Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content

Effects of Sports Disciplines on Skin Temperature Asymmetries

  • Chapter
  • First Online:
Application of Infrared Thermography in Sports Science

Abstract

This chapter analyses thermoregulatory responses in relation to different sports disciplines, focusing on cyclic sports (such as running, cycling, and rowing) and non-cyclic sports (such as racket sports and handball). The main objective is to determine whether thermoregulatory asymmetries exist between body segments and to discuss methodological limitations found in current studies. Findings suggest that in cyclic sports, there are no evident thermoregulatory asymmetries. The thermal response varies throughout the performance, initially involving vasoconstriction, followed by vasodilation as exercise progresses. Additionally, better-trained athletes (such as elite runners and cyclists) exhibit more efficient thermoregulatory strategies compared to less-trained individuals. However, several factors, such as body fat percentage, may influence thermographic analysis and limit the accuracy of these studies. Therefore, further research is needed to assess long-term responses and the potential existence of asymmetries. In contrast, non-cyclic sports show an asymmetric thermoregulatory pattern, even in non-injured athletes. This asymmetry appears to be sport-specific, as the segments most involved in the activity require greater thermoregulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 127.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
GBP 159.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chudecka M, Lubkowska A (2010) Temperature changes of selected body’s surfaces of handball players in the course of training estimated by thermovision, and the study of the impact of physiological and morphological factors on the skin temperature. J Therm Biol 35(8):379–385. https://doi.org/10.1016/j.jtherbio.2010.08.001

    Article  Google Scholar 

  2. Cramer MN, Jay O (2016) Biophysical aspects of human thermoregulation during heat stress. Auton Neurosci 196:3–13. https://doi.org/10.1016/j.autneu.2016.03.001

    Article  PubMed  Google Scholar 

  3. Gisolfi CV, Wenger CB (1984) Temperature regulation during exercise: old concepts, new ideas. Exerc Sport Sci Rev 12(1):399

    Article  Google Scholar 

  4. Charkoudian N (2003) Skin blood flow in adult human thermoregulation: how it works, when it does not, and why. Mayo Clin Proc 78(5):603–612. https://doi.org/10.4065/78.5.603

    Article  PubMed  Google Scholar 

  5. Vardasca R, Ring EFJ, Plassmann P, Jones C (2012) Termal symmetry of the upper and lower extremities in healthy subjects. Thermol Int 22:53–60

    Google Scholar 

  6. Bouzas Marins JC, de Andrade Fernandes A, Gomes Moreira D, Souza Silva F, Costa CMA, Pimenta EM, Sillero-Quintana M (2014) Thermographic profile of soccer players’ lower limbs. Revista Andaluza de Medicina Del Deporte 7(1):1–6. https://doi.org/10.1016/S1888-7546(14)70053-X

    Article  Google Scholar 

  7. Fernández-Cuevas I, Arnáiz Lastras J, Escamilla Galindo V, Gómez Carmona P (2017) Infrared thermography for the detection of injury in sports medicine. In: Priego Quesada JI (ed) Application of infrared thermography in sports science. Springer International Publishing, pp 81–109. https://doi.org/10.1007/978-3-319-47410-6_4

    Chapter  Google Scholar 

  8. Chudecka M, Lubkowska A, Leźnicka K, Krupecki K (2015) The use of thermal imaging in the evaluation of the symmetry of muscle activity in various types of exercises (symmetrical and asymmetrical). J Hum Kinet 49:141–147. https://doi.org/10.1515/hukin-2015-0116

    Article  PubMed  PubMed Central  Google Scholar 

  9. Marzano-Felisatti JM, Martinez-Amaya A, Priego-Quesada JI (2023) Preliminary analysis of skin temperature asymmetries in elite young tennis players. Appl Sci 13(1):628. https://doi.org/10.3390/app13010628

    Article  CAS  Google Scholar 

  10. Sanchis-Sanchis R, Priego-Quesada JI, Ribas-Garcia V, Carpes FP, Encarnacion-Martinez A, Perez-Soriano P (2020) Effects of asymmetrical exercise demands on the symmetry of skin temperature in archers. Physiol Meas 41(11):114002. https://doi.org/10.1088/1361-6579/abc020

