Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content

A Review on DNA Barcoding on Fish Taxonomy in India

  • Chapter
  • First Online:
DNA Barcoding and Molecular Phylogeny
  • 1174 Accesses

  • 4 Citations

Abstract

DNA barcoding has been promoted as an efficient tool in the identification and discovery of species through the use of a short gene, standardised mitochondrial cytochrome c oxidase I (COI) gene region. Fishes are a highly diverse group of vertebrates; the identification of fish species through a DNA barcoding tool will provide new perspectives in ecology and systematics of fish taxonomy sciences. The identification of fishes can be a problematic and time-consuming process through morphological taxonomy, even for experts due to numerous reasons. DNA barcoding is proving to be a useful and effective tool for species identification at the gene level. The Fish Barcode of Life campaign (FISH-BOL), an international research collaboration centre, was established as a DNA barcode library for reference sequence repository and to monitor the DNA barcode project progress at the regional level. The DNA barcode sequence from any fish specimen’s tissue, fin, egg or larva can be matched with the online platform of NCBI and BOLD systems for species discrimination/identification. This chapter aims to investigate the current status of fish barcoding, approaches and future direction of DNA barcoding in fishery sciences. The current status of barcoding studies with reference to fish taxonomy in India has been evaluated, and a detailed review of the existing literature has been carried out at the regional, national and global levels. The study results elucidated that marine invertebrates’ DNA barcoding study is still in its infancy in India.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 119.00
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 149.00
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 149.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abriouel HPAM, Maqueda M, Valdivia E, Bueno MM (2008) Biodiversity of the microbial community in a Spanish farmhouse cheese as revealed by culture-dependent and culture-independent methods. Int J Food Microbiol 127(3):200–208

    CAS  PubMed  Google Scholar 

  • Aliabadian M, Kaboli M, Nijman V, Vences M (2009) Molecular identification of birds: performance of distance-based DNA barcoding in three genes to delimit parapatric species. PLoS One 4(1):e4119. https://doi.org/10.1371/journal.pone.0004119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Avise JC, Arnold J, Ball RM, Bermingham E, Lamb T, Neigel JE, Reeb CA, Saunders NC (1987) Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Annu Rev Ecol Syst 18:489–522

    Google Scholar 

  • Baird DJ, Sweeney WB (2011) Applying DNA barcoding in benthology: the state of the science. J North Am Benthol Soc 30(1):122–124

    Google Scholar 

  • Ball SL, Hebert PDN, Burian SK, Webb JM (2005) Biological identification of mayflies (Ephemeroptera) using DNA barcodes. J N Am Benthol Soc 24:508–524

    Google Scholar 

  • Barber P, Boyce SL (2006) Estimating diversity of indo-Pacific coral reef stomatopods through DNA barcoding of stomatopod larvae. Proc Royal Soc Biol Sci 273:2053–2064. https://doi.org/10.1098/rspb

    Article  CAS  Google Scholar 

  • Becker S, Hanner R, Steinke D (2011) Five years of FISH-BOL: brief status report. Mitochondrial DNA 22(S.1):3–9. https://doi.org/10.3109/19401736.2010.535528

    Article  CAS  PubMed  Google Scholar 

  • Bellwood DR, Hughes TP, Folke C, Nystrom M (2004) Confronting the coral reef crisis. Nature 429:827–833

    CAS  PubMed  Google Scholar 

  • Bely AE, Wray GA (2004) Molecular phylogeny of naidid worms (Annelida: Citellata) based of cytochrome oxidase I. Mol Phylogenet Evol 30:50–63

    CAS  PubMed  Google Scholar 

  • Besansky NJ, Severson DW, Ferdig MT (2003) DNA barcoding of parasites and invertebrate disease vectors: what you don’t know can hurt you. Trends Parasitol 19(12):545–546

    CAS  PubMed  Google Scholar 

  • Blaxter M, Elsworth B, Daub J (2004) DNA taxonomy of a neglected animal phylum: An unexpected diversity of tardigrades. Proc R Soc Lond Biol Sci 271:S189–S192

    CAS  Google Scholar 

  • Bleidorn C, Podsiadlowski L, Bartolomaeus T (2006) The complete mitochondrial genome of the orbiniid polychaete Orbinialatreillii (Annelida Orbiniidae) – A novel gene order for Annelida and implications for annelid phylogeny. Gene 370:96–103

    CAS  PubMed  Google Scholar 

  • Carolan JC, Murray TE, Fitzpatrick U, Crossley J, Schmidt H (2012) Colour patterns do not diagnose species: quantitative evaluation of a DNA barcoded cryptic bumblebee complex. PLoS One 7(1):e29251. https://doi.org/10.1371/journal.pone.0029251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caterino MS, Tishechkin AK (2006) DNA identification and morphological description of the first confirmed larvae of Hetaeriinae (Coleoptera: Histeridae). Syst Entomol 31:405–418

