Water chemistry and water quality pollution indices of heavy metals: A case study of Chahnimeh Water Reservoirs, Southeast of Iran. International Journal of Energy and Water Resources, 4, 63–79.

    Article  Google Scholar 

  • Hu, L., Chen, L., Li, Q., Zou, K., Li, J., & Ye, H. (2022). Water quality analysis using the CCME-WQI method with time series analysis in a water supply reservoir. Water Supply, 22(7), 6281–6295.

    Article  Google Scholar 

  • Huang, J., Zhang, Y., Arhonditsis, G. B., Gao, J., Chen, Q., Wu, N., Dong, F., & Shi, W. (2019). How successful are the restoration efforts of China’s lakes and reservoirs? Environment International, 123, 96–103.

    Article  CAS  Google Scholar 

  • Jafar, R., Awad, A., Hatem, I., Jafar, K., Awad, E., & Shahrour, I. (2023). Multiple linear regression and machine learning for predicting the drinking water quality index in Al-Seine Lake. Smart Cities, 6(5), 2807–2827.

    Article  Google Scholar 

  • Jyväsjärvi, J., Aroviita, J., & Hämäläinen, H. (2014). An extended benthic quality index for assessment of lake profundal macroinvertebrates: Addition of indicator taxa by multivariate ordination and weighted averaging. Freshwater Science, 33(3), 995–1007.

    Article  Google Scholar 

  • Kabir, M., Shahbazi, A., Kouhanestani, Z. M., & Shahraki, F. R. (2017). Spatial–temporal variability in water quality in Ghareh-Chai River, Golestan Province, Iran. Aquaculture, Aquarium, Conservation & Legislation, 10(2), 353–364.

    Google Scholar 

  • Karamouz, M., Ebrahimi, E., & Ghomlaghi, A. (2021). Soil moisture data using citizen science technology cross-validated by satellite data. Journal of Hydroinformatics, 23(6), 1224–1246.

    Article  Google Scholar 

  • Kim, B., & Kong, D. (2019). Examination of the applicability of TOC to Korean trophic state index (TSI KO). Journal of Korean Society on Water Environment, 35(3), 271–277.

    Google Scholar 

  • Kumar, D., Kumar, R., Sharma, M., Awasthi, A., & Kumar, M. (2024). Global water quality indices: Development, implications, and limitations. Total Environment Advances, 9, Article 200095.

    Article  Google Scholar 

  • Kuo, J. T., Wang, Y. Y., & Lung, W. S. (2006). A hybrid neural–genetic algorithm for reservoir water quality management. Water Research, 40(7), 1367–1376.

    Article  CAS  Google Scholar 

  • Kuo, J. T., Hsieh, M. H., Lung, W. S., & She, N. (2007). Using artificial neural network for reservoir eutrophication prediction. Ecological Modelling, 200(1–2), 171–177.

    Article  Google Scholar 

  • Kutama, R. M., Abubakar, M. M., & Balarabe, M. L. (2014). The plankton as indicators of water quality in Kusalla Reservoir: A shallow man made lake. IOSR Journal of Pharmacy and Biological Sciences, 9(3), 12–15.

    Article  Google Scholar 

  • Latif, S. D., Azmi, M. S. B. N., Ahmed, A. N., Fai, C. M., & El-Shafie, A. (2020). Application of artificial neural network for forecasting nitrate concentration as a water quality variable: A case study of Feitsui Reservoir. Taiwan. International Journal of Design & Nature and Ecodynamics, 15(5), 647–652.

    Article  Google Scholar 

  • LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444.

    Article  CAS  Google Scholar 

  • Lee, Y., Kim, J. K., Jung, S., Eum, J., Kim, C., & Kim, B. (2014). Development of a water quality index model for lakes and reservoirs. Paddy and Water Environment, 12, 19–28.

    Article  CAS  Google Scholar 

  • Lee, H., Park, S., Hang, V., Nguyen, M., & Shin, H. S. (2023). Proposal for a new customization process for a data-based water quality index using a random forest approach. Environmental Pollution, 323, Article 121222.

    Article  CAS  Google Scholar 

  • Liu, H., Pan, D., & Chen, P. (2016). A two-year field study and evaluation of water quality and trophic state of a large shallow drinking water reservoir in Shanghai. Desalination and Water Treatment, 57(29), 13829–13838.

    Article  CAS  Google Scholar 

  • Liu, L., Peng, W., Wu, L., & Liu, L. (2018). Water quality assessment of Danjiangkou Reservoir and its tributaries in China. In IOP Conference Series: Earth and Environmental Science, 112(1), 012008.