    Article  PubMed  Google Scholar 

  11. Sánchez-Jiménez JL, Tejero-Pastor R, de Calzadillas-Valles MC, Jimenez-Perez I, de Cibrián Ortiz Anda RM, Salvador-Palmer R, Priego-Quesada JI (2022) Chronic and acute effects on skin temperature from a sport consisting of repetitive impacts from hitting a ball with the hands. Sensors 22(21):21. https://doi.org/10.3390/s22218572

    Article  Google Scholar 

  12. De León-Muñoz A, Priego-Quesada JI, Marzano-Felisatti JM, Sanchez-Jimenez JL, Sendra-Pérez C, Aparicio-Aparicio I (2024) Preliminary application of infrared thermography to monitoring of skin temperature asymmetries in professional padel players. Sensors 24(14):14. https://doi.org/10.3390/s24144534

    Article  Google Scholar 

  13. Gil-Calvo M, Herrero-Marco J, de González-Peña RJ, Perez-Soriano P, Priego-Quesada JI (2020) Acute effect of induced asymmetrical running technique on foot skin temperature. J Therm Biol 91:102613. https://doi.org/10.1016/j.jtherbio.2020.102613

    Article  PubMed  Google Scholar 

  14. Trecroci A, Formenti D, Ludwig N, Gargano M, Bosio A, Rampinini E, Alberti G (2018) Bilateral asymmetry of skin temperature is not related to bilateral asymmetry of crank torque during an incremental cycling exercise to exhaustion. PeerJ 6:e4438. https://doi.org/10.7717/peerj.4438

    Article  PubMed  PubMed Central  Google Scholar 

  15. Charkoudian N (2016) Human thermoregulation from the autonomic perspective. Auton Neurosci 196:1–2. https://doi.org/10.1016/j.autneu.2016.02.007

    Article  PubMed  Google Scholar 

  16. Formenti D, Merla A, Priego Quesada JI (2017) The use of infrared thermography in the study of sport and exercise physiology. In: Priego Quesada JI (ed) Application of infrared thermography in sports science. Springer International Publishing, pp 111–136. https://doi.org/10.1007/978-3-319-47410-6_5

    Chapter  Google Scholar 

  17. Boulant JA (1996) Hypothalamic neurons regulating body temperature. In: Comprehensive physiology, supplement 14: handbook of physiology, environmental physiology, pp 105–126. https://doi.org/10.1002/cphy.cp040106

  18. de Fernandes AA, Amorim PRDS, Brito CJ, Sillero-Quintana M, Bouzas Marins JC (2016) Regional skin temperature response to moderate aerobic exercise measured by infrared thermography. Asian J Sports Med 7(1):e29243. https://doi.org/10.5812/asjsm.29243

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hillen B, Pfirrmann D, Nägele M, Simon P (2020) Infrared thermography in exercise physiology: the dawning of exercise Radiomics. Sports Med 50(2):263–282. https://doi.org/10.1007/s40279-019-01210-w

    Article  PubMed  Google Scholar 

  20. Tanda G (2015) The use of infrared thermography to detect the skin temperature response to physical activity. J Phys Conf Ser 655(1):012062. https://doi.org/10.1088/1742-6596/655/1/012062

    Article  CAS  Google Scholar 

  21. Tanda G (2018) Total body skin temperature of runners during treadmill exercise. J Therm Anal Calorim 131(2):1967–1977. https://doi.org/10.1007/s10973-017-6634-4

    Article  CAS  Google Scholar 

  22. Korman P, Straburzyńska-Lupa A, Kusy K, Kantanista A, Zieliński J (2016) Changes in body surface temperature during speed endurance work-out in highly-trained male sprinters. Infrared Phys Technol 78:209–213. https://doi.org/10.1016/j.infrared.2016.08.003

    Article  Google Scholar 

  23. Ludwig N, Trecroci A, Gargano M, Formenti D, Bosio A, Rampinini E, Alberti G (2016) Thermography for skin temperature evaluation during dynamic exercise: A case study on an incremental maximal test in elite male cyclists. Appl Opt 55(34):D126–D130. https://doi.org/10.1364/AO.55.00D126