    Google Scholar 

  • Chow S, Walsh PJ (1992) Biochemical and morphometric analyses for phylogenetic relationships between seven snapper species (subfamily Lutjanidae) of the Western Atlantic. Bull Mar Sci 50:508–519

    Google Scholar 

  • Clare EL, Lim BK, Engstrom MD, Eger JL, Hebert PDN (2007) DNA barcoding of neo tropical bats: species identification and discovery within Guyana. Mol Ecol Notes 7:184–190. https://doi.org/10.1111/j.1471-8286.2006.01657.x

    Article  CAS  Google Scholar 

  • Clare EL, Kerr KC, Von-Konigslow TE, Wilson JJ, Hebert PDN (2008) Diagnosing mitochondrial DNA diversity: applications of a sentinel gene approach. J Mol Evol 66:362–367. https://doi.org/10.1007/s00239-008-9088-2

    Article  CAS  PubMed  Google Scholar 

  • Colgan DJ, Hutchings P, Brown S (2001) Phylogenetic relationships within the Terebellomorpha. J Mar Biol Ass UK 81:765–773

    CAS  Google Scholar 

  • Costa F, DeWaard JR, Boutilier J, Ratnasingham S, Dooh RT, Hajibabaei M, Hebert PDN (2007) Biological identifications through DNA barcodes: the case of the Crustacea. Can J Fish Aquat Sci 64(2):272–295

    CAS  Google Scholar 

  • Coyne JA, Orr HA (2004) Speciation. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Craig MT, Hastings PA (2007) A molecular phylogeny of the groupers of the subfamily Epinephelinae (Serranidae) with a revised classification of the Epinephelinae. Ichthyol Res 54:1–17. https://doi.org/10.1007/s10228-006-0367-x

    Article  Google Scholar 

  • Dasmahapatra KK, Mallet J (2006) DNA barcodes: recent successes and future prospects. Heredity 97:1–2. https://doi.org/10.1038/sj.hdy.6800858

    Article  Google Scholar 

  • Day F (1878) The fishes of India; Being a natural history of the fishes known to inhabit the seasand fresh waters of India, Burma, and Ceylon. Parts 1–4. William Dawson and Sons, London, p 778

    Google Scholar 

  • Derycke S, Remerie T, Vierstraete A, Backeljau T, Vanfleteren J, Vincx M, Moens T (2005) Mitochondrial DNA variation and cryptic speciation within the freeliving marine nematode Pellioditis marina. Mar Ecol Prog Ser 300:91–103

    CAS  Google Scholar 

  • Dooh RT, Adamowicz SJ, Hebert PDN (2006) Comparative phylogeography of two North American ‘glacial relict’ crustaceans. Mol Ecol 15(14):4459–4475

    CAS  PubMed  Google Scholar 

  • Duo WZ, Yusong G, Wei T, Lu L, EnPu T, ChuWu L, Yun L (2010) DNA barcoding, phylogenetic relationships and speciation of snappers (genus Lutjanus). Sci China Life Sci 53(8):1025–1030. https://doi.org/10.1007/s11427-010-4034-0

    Article  Google Scholar 

  • Elias-Gutierrez M, Jeronimo FM, Iavanova NV, Valdes-Moreno M, Hebert PDN (2008) DNA barcodes for Cladocera and Copepoda from Mexico and Guantemala, highlights and new discoveries. Zootaxa 1839:1–42

    Google Scholar 

  • Envall I, Källersj M, Erseus C (2006) Molecular evidence for the non-monophyletic status of Naidinae (Annelida:Clitellata:Tubificidae). Mol Phylogenet Evol 40:570–584

    CAS  PubMed  Google Scholar 

  • Erseus C, Rota E, Matamoros L, De Wit P (2010) Molecular phylogeny of Enchytraeidae (Annelida: Clitellata). Mol Phylogenet Evol 57:849–858

    CAS  PubMed  Google Scholar 

  • Escalante P, Vazquez AI, Escobar PR (2011) Tropical montane nymphalids in Mexico: DNA barcodes reveal greater diversity. Mitochondrial DNA 21(S1):30–37

    Google Scholar 

  • Eschmeyer WN (2010) Catalog of fishes. http://research.calacademy.org/research/ichthyology/catalog/speciesby family.asp

  • Eschmeyer WN, Ferraris JCJ, Hoang MD, Long DJ (1998) Part 1. Species of fishes. In: Eschmeyer WN (ed) Catalog of fishes. California Academy of Sciences, San Francisco

    Google Scholar 

  • Govindaraju GS, Jayasankar P (2004) Taxonomic relationship among seven species of groupers (genus Epinephelus; family serranidae) as revealed by RAPD Fingerprinting. Mar Biotechnol 6:229–237. https://doi.org/10.1007/s10126-003-0021-9