    Article  Google Scholar 

  • Liu, Y., Yang, C., Yu, X., Wang, M., & Qi, W. (2021). Monitoring the landscape pattern and characteristics of non-point source pollution in a mountainous river basin. International Journal of Environmental Research and Public Health, 18(21), 11032.

    Article  CAS  Google Scholar 

  • Lu, R. S., & Lo, S. L. (2002). Diagnosing reservoir water quality using self-organizing maps and fuzzy theory. Water Research, 36(9), 2265–2274.

    Article  CAS  Google Scholar 

  • Mahanty, B., Lhamo, P., & Sahoo, N. K. (2023). Inconsistency of PCA-based water quality index–does it reflect the quality? Science of the Total Environment, 866, Article 161353.

    Article  CAS  Google Scholar 

  • Manna, A., & Biswas, D. (2023). Assessment of drinking water quality using water quality index: A review. Water Conservation Science and Engineering, 8(1), 6.

    Article  Google Scholar 

  • Meng, X., Zhang, Y., Yu, X., Zhan, J., Chai, Y., Critto, A., Li, Y., & Li, J. (2015). Analysis of the temporal and spatial distribution of lake and reservoir water quality in China and changes in its relationship with GDP from 2005 to 2010. Sustainability, 7(2), 2000–2027.

    Article  Google Scholar 

  • Miller, T., Durlik, I., Adrianna, K., Kisiel, A., Cembrowska-Lech, D., Spychalski, I., & Tuński, T. (2023). Predictive modeling of urban lake water quality using machine learning: A 20-year study. Applied Sciences, 13(20), 11217.

    Article  CAS  Google Scholar 

  • Mogane, L. K., Masebe, T., Msagati, T. A., & Ncube, E. (2023). A comprehensive review of water quality indices for lotic and lentic ecosystems. Environmental Monitoring and Assessment, 195(8), 926.

    Article  Google Scholar 

  • Nodefarahani, M., Aradpour, S., Noori, R., Tang, Q., Partani, S., & Klöve, B. (2020). Metal pollution assessment in surface sediments of Namak Lake. Iran. Environmental Science and Pollution Research, 27, 45639–45649.

    Article  CAS  Google Scholar 

  • Poletaeva, V. I., Pastukhov, M. V., & Tirskikh, E. N. (2021). Dynamics of trace element composition of Bratsk Reservoir water in different periods of anthropogenic impact (Baikal Region, Russia). Archives of Environmental Contamination and Toxicology, 80(3), 531–545.

    Article  CAS  Google Scholar 

  • Pourshahabi, S., Rakhshandehroo, G., Talebbeydokhti, N., Nikoo, M. R., & Masoumi, F. (2020). Handling uncertainty in optimal design of reservoir water quality monitoring systems. Environmental Pollution, 266, Article 115211.

    Article  CAS  Google Scholar 

  • Prasanna, M. V., Praveena, S. M., Chidambaram, S., Nagarajan, R., & Elayaraja, A. (2012). Evaluation of water quality pollution indices for heavy metal contamination monitoring: A case study from Curtin Lake, Miri City, East Malaysia. Environmental Earth Sciences, 67, 1987–2001.

    Article  CAS  Google Scholar 

  • Quevedo-Castro, A., Lopez, J. L., Rangel-Peraza, J. G., Bandala, E., & Bustos-Terrones, Y. (2019). Study of the water quality of a tropical reservoir. Environments, 6(1), 7.

    Article  Google Scholar 

  • Rahim, A., & Soeprobowati, T. R. (2019). Water pollution index of Batujai reservoir, Central Lombok regency-Indonesia. Journal of Ecological Engineering, 20(3), 219–225.

    Article  Google Scholar 

  • Rahimi-Movaghar, M., Mirbagheri, S. A., & Kerachian, R. (2019). Total dissolved solid and dissolved oxygen modeling, thermocline calculation and applying reservoir salinity reduction scenarios in Shahid Rajaee reservoir using CE-QUAL-W2. Water Supply, 19(2), 424–433.

    Article  CAS  Google Scholar 

  • Rudin, C. (2019). Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nature Machine Intelligence, 1(5), 206–215.

    Article  Google Scholar 

  • Samiotis, G., Trikoilidou, E., Tsikritzis, L., & Amanatidou, E. (2018). Comparative water quality assessment between a young and a stabilized hydroelectric reservoir in Aliakmon River, Greece. Environmental Monitoring and Assessment, 190, 1–15.