    Article  PubMed  Google Scholar 

  24. Torii M, Yamasaki M, Sasaki T, Nakayama H (1992) Fall in skin temperature of exercising man. Br J Sports Med 26(1):29–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Priego-Quesada JI, Sampaio LT, Bini RR, Rossato M, Cavalcanti V (2017b) Multifactorial cycling performance of Cyclists and Non-Cyclists and their effect on skin temperature. J Therm Anal Calorim 127(2):1479–1489. https://doi.org/10.1007/s10973-016-5971-z

    Article  CAS  Google Scholar 

  26. Amaro AM, Paulino MF, Neto MA, Roseiro L (2019) Hand-arm vibration assessment and changes in the thermal map of the skin in tennis athletes during the service. Int J Environ Res Public Health 16(24):E5117. https://doi.org/10.3390/ijerph16245117

    Article  Google Scholar 

  27. Cooper T, Randall WC, Hertzman AB (1959) Vascular convection of heat from active muscle to overlying skin. J Appl Physiol 14(2):207–211. https://doi.org/10.1152/jappl.1959.14.2.207

    Article  CAS  PubMed  Google Scholar 

  28. Escamilla-Galindo VL, Estal-Martínez A, Adamczyk JG, Brito CJ, Arnaiz-Lastras J, Sillero-Quintana M (2017) Skin temperature response to unilateral training measured with infrared thermography. J Exerc Rehabil 13(5):526–534. https://doi.org/10.12965/jer.1735046.523

    Article  PubMed  PubMed Central  Google Scholar 

  29. Adamczyk JG, Boguszewski D, Siewierski M (2014) Thermographic evaluation of lactate level in capillary blood during post-exercise recovery. Kinesiology 46(3):186–193

    Google Scholar 

  30. Ferreira JJA, Mendonça LCS, Nunes LAO, Andrade Filho ACC, Rebelatto JR, Salvini TF (2008) Exercise-associated thermographic changes in young and elderly subjects. Ann Biomed Eng 36(8):1420–1427. https://doi.org/10.1007/s10439-008-9512-1

    Article  PubMed  Google Scholar 

  31. Neves EB, Cunha RM, Rosa C, Antunes NS, Felisberto IMV, Vilaça-Alves J, Reis VM (2016) Correlation between skin temperature and heart rate during exercise and recovery, and the influence of body position in these variables in untrained women. Infrared Phys Technol 75:70–76. https://doi.org/10.1016/j.infrared.2015.12.018

    Article  Google Scholar 

  32. Priego Quesada JI, Kunzler MR, Carpes FP (2017) Methodological aspects of infrared thermography in human assessment. In: Priego Quesada JI (ed) Application of infrared thermography in sports science. Springer International Publishing, pp 49–79. https://doi.org/10.1007/978-3-319-47410-6_3

    Chapter  Google Scholar 

  33. Merla A, Mattei PA, Di Donato L, Romani GL (2010) Thermal imaging of cutaneous temperature modifications in runners during graded exercise. Ann Biomed Eng 38(1):158–163. https://doi.org/10.1007/s10439-009-9809-8

    Article  PubMed  Google Scholar 

  34. Akimov EB, Son’kin VD (2011) Skin temperature and lactate threshold during muscle work in athletes. Hum Physiol 37(5):621–628. https://doi.org/10.1134/S0362119711050033

    Article  CAS  Google Scholar 

  35. Formenti D, Ludwig N, Gargano M, Gondola M, Dellerma N, Caumo A, Alberti G (2013) Thermal imaging of exercise-associated skin temperature changes in trained and untrained female subjects. Ann Biomed Eng 41(4):863–871. https://doi.org/10.1007/s10439-012-0718-x

    Article  PubMed  Google Scholar 

  36. Salamunes ACC, Stadnik AMW, Neves EB (2017) The effect of body fat percentage and body fat distribution on skin surface temperature with infrared thermography. J Therm Biol 66:1–9. https://doi.org/10.1016/j.jtherbio.2017.03.006

    Article  PubMed  Google Scholar 

  37. Savastano DM, Gorbach AM, Eden HS, Brady SM, Reynolds JC, Yanovski JA (2009) Adiposity and human regional body temperature. Am J Clin Nutr 90(5):1124–1131. https://doi.org/10.3945/ajcn.2009.27567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Luong MP (2017) Assessment of equipment using infrared thermography in sports. In: Priego Quesada JI (ed) Application of infrared thermography in sports science. Springer International Publishing, pp 185–209. https://doi.org/10.1007/978-3-319-47410-6_8