  • Hajibabaei M, Janzen DH, Burns JM, Hallwachs W, Hebert PDN (2006a) DNA barcodes distinguish species of tropical Lepidoptera. Proc Nat Acad Sci U S A 103:968–971

    Google Scholar 

  • Hajibabaei M, Smith MA, Janzen DH, Rodriguez JJ, Whitefield JB, Hebart PDN (2006b) A minimalist barcode can identify a specimen whose DNA is degraded. Mol Ecol 6:959–964. https://doi.org/10.1111/j.1471-8286.2006.01470.x

    Article  CAS  Google Scholar 

  • Hajibabaei M, Singer GAC, Hickey DA (2006c) Benchmarking DNA barcodes: an assessment using available primate sequences. Genome 49:851–854

    CAS  PubMed  Google Scholar 

  • Hajibabaei M, Singer GAC, Clare EL, Hebert PDN (2007a) Design and applicability of DNA arrays and DNA barcodes in biodiversity monitoring. BMC Biol 5:24. https://doi.org/10.1186/1741-7007-5-24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hajibabaei M, Singer GAC, Hebert PDN, Hickey DA (2007b) DNA barcoding: how it complements taxonomy, molecular phylogenetic and population genetics. Trends Genet 23(4):167–172. https://doi.org/10.1016/j.tig.2007.02.001

    Article  CAS  PubMed  Google Scholar 

  • Hajibabaei M, Shokralla S, Zhou X, Singer GAC, Baird DJ (2011) Environmental barcoding: A next-generation sequencing approach for biomonitoring applications using river benthos. PLoS One 6(4):e17497. https://doi.org/10.1371/journal.pone.0017497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hebert PDN, Barrett RDH (2005) Identifying spiders through DNA barcodes. Can J Zool 83:481–491

    Google Scholar 

  • Hebert PDN, Gregory TR (2005) The promise of DNA barcoding for taxonomy. Syst Biol 54:852–859. https://doi.org/10.1080/10635150500354886

    Article  PubMed  Google Scholar 

  • Hebert PDN, Cywinska A, Ball SL, DeWaard JR (2003a) Biological identifications through DNA barcodes. Proc R Soc Lond Ser B 270:313–321

    CAS  Google Scholar 

  • Hebert PDN, Ratnasingham S, Ward JR (2003b) Barcoding animal life: cytochrome c oxidase subunit1 divergences among closely related species. Proc Royal Soc B 270:96–99

    Google Scholar 

  • Hebert PDN, Penton EH, Burns JDH, Hallwachs W (2004a) Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc Nat Acad Sci U S A 101(41):14812–14817

    CAS  Google Scholar 

  • Hebert PDN, Stoeckle MY, Zemlak TS, Francis CM (2004b) Identification of Birds through DNA Barcodes. PLoS Biol 2(10): e312. https://doi.org/10.1371/journal.pbio.0020312

  • Hogg ID, Hebert PDN (2004) Biological identification of springtails (Collembola: Hexapoda) from the Canadian Arctic, using mitochondrial DNA barcodes Canadian. J Zool 82:1–6

    Google Scholar 

  • Holmes BH, Steinke D, Ward RD (2009) Identification of shark and ray fins using DNA barcoding. Fish Res 95:280–288

    Google Scholar 

  • Hopkins GW, Freckleton RP (2002) Declines in the numbers of amateur and professional taxonomists: implications for conservation. Anim Conserv 5:245–249

    Google Scholar 

  • Hubert N, Hanner R, Holm E, Mandrak NE, Taylor E (2008) Identifying Canadian freshwater fishes through DNA barcodes. PLoS One 3(6):e2490. https://doi.org/10.1371/journal.pone.0002490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hubert N, Trottin ED, Irisson JO, Meyer C, Planes S (2011, Unpublished) Identification coral reef fish larvae through DNA barcoding: a test case with the families Acanthuridae and Holocentridae, Mol Phylogenet Evol 55(3):1195–1203

    Google Scholar 

  • International Barcode of Life (2010) Lepidoptera barcode of life. [Cited 15 October 2010] Available from http://www.lepbarcoding.org/

  • Jarnegren J, Schander C, Sneli JA, Ronningen V, Young CM (2007) Four genes, morphology and ecology: distinguishing a new species of Acesta (Mollusca; Bivalvia) from the Gulf of Mexico. Mar Biol 152:43–55

    Google Scholar 

  • Jayasankar P, Thomas PC, Paulton MP, Mathew J (2004) Morphometric and genetic analyzes of Indian mackerel (Rastrelliger kanagurta) from peninsular India. Asian Fish Sci 17:201–215

    Google Scholar 

  • Jhon A, Prasanaakumar C, Lyla PS, Khan A, Jalal KCA (2010) DNA barcoding of Lates calcarifer (Bloch, 1970). Res J Biol Sci 5(6):414–419