    Article  Google Scholar 

  • Sang, C., Tan, L., Cai, Q., & Ye, L. (2024). Long-term (2003–2021) evolution trend of water quality in the Three Gorges Reservoir: An evaluation based on an enhanced water quality index. Science of the Total Environment, 915, Article 169819. https://doi.org/10.1016/j.scitotenv.2023.169819

    Article  CAS  Google Scholar 

  • Sargaonkar, A., & Deshpande, V. (2003). Development of an overall index of pollution for surface water based on a general classification scheme in Indian context. Environmental Monitoring and Assessment, 89, 43–67.

    Article  CAS  Google Scholar 

  • Seifi, M., Mahvi, A. H., Hashemi, S. Y., Arfaeinia, H., Pasalari, H., Zarei, A., & Changani, F. (2019). Spatial distribution, enrichment and geo-accumulation of heavy metals in surface sediments near urban and industrial areas in the Persian Gulf. Desalination and Water Treatment, 158, 130–139.

    Article  CAS  Google Scholar 

  • Sener, E., Sener, S., & Bulut, C. (2023). Assessment of heavy metal pollution and quality in lake water and sediment by various index methods and GIS: A case study in Beysehir Lake. Turkey. Mar Pollut Bull, 192(115101), 10–1016.

    Google Scholar 

  • Shams, M. Y., Elshewey, A. M., El-kenawy, E. S. M., Ibrahim, A., Talaat, F. M., & Tarek, Z. (2023). Water quality prediction using machine learning models based on grid search method. Multimedia Tools and Applications, 1-28.https://doi.org/10.1007/s11042-023-16737-4

  • Sidabutar, N. V., Namara, I., Hartono, D. M., & Soesilo, T. E. B. (2017). The effect of anthropogenic activities to the decrease of water quality. In IOP Conference Series: Earth and Environmental Science, 67(1), 012034.

    Google Scholar 

  • Simonyan, G., & Pirumyan, G. (2019). Entropy-system approach to assess the ecological status of reservoirs in Armenia. 2019010260. https://doi.org/10.20944/preprints201901.0260.v1

  • Singh, U. B., Ahluwalia, A. S., Sharma, C., Jindal, R., & Thakur, R. K. (2013). Planktonic indicators: A promising tool for monitoring water quality (early-warning signals). Ecology, Environment and Conservation, 19(3), 793–800.

    Google Scholar 

  • Solanki, A., Agrawal, H., & Khare, K. (2015). Predictive analysis of water quality variables using deep learning. International Journal of Computer Applications, 125(9), 0975–8887.

    Article  Google Scholar 

  • Sun, X., Wu, Q., Jiang, J., & Lin, K. (2023). Historical trends and driving forces of river water quality improvement in the megacity Shenzhen, China. Water (Basel), 15(12), Article 2283.

    CAS  Google Scholar 

  • Tallar, R. Y., & Suen, J. P. (2016). Aquaculture water quality index: A low-cost index to accelerate aquaculture development in Indonesia. Aquaculture International, 24, 295–312.

    Article  Google Scholar 

  • Tomczyk, P., & Wiatkowski, M. (2021). Impact of a small hydropower plant on water quality dynamics in a diversion and natural river channel. Journal of Environmental Quality, 50(No. 5), 1156–1170.

    Article  CAS  Google Scholar 

  • Uddin, M. G., Nash, S., & Olbert, A. I. (2021). A review of water quality index models and their use for assessing surface water quality. Ecological Indicators, 122, Article 107218.

    Article  CAS  Google Scholar 

  • Van Der Aalst, W. I. L. (2011). Process Mining: X-Ray Your Business Processes.

  • Varol, M. (2020). Use of water quality index and multivariate statistical methods for the evaluation of water quality of a stream affected by multiple stressors: A case study. Environmental Pollution, 266, Article 115417.

    Article  CAS  Google Scholar 

  • Vaseashta, A., Gevorgyan, G., Kavaz, D., Ivanov, O., Jawaid, M., & Vasović, D. (2021). Exposome, biomonitoring, assessment and data analytics to quantify universal water quality. In W. Safety (Ed.), Security and Sustainability: Threat Detection and Mitigation (pp. 67–114). Springer International Publishing.

    Chapter  Google Scholar 

  • Venkataramana, Y. (2022). Water quality analysis in a lake using deep learning methodology: Prediction and validation. International Journal of Environmental and Analytical Chemistry, 102(17), 5641–5656.

    Article  Google Scholar 

  • Wan Maznah, W. O., & Makhlough, A. (2015). Water quality of tropical reservoir based on spatio-temporal variation in phytoplankton composition and physico-chemical analysis. International Journal of Environmental Science and Technology, 12, 2221–2232.