    Chapter  Google Scholar 

  39. Brito CJ, Moreira DG, Ferreira JJ, Díaz-de-Durana AL, Miarka B, Marins JCB, Sillero-Quintana M (2020) Immune response related with skin thermal pattern in judokas: a new application for infrared thermography? J Strength Cond Res 34(10):2886. https://doi.org/10.1519/JSC.0000000000002672

    Article  PubMed  Google Scholar 

  40. Gomes Moreira D, José Brito C, de Almeida Ferreira JJ, Bouzas Marins JC, López Díaz de Durana A, Couceiro Canalejo J, Butragueño Revenga J, Sillero-Quintana M (2021) Lactate concentration is related to skin temperature variation after a specific incremental judo test. J Strength Cond Res 35(8):2213. https://doi.org/10.1519/JSC.0000000000003095

    Article  PubMed  Google Scholar 

  41. del Estal A, Brito C-J, Galindo V-E, Diaz L, de Durana A, Franchini E, Sillero-Quintana M (2017) Thermal asymmetries in striking combat sports athletes measured by infrared thermography. Sci Sports 32(2):e61–e67. https://doi.org/10.1016/j.scispo.2016.09.005

    Article  Google Scholar 

  42. Bravo-Sánchez A, Abián-Vicén J, Montalbán AT, Abián-Vicén P (2018) Acute effects of badminton practice on the surface temperature of lower limbs introduction. Archivos de Medicina Del Deporte 35(4):239–244. Scopus

    Google Scholar 

  43. Bompa OT, Buzzichelli C (2019) Periodization: theory and methodology of training (Sixth edition). Human Kinetics. https://us.humankinetics.com/products/periodization-6th-edition-pdf

  44. Bertucci W, Arfaoui A, Janson L, Polidori G (2013) Relationship between the gross efficiency and muscular skin temperature of lower limb in cycling: a preliminary study. Comput Methods Biomech Biomed Engin 16(Suppl 1):114–115. https://doi.org/10.1080/10255842.2013.815902

    Article  PubMed  Google Scholar 

  45. Gaesser GA, Brooks GA (1975) Muscular efficiency during steady-rate exercise: effects of speed and work rate. J Appl Physiol 38(6):1132–1139. https://doi.org/10.1152/jappl.1975.38.6.1132

    Article  CAS  PubMed  Google Scholar 

  46. Hopker J, Coleman D, Passfield L (2009) Changes in cycling efficiency during a competitive season. Med Sci Sports Exerc 41(4):912–919. https://doi.org/10.1249/MSS.0b013e31818f2ab2

    Article  PubMed  Google Scholar 

  47. Jeukendrup AE, Craig NP, Hawley JA (2000) The bioenergetics of world class cycling. J Sci Med Sport 3(4):414–433. https://doi.org/10.1016/S1440-2440(00)80008-0

    Article  CAS  PubMed  Google Scholar 

  48. De Meis L (2001) Role of the sarcoplasmic reticulum Ca2+-ATPase on heat production and thermogenesis. Biosci Rep 21(2):113–137. https://doi.org/10.1023/a:1013640006611

    Article  PubMed  Google Scholar 

  49. Gauer R, Meyers BK (2019) Heat-related illnesses. Am Fam Physician 99(8):482–489

    PubMed  Google Scholar 

  50. González-Alonso J (2012) Human thermoregulation and the cardiovascular system. Exp Physiol 97(3):340–346. https://doi.org/10.1113/expphysiol.2011.058701

    Article  CAS  PubMed  Google Scholar 

  51. Périard JD, Racinais S, Sawka MN (2015) Adaptations and mechanisms of human heat acclimation: applications for competitive athletes and sports. Scand J Med Sci Sports 25(Suppl 1):20–38. https://doi.org/10.1111/sms.12408