    Google Scholar 

  • Johnson GD, Keener P (1984) Aid to identification of American grouper larvae. Bull Mar Sci 34:106–134

    Google Scholar 

  • Kartavtsev YP, Sharina SN, Goto T, Rutenko OA, Zemnukhov VV, Semenchenko AA, Pitruk DL, Hanzawa N (2009) Molecular phylogenetics of pricklebacks and other percoid fishes from the sea of Japan. Aquat Biol 8:95–103. https://doi.org/10.3354/ab00205

    Article  Google Scholar 

  • Khedkar GD, Lutzky S, Kalyankar VB, Reddy ACS, David L (2009) DNA barcoding reveals a discontinuous genetic diversity pattern of fish in the Godavari River, India. In: 3rd International barcode of life conference, pp 80–81

    Google Scholar 

  • Kocher TD, Thomas WK, Meyer A, Edwards SV, Pabo S, Villablanca FX, Wilson AC (1989) Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc Nat Acad Sci U S A 86:6196–6200

    CAS  Google Scholar 

  • Kochzius M, Seidel C, Antoniou A, Botla SK, Campo D (2010) Identifying fishes through DNA barcodes and microarrays. PLoS One 5(9):e12620. https://doi.org/10.1371/journal.pone.0012620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koedprang W, Nakorn UN, Nakajima M, Taniguchi H (2007) Evaluation of genetic diversity of eight grouper species Epinephelus Spp. based on microsatellite variations fisheries. Science 73:227–236

    CAS  Google Scholar 

  • Kumar CP, John BA, Khan SA, Lyla PS, Murugan S, Rozihan M, Jalal KCA (2011) Efficiency of universal barcode gene (Coxi) on morphologically cryptic Mugilidae fishes delineation. Trends Appl Sci Res 6(9):1028–1036. https://doi.org/10.3923/tasr.2011.1028.1036

    Article  Google Scholar 

  • Lakra WS, Goswami M, Mohindra V, Lal KK, Punia P (2007) Molecular identification of five Indian Sciaenids (Pisces: perciformes, Sciaenidae) using RAPD markers. Hydrobiologia 583:359–363. https://doi.org/10.1007/s10750-006-0480-x

    Article  CAS  Google Scholar 

  • Lakra WS, Verma MS, Goswami M, Lal KK, Mohindra V, Punia P, Gopalakrishnan A, Singh KV, Ward RD, Hebert PDN (2010) DNA barcoding Indian marine fishes. Mol Ecol Res 11:60–71

    Google Scholar 

  • Lambert DM, Baker A, Huynen L, Haddrath O, Hebert PDN, Millar CD (2005) Is a large-scale DNA-based inventory of ancient life possible. J Hered 96(3):279–284

    CAS  PubMed  Google Scholar 

  • Langhoff P, Authier A, Buckley TR, Dugdale JS, Rodrigo A, Newcomb RD (2009) DNA barcoding of the endemic New Zealand leafroller moth genera, Ctenopseustis and Planotortrix. Mol Ecol Res 9:691–698

    CAS  Google Scholar 

  • Lavina-Vincent C, Dutta S, Banerjee G, Saravanan R, Sachithanandam V, Krishnan P (2016) A molecular analysis of selected marine fishes from the southwest coast of India for species delineation. Mar Biodivers 47(2):413–419. https://doi.org/10.1007/s12526-016-0495-0

    Article  Google Scholar 

  • Leasi F, Todaro MA (2009) Meiofaunal cryptic species revealed by confocal microscopy: the case of Xenotrichula intermedia (Gastrotricha). Mar Biol 156:1335–1346

    Google Scholar 

  • Leis JM (1986) Larval development in four species of indo-Pacific coral trout Plectropomus(Pisces: Serranidae: Epinephelinae) with an analysis of the relationships of the genus. Bull Mar Sci 38:525–552

    Google Scholar 

  • Leis JM (2005) A larva of the elelinelutjanid, Randallichythysfilamentosus (Pisece: Perciformes), with comments on phylogenetic implications of larval morphology of basal lutjanids. Zootaxa 1008:57–64

    Google Scholar 

  • Levin DM, Quinones ML, Povona MM, Linton Y (2006) DNA barcoding reveals both known and novel taxa in the Albitarsis group (Anopheles: Nyssorhynchus) of Neotropical malaria vectors. Parasit Vector 5:44. https://doi.org/10.1186/1756-3305-5-44

    Article  CAS  Google Scholar 

  • Lin CP, Danforth BN (2004) How do insect nuclear and mitochondrial gene substitution patterns differ? Insights from Bayesian analyses of combined data sets. Mol Phylogenet Evol 30(3):686–702