    Article  CAS  Google Scholar 

  • Wang, X., Zhang, F., & Ding, J. (2017). Evaluation of water quality based on a machine learning algorithm and water quality index for the Ebinur Lake Watershed, China. Scientific Reports, 7(1), Article 12858.

    Article  Google Scholar 

  • Wang, K., Hu, T., Zhang, P., Huang, W., Mao, J., Xu, Y., & Shi, Y. (2022). Improving lake level prediction by embedding support vector regression in a data assimilation framework. Water (Basel), 14(22), 3718.

    Google Scholar 

  • Wawrzynkowski, P., Bustamante, M., Tajadura, F. J., & Becerro, M. A. (2023). Evaluating ocean health and restoration success: A comprehensive study of the benthic quality index in the Bilbao estuary. Estuarine, Coastal and Shelf Science, 292, Article 108454.

    Article  Google Scholar 

  • Yan, T., Shen, S. L., & Zhou, A. (2022). Indices and models of surface water quality assessment: Review and perspectives. Environmental Pollution, 308, Article 119611.

    Article  CAS  Google Scholar 

  • Yan, X., Zhang, T., Du, W., Meng, Q., Xu, X., & Zhao, X. (2024). A comprehensive review of machine learning for water quality prediction over the past five years. Journal of Marine Science and Engineering, 12(1), 159.

    Article  Google Scholar 

  • Yusuf, Z. H. (2020). Phytoplankton as bioindicators of water quality in Nasarawa reservoir (p. 32). Katsina State Nigeria.

    Google Scholar 

  • Zahra, A., Hashmi, M. Z., Malik, R. N., & Ahmed, Z. (2014). Enrichment and geo-accumulation of heavy metals and risk assessment of sediments of the Kurang Nallah—feeding tributary of the Rawal Lake Reservoir, Pakistan. Science of the Total Environment, 470, 925–933.

    Article  Google Scholar 

  • Zhang, W., & Liu, Z. (2021). Daily water quality evaluation of reservoir and cyanobacteria pollution index calculation. Water Supply, 21(2), 836–847.

    Article  CAS  Google Scholar 

  • Zhao, Y., Qin, Y., Zhang, L., Zheng, B., & Ma, Y. (2016). Water quality analysis for the Three Gorges Reservoir, China, from 2010 to 2013. Environmental Earth Sciences, 75, 1–12.

    Article  Google Scholar 

  • Zhao, W., Zhou, Z., Zhao, Z., Li, W., & Li, Q. (2022). Risk assessment of non-point source pollution in karst reservoirs based on ‘source–sink’landscape theory. Water Supply, 22(6), 6094–6110.

    Article  CAS  Google Scholar 

  • Zhou, Z., Zhao, W., Lv, S., Huang, D., Zhao, Z., & Sun, Y. (2023). Spatiotemporal transfer of source-sink landscape ecological risk in a Karst Lake Watershed based on sub-watersheds. Land, 12(7), 1330.

    Article  Google Scholar 

  • Zotou, I., Tsihrintzis, V. A., & Gikas, G. D. (2018). Comparative assessment of various water quality indices (WQIs) in Polyphytos Reservoir-Aliakmon River. Greece. In Proceedings, 2(11), 611.

    Google Scholar 

  • Zou, T., & Yoshino, K. (2017). Environmental vulnerability evaluation using a spatial principal components approach in the Daxing’anling region, China. Ecological Indicators, 78, 405–415.

    Article  Google Scholar 

Download references

Funding

No funding was received.

Author information

Authors and Affiliations

Authors

Contributions

Elham Ebrahimi Sarindizaj and Mohammad Reza Nikoo: Conceptualization, Investigation, Analysis, Visualization, Writing – Review & Editing.

Corresponding author

Correspondence to Elham Ebrahimi Sarindizaj.

Ethics declarations

Ethical Approval

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1

Appendix 1

Table 2 is presented to compare operational demands and costs of conventional and modern WQIs, analyzing computational needs, data requirements, and cost-effectiveness to reveal accuracy-scalability trade-offs (Table 2).

Table 2 Comparative WQIs analysis: Operational parameters & costs
Table 3 Water quality indices for lakes and reservoirs

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebrahimi Sarindizaj, E., Nikoo, M.R. Lakes and Reservoir Water Quality Indices: Evolution, Applications, and Future Directions. Water Air Soil Pollut 237, 13 (2026). https://doi.org/10.1007/s11270-025-08689-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-025-08689-2

Keywords