    Article  PubMed  Google Scholar 

  52. Beigtan M, Gonçalves M, Weon BM (2024) Heat transfer by sweat droplet evaporation. Environ Sci Technol 58(15):6532–6539. https://doi.org/10.1021/acs.est.4c00850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pilch W, Szygula Z, Palka T, Pilch P, Cison T, Wiecha S, Tota Ł (2014) Comparison of physiological reactions and physiological strain in healthy men under heat stress in dry and steam heat saunas. Biol Sport 31(2):145–149. https://doi.org/10.5604/20831862.1099045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kenny GP, Wilson TE, Flouris AD, Fujii N (2018) Heat exhaustion. Handb Clin Neurol 157:505–529. https://doi.org/10.1016/B978-0-444-64074-1.00031-8

    Article  PubMed  Google Scholar 

  55. Hymczak H, Gołąb A, Mendrala K, Plicner D, Darocha T, Podsiadło P, Hudziak D, Gocoł R, Kosiński S (2021) Core temperature measurement-principles of correct measurement, problems, and complications. Int J Environ Res Public Health 18(20):10606. https://doi.org/10.3390/ijerph182010606

    Article  PubMed  PubMed Central  Google Scholar 

  56. Aylwin P, Havenith G, Cardinale M, Lloyd A, Ihsan M, Taylor L, Adami PE, Alhammoud M, Alonso J-M, Bouscaren N, Buitrago S, Esh C, Gomez-Ezeiza J, Garrandes F, Labidi M, Lange G, Moussay S, Mtibaa K, Townsend N et al (2023) Thermoregulatory responses during road races in hot-humid conditions at the 2019 Athletics World Championships. J Appl Physiol 134(5):1300–1311. https://doi.org/10.1152/japplphysiol.00348.2022

    Article  PubMed  PubMed Central  Google Scholar 

  57. Sawka MN, Cheuvront SN, Kenefick RW (2012) High skin temperature and hypohydration impair aerobic performance. Exp Physiol 97(3):327–332. https://doi.org/10.1113/expphysiol.2011.061002

    Article  PubMed  Google Scholar 

  58. Racinais S, Ihsan M, Taylor L, Cardinale M, Adami PE, Alonso JM, Bouscaren N, Buitrago S, Esh CJ, Gomez-Ezeiza J, Garrandes F, Havenith G, Labidi M, Lange G, Lloyd A, Moussay S, Mtibaa K, Townsend N, Wilson MG, Bermon S (2021) Hydration and cooling in elite athletes: relationship with performance, body mass loss and body temperatures during the Doha 2019 IAAF World Athletics Championships. Br J Sports Med 55(23):1335–1341. https://doi.org/10.1136/bjsports-2020-103613

    Article  PubMed  Google Scholar 

  59. Barboza JAM, Souza LIS, Cerqueira MS, de Andrade PR, dos Santos HH, de Ferreira JJA (2020) Skin temperature of middle distance runners after a maximum effort test. Acta Sci Health Sci 42. https://www.redalyc.org/journal/3072/307264461016/html/:e48114

    Article  Google Scholar 

  60. Fournet D, Ross L, Voelcker T, Redortier B, Havenith G (2013) Body mapping of thermoregulatory and perceptual responses of males and females running in the cold. J Therm Biol 38(6):339–344. https://doi.org/10.1016/j.jtherbio.2013.04.005

    Article  Google Scholar 

  61. Robles Dorado V (2016) Variaciones termométricas en la planta del pie y piernas valorada en corredores antes y después de correr 30 km. Revista Internacional de Ciencias Podológicas 10(1):31–40

    Google Scholar 

  62. Tumilty S, Adhia DB, Smoliga JM, Gisselman AS (2019) Thermal profiles over the Achilles tendon in a cohort of non-injured collegiate athletes over the course of a cross country season. Phys Ther Sport 36:110–115. https://doi.org/10.1016/j.ptsp.2019.01.009

    Article  PubMed  Google Scholar 

  63. Périard JD, Eijsvogels TMH, Daanen HAM (2021) Exercise under heat stress: thermoregulation, hydration, performance implications, and mitigation strategies. Physiol Rev 101(4):1873–1979. https://doi.org/10.1152/physrev.00038.2020

    Article  CAS  PubMed  Google Scholar 

  64. Just TP, Cooper IR, DeLorey DS (2016) Sympathetic vasoconstriction in skeletal muscle: adaptations to exercise training. Exerc Sport Sci Rev 44(4):137–143. https://doi.org/10.1249/JES.0000000000000085