    CAS  PubMed  Google Scholar 

  • Lorz AN, Linse K, Smith PJ, Steinke D (2012) First molecular evidence for underestimated biodiversity of Rhachotropis (Crustacea, Amphipoda), with description of a new species. PLoS One 7(3):e32365. https://doi.org/10.1371/journal.pone.0032365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maggio T, Andaloro F, Hemida F, Arculeo M (2005) A molecular analysis of some eastern Atlantic grouper from the Epinephelus and Mycteroperca genus. J Exp Mar Biol Ecol 321:83–92

    CAS  Google Scholar 

  • Mecklenburg CW, Moller PR, Steinke D (2011) Biodiversity of arctic marine fishes: taxonomy and zoogeography. Mar Biodivers 41(1):109–140

    Google Scholar 

  • Meusnier I, Singer ACG, Landry JF, Hickey AD, Hebert PDN, Hajibabaei M (2008) A universal DNA mini-barcoding for biodiversity analysis. BMC Genomics 9:214–218. https://doi.org/10.1186/147-2164-9-214

    Article  PubMed  PubMed Central  Google Scholar 

  • Meyer M, Briggs AW, Maricic T, Hober B, Hoffner B, Krause J, Weihmann A, Paabo S, Hofreiter M (2008) From micrograms to picograms: quantitative PCR reduces the material demands of high-throughput sequencing. Nucleic Acids Res 36:e5

    PubMed  Google Scholar 

  • Miller TL, Cribb TH (2007) Phylogenetic relationship of some common indo-Pacific snapper (Perciformes: Lutjanidae) based on mitochondrial DNA sequences, with comments on the taxonomic position of the Caesioninae. Mol Phylogenet Evol 44:450–460

    CAS  PubMed  Google Scholar 

  • Min XJ, Hickey DA (2007a) Assessing the effect of varying sequence length on DNA barcoding of fungi. Mol Ecol Notes 7:365. https://doi.org/10.1111/j.1471-8286.2007.01698.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Min XJ, Hickey DA (2007b) DNA barcodes provide a quick preview of mitochondrial genome composition. PLoS One 2(3):e325. https://doi.org/10.1371/journal.pone.0000325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitchell A (2008) DNA barcoding demystified. Aust J Entomol 47:169–173

    Google Scholar 

  • Monaghan MT, Balke M, Gregory TR, Volger AP (2005) DNA-based species delineation in tropical beetles using mitochondrial and nuclear markers. Philos Trans Royal Soc Lond B Biol Sci 360(1462):1925–1933. https://doi.org/10.1098/rstb.2005.1724

    Article  CAS  Google Scholar 

  • Moura T, Silva MC, Flgueiredo I, Neves A, Munoz PD, Coelho MM, Gordo LS (2008) Molecular bar-coding of north-East Atlantic deep-water sharks: species identification and application to fisheries management and conservation. Mar Freshw Res 59(3):214–223

    CAS  Google Scholar 

  • Nelson JS (2006) Fishes of the world, 4th edn. Wiley, Hoboken, NJ

    Google Scholar 

  • Nguyen HDT, Seifert KA (2008) Description and DNA barcoding of three new species of Leohumicola from South Africa and the United States. Persoonia 21:57–69. https://doi.org/10.3767/003158508X361334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Novacek M, Cleland EE (2001) The current biodiversity extinction event: scenarios for mitigation and recovery. Proc Natl Acad Sci U S A 98:5466–5470

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nylander JAA, Erséus C, Källersjo M (1999) A test of monophyly of the gutless Phallodrilinae (Oligochaeta, Tubificidae) and the use of a 573-bp region of the mitochondrial cytochrome oxidase I gene in analysis of annelid phylogeny. Zoologica Script 28(3–4):305–313

    Google Scholar 

  • Odeny DO, Oyieke HA, Ojwang WO (2009) DNA barcoding: refining para taxonomy for fishery surveys. In: 3rd International barcode of life conference, pp 81–82

    Google Scholar 

  • Oliveira C, Pereira LHG, Henriques JM, Foresti F (2009) DNA barcode of freshwater fishes from upper Parana Basin, Brazil. In: 3rd international barcode of life conference, Mexico

    Google Scholar 

  • Packer L, Gibbs J, Sheffield C, Hanner R (2009) DNA barcoding and the mediocrity of morphology. Mol Ecol Res 9:42–50

    Google Scholar 

  • Pages N, Muñoz-Muñoz F, Talavera S, Sarto V, Lorca C, Núñez JI (2009) Identification of cryptic species of Culicoides (Diptera: Ceratopogonidae) in the subgenus Culicoides and development of species-specific PCR assays based on barcode regions. Vet Parasitol 165:298–310

    CAS  PubMed  Google Scholar 

  • Pegg CG, Sinclair BA, Briskey L, Aspden WJ (2006) MtDNA barcode identification of fish larvae in the southern great barrier reef. Aust Sci Mar 70:7–12

    CAS  Google Scholar 

  • Penton EH, Hebert PDN, Crease TJ (2004) Mitochondria, DNA variation in North American populations of Daphnia obtusa: continentalism or cryptic endemism? Mol Ecol 13(1):97–107

    CAS  PubMed  Google Scholar 

  • Persis M, Reddy ACS, Rao LM, Khedkar GD, Ravinder K, Nasruddin K (2009) COI (cytochrome oxidase – I) sequence based studies of carangid fishes from Kakinada coast. India Mol Biol Rep 36:1733–1740. https://doi.org/10.1007/s11033-008-9375-4

    Article  CAS  PubMed  Google Scholar 

  • Pfenninger M, Cordellier M, Streit B (2006) Comparing the efficacy of morphologic and DNA-based taxonomy in the freshwater gastropod genus Radix (Basommatophora, Pulmonata). BMC Evol Biol 6:100

    PubMed  PubMed Central  Google Scholar 

  • Pramual P, Wongpakam K, Adler PH (2011) Cryptic biodiversity and phylogenetic relationships revealed by DNA barcoding of oriental black flies in the subgenus Gomphostilbia (Diptera: Simuliidae). Genome 54:1–9. https://doi.org/10.1139/G10-100

    Article  CAS  PubMed  Google Scholar 

  • Radulovici AE, Archambault P, Dufresne F (2010) Review DNA barcodes for marine biodiversity: moving fast forward. Diversity 2:450–472. https://doi.org/10.3390/d2040450

    Article  CAS  Google Scholar 

  • Rajan PT (2010) Diversity of butterfly fishes (Chaetodontidae) of Andaman and Nicobar Islands: indicators in coral reef habitat monitoring and managements. In: Ramakrishna CR, Sivaperuman C (eds) Recent trends in biodiversity of Andaman, Nicobar Islands. Zoological Survey of India, Kolkata, pp 337–342

    Google Scholar 

  • Rajan PT, Sreeraj CR (2012) Structure of reef fish communities of seven islands of Andaman and Nicobar Islands, India. In: Venkataraman K, Raghunathan C, Sivaperuman C (eds) Ecology of faunal communities on the Andaman, Nicobar Islands. Springer, Berlin, pp 146–127

    Google Scholar 

  • Ramakrishna CR, Sivaperuman C (2010) Biodiversity of Andaman and Nicobar Islands – an overview. In: Ramakrishna CR, Sivaperuman C (eds) Recent trends in biodiversity of Andaman, Nicobar Islands. Zoological Survey of India, Kolkata, pp 1–42

    Google Scholar 

  • Rao DV (2003) Guide to reef fishes of Andaman and Nicobar Islands. Zoological Survey of India, Kolkata, p 555

    Google Scholar 

  • Rasmussen RS, Morrissey MT, Hebert PDN (2009) DNA barcoding of commercially important Salmon and Trout species in North America. In: 3rd International barcode of life conference. Mexico City, pp 84–85

    Google Scholar 

  • Ratnasingham S, Hebert PDN (2007) BOLD: the barcode of life data system (www.barcodinglife.org). Mol Ecol 7:355–364. https://doi.org/10.1111/j.1471-8286.2006.01678.x

    Article  CAS  Google Scholar 

  • Remigio EA, Hebert PDN (2003) Testing the utility of partial COI sequences for phylogenetic estimates of gastropod relationships. Mol Phylogenet Evol 29(3):641–647

    CAS  PubMed  Google Scholar 

  • Richardson DE, Vanwye JD, Exum AM, Cowen RT, Crawford DL (2006) High-throughput species identification: from DNA isolation to bioinformatics. DOI 7:199. https://doi.org/10.1111/j.1471-8286.2006.01620.x

    Article  CAS  Google Scholar 

  • Rivas LR (1949) A record of the Lutjanid fish (Lutjanus cyanopterus) for the Atlantic coast of the United States, with notes on related species of the genus. Copeia 2:150–152

    Google Scholar 

  • Rock J, Costa FO, Walker DI, North AW, Hutchinson WF, Carvalho GR (2008) DNA barcodes of fish of the Scotia Sea, Antarctica indicate priority groups for taxonomic and systematic focus. Antarct Sci 20(3):253–262

    Google Scholar 

  • Rubinoff PD (2006) Utility of mitochondrial DNA barcodes in species conservation. Conserv Biol 20(4):1026–1033

    PubMed  Google Scholar 

  • Saccone C, Giorgi CD, Gissi C, Pesole G, Reyes A (1999) Evolutionary genomics in Metazoa: the mitochondrial DNA as a model system. Gene 238:195–209

    CAS  PubMed  Google Scholar 

  • Sachithanandam V, Mohan PM, Dhivya P, Muruganandam N, Baskaran R, Chaaithanya IK, Vijayachari P (2011) DNA barcoding, phylogenetic relationships and speciation of Genus: Plectropomus in Andaman coast. J Res Biol 3:179–183

    Google Scholar 

  • Sachithanandam V, Mohan PM, Muruganandam N, Chaaithanya IK, Dhivya P, Baskaran R (2012) DNA barcoding, Phylogenetic Study of Epinephelusspp from andaman coastal region. Indian J Mar Sci 41(2):203–211

    CAS  Google Scholar 

  • Sachithanandam V, Mohan PM, Muruganandam N (2014) DNA barcoding of marine venomous and poisonous fish of family Scorpaenidae and Tetraodontidae from Andaman water. In: Venkataraman K, Sivaperuman C (eds) Marine faunal diversity in India taxonomy, ecology and conservation. Academic Press Elsevier, London

    Google Scholar 

  • Sachithanandam V, Mohan PM, Muruganandam N (2015) DNA barcoding of marine venomous and poisonous fish of families Scorpaenidae and Tetraodontidae from Andaman waters. In: Venkataraman K, Sivaperuman C (eds) Marine faunal diversity in India - taxonomy, ecology and conservation. Academic Press, London, pp 351–372. https://doi.org/10.1016/B978-0-12-801948-1.00020-3

    Chapter  Google Scholar 

  • Salokannel J, Rantala M, Wahlberg N (2010) DNA-barcoding clarifies species definitions of Finnish Apatania (Trichoptera: Apataniidae). Entomol Fenn 2:1–11

    Google Scholar 

  • Satheeshkumar P, Jagadeesan L (2010) Phylogenetic position and genetic diversity of Neridae – Polychaeta based on molecular data from 16S rRNA sequences. Middle East J Sci Res 6(6):550–555

    Google Scholar 

  • Saunders G (2005) Applying DNA barcoding to red macroalgae, a preliminary appraisal holds promise for future applications. Philos Trans R Soc Biol 360:1879–1888

    CAS  Google Scholar 

  • Schander C, Willassen E (2005) What can biological barcoding do for marine biology. Mar Biol Res 1:79–83

    Google Scholar 

  • Seifert KA, Samson RA, Dewaard JR, Houbraken J, Levesque CA, Moncalvo JM, Seize GL, Hebert PDN (2007) Prospects for fungus identification using CO1 DNA barcodes, with Penicillium as a test case. Proc Nat Acad Sci U S A 104(10):3901–3906

    CAS  Google Scholar 

  • Shirak A, Zinder MC, Barroso RM, Seroussi E, Ron M, Hulata G (2009) DNA barcoding of Israeli indigenous and introduced cichlids. Isr J Aquacult Bamid 61(2):83–88

    Google Scholar 

  • Siddall ME, Budinoff RB (2005) DNA-barcoding evidence for widespread introductions of a leech from south American Helobdellatriserialiscomplex. Conserv Genet 6:467–472

    Google Scholar 

  • Silva-Brandao KL, Lyra ML, Freitas AVL (2009) Barcoding Lepidoptera: current situation and perspectives on the usefulness of a contentious technique. Neotrop Entomol 38:441–451

    CAS  PubMed  Google Scholar 

  • Simon C et al (1994) Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann Entomol Soc Am 87(6):651–701

    CAS  Google Scholar 

  • Simon C et al (2006) Incorporating molecular evolution into phylogenetic analysis, and a new compilation of conserved polymerase chain reaction primers for animal mitochondrial DNA annual review of ecology. Evol Syst 37:545–579

    Google Scholar 

  • Sjolin E, Erseus C, Kallersjo M (2005) Phylogeny of TubiWcidae (Annelida: Clitellata) based on mitochondrial and nuclear sequence data. Mol Phylogenet Evol 35:431–441

    PubMed  Google Scholar 

  • Smith WL, Craig MT (2007) Casting the Percomorph net widely: the importance of broad taxonomic sampling in the search for the placement of Serranidand percid fishes. Copeia 1:35–55

    Google Scholar 

  • Smith PJ, Mcveagh SM, Steinke D (2008) DNA barcoding for the identification of smoked fish products. J Fish Biol 72(2):464–471

    CAS  Google Scholar 

  • Steinke D, Zemlak TS, Boutillier JA, Hebert PDN (2009a) DNA barcoding of pacific Canada’s fishes. Mar Biol 156:2641–2647

    Google Scholar 

  • Steinke D, Zemlak TS, Hebert PDN (2009b) Barcoding nemo: DNA-based identifications for the ornamental fish trade. PLoS One 4:e6300

    PubMed  PubMed Central  Google Scholar 

  • Stevens MI, Hogg ID (2003) Blackwell Publishing Ltd. Long-term isolation and recent range expansion from glacial refugia revealed for the endemic springtail Gomphiocephalus hodgsoni from Victoria Land, Antarctica. Mol Ecol 12:2357–2369. https://doi.org/10.1046/j.1365-294X.2003.01907.x

    Article  CAS  PubMed  Google Scholar 

  • Stoeckle MY, Hebert PDN (2008) Bar code of life: DNA tags help classify animals. Sci Am 299(4):66–71

    Google Scholar 

  • Sweeney BW, Battle JM, Jackson JK, Dapkey T (2011) Can DNA barcodes of stream macro invertebrates improve descriptions of community structure and water quality. J N Am Benthol Soc 30:195–216

    Google Scholar 

  • Talwar PK (1990) Fishes of the Andaman and Nicobar Islands: A synoptic analysis. J Andaman Sci Assoc 6(2):71–102

    Google Scholar 

  • Thomas M, Raharivololoniaina L, Glaw F, Vences M, Vieites DR (2005) Montane tadpoles in Madagascar: molecular identification and description of the larval stages of Mantidactylus elegans, Mantidactylus madecassus, and Boophislaurenti from the Andringitra massif. Copeia pp 2005:174–183

    Google Scholar 

  • Turanov SV, Kartavtseva IF, Zemnukhov VV (2012) Molecular phylogenetic study of several eelpout fishes (Perciformes, Zoarcoidei) from far eastern seas on the basis of the nucleotide sequence of the mitochondrial cytochrome oxidase 1 gene (co-1). Genetika 48(2):235–252

    CAS  PubMed  Google Scholar 

  • Vargas SM, Araujo FCF, Santos FR (2009) DNA barcoding of Brazilian Sea turtles (Testudines). Genet Mol Biol 32(3):608–612

    CAS  PubMed  PubMed Central  Google Scholar 

  • Venkataraman K, Wafar M (2005) Coastal and marine biodiversity of India. Ind J Mar Sci 34(1):57–75

    Google Scholar 

  • Victor BC, Hanner R, Shivji M, Hyde J, Caldow C (2009) Identification of the larval and juvenile stages of the Cubera snapper, Lutjanus cyanopterus, using DNA barcoding. Zootaxa 2215:24–36

    Google Scholar 

  • Ward RD, Zemlak TS, Innes BH, Last PR, Hebert PDN (2005) DNA barcoding Australia’s fish species. Philos Trans R Soc Biol 360:1847–1857

    CAS  Google Scholar 

  • Ward RD, Costa FO, Holmes BH, Steinke D (2008) DNA barcoding of shared fish species from the North Atlantic and Australasia: minimal divergence for most taxa, but Zeus faberand Lepidopuscaudatus each probably constitute two species. Aquat Biol 3:71–78

    Google Scholar 

  • Ward RD, Hanner R, Hebert PDN (2009) The campaign to DNA barcode all fishes. Fish-Bol J Fish Biol 74:329–356

    CAS  PubMed  Google Scholar 

  • Webb KE, Barnes DKA, Clark MS, Bowden DA (2006) DNA barcoding: A molecular tool to identify Antarctic marine larvae. Deep Sea Res 53(II):1053–1060

    CAS  Google Scholar 

  • Wiens JJ, Servedio MR (2000) Species delimitation in systematics: inferring diagnostic differences between species. Proc R Soc Lond B Biol 267:631–636

    CAS  Google Scholar 

  • Will KW, Rubinoff D (2004) Myth of the molecule: DNA barcodes for species cannot replace morphology for identification and classification. Cladistics 20:47–55

    Google Scholar 

  • Wong EHK, Hanner R (2008) DNA barcoding detects market substitution in North American seafood. Food Res Int 41:828–837

    CAS  Google Scholar 

  • Zemlak TS, Ward RD, Connell AD, Holmes BH, Hebert PDN (2009) Barcoding vertebrates DNA barcoding reveals overlooked marine fishes. Mol Ecol Res 9(1):237–242. https://doi.org/10.1111/j.1755-0998.2009.02649.x

    Article  CAS  Google Scholar 

  • Zettler L, Amaral A, Gómez F, Zettler E, Brendan GK, Amils R, Mitchell LS (2002) Eukaryotic diversity in Spain’s river of fire. Nature 417:137

    PubMed  Google Scholar 

  • Zhang J (2011) Species identification of marine fishes in China with DNA barcoding. Evid Based Compl Alt Mede 2011:10. https://doi.org/10.1155/2011/978253

    Article  Google Scholar 

  • Zhang JB, Hanner R (2011) DNA barcoding is a useful tool for the identification of marine fishes from Japan. Biochem Syst Ecol 39:31–42

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Earth Sciences (MoES), New Delhi, India, under Benthic programme and the higher authorities of Pondicherry University, Puducherry, India, for which the authors are grateful.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sachithanandam, V., Mohan, P.M. (2020). A Review on DNA Barcoding on Fish Taxonomy in India. In: Trivedi, S., Rehman, H., Saggu, S., Panneerselvam, C., Ghosh, S. (eds) DNA Barcoding and Molecular Phylogeny. Springer, Cham. https://doi.org/10.1007/978-3-030-50075-7_10

Download citation

Keywords

Publish with us

Policies and ethics