    Article  PubMed  Google Scholar 

  65. Priego-Quesada JI, Gil-Calvo M, Jimenez-Perez I, Lucas-Cuevas ÁG, Pérez-Soriano P (2017a) Relationship between foot eversion and thermographic foot skin temperature after running. Appl Opt 56(19):5559–5565. https://doi.org/10.1364/AO.56.005559

    Article  PubMed  Google Scholar 

  66. Gil-Calvo M, Priego-Quesada JI, Jimenez-Perez I, Lucas-Cuevas A, Pérez-Soriano P (2019) Effects of prefabricated and custom-made foot orthoses on skin temperature of the foot soles after running. Physiol Meas 40(5):054004. https://doi.org/10.1088/1361-6579/ab1c8c

    Article  CAS  PubMed  Google Scholar 

  67. Jimenez-Perez I, Gil-Calvo M, Priego-Quesada JI, Aparicio I, Pérez-Soriano P, Ortiz de Anda RMC (2020) Effect of prefabricated thermoformable foot orthoses on plantar surface temperature after running: A gender comparison. J Therm Biol 91:102612. https://doi.org/10.1016/j.jtherbio.2020.102612

    Article  PubMed  Google Scholar 

  68. Priego-Quesada JI, Lucas-Cuevas AG, Gil-Calvo M, Giménez JV, Aparicio I, Cibrián Ortiz de Anda RM, Salvador Palmer R, Llana-Belloch S, Pérez-Soriano P (2015) Effects of graduated compression stockings on skin temperature after running. J Therm Biol 52:130–136. https://doi.org/10.1016/j.jtherbio.2015.06.005

    Article  CAS  PubMed  Google Scholar 

  69. Chou T-H, Allen JR, Hahn D, Leary BK, Coyle EF (2018) Cardiovascular responses to exercise when increasing skin temperature with narrowing of the core-to-skin temperature gradient. J Appl Physiol 125(3):697–705. https://doi.org/10.1152/japplphysiol.00965.2017

    Article  CAS  PubMed  Google Scholar 

  70. Cuddy JS, Hailes WS, Ruby BC (2014) A reduced core to skin temperature gradient, not a critical core temperature, affects aerobic capacity in the heat. J Therm Biol 43:7–12. https://doi.org/10.1016/j.jtherbio.2014.04.002

    Article  PubMed  Google Scholar 

  71. Cholewka A, Kasprzyk T, Stanek A, Sieroń-Stołtny K, Drzazga Z (2016) May thermal imaging be useful in cyclist endurance tests? J Therm Anal Calorim 123(3):1973–1979. https://doi.org/10.1007/s10973-015-4662-5

    Article  CAS  Google Scholar 

  72. Romão W, Mello D, Neves EB, Dias T, dos Santos AOB, Alkmim R, Vale R (2021) The use of infrared thermography in endurance athletes: A systematic review. Motricidade 17(2):2. https://doi.org/10.6063/motricidade.21116

    Article  Google Scholar 

  73. Rynkiewicz M, Korman P, Zurek P, Rynkiewicz T (2015) Application of thermovisual body image analysis in the evaluation of paddling effects on a kayak ergometer. Med Sport 1(68):31–42. https://www.minervamedica.it/en/journals/medicina-dello-sport/article.php?cod=R26Y2015N01A0031

    Google Scholar 

  74. Martin JC, Spirduso WW (2001) Determinants of maximal cycling power: crank length, pedaling rate and pedal speed. Eur J Appl Physiol 84(5):413–418. https://doi.org/10.1007/s004210100400

    Article  CAS  PubMed  Google Scholar 

  75. Korff T, Romer LM, Mayhew I, Martin JC (2007) Effect of pedaling technique on mechanical effectiveness and efficiency in cyclists. Med Sci Sports Exerc 39(6):991–995. https://doi.org/10.1249/mss.0b013e318043a235

    Article  PubMed  Google Scholar 

  76. Priego Quesada JI, Carpes FP, Salvador Palmer R, Pérez-Soriano P, Cibrián Ortiz de Anda RM (2016) Effect of saddle height on skin temperature measured in different days of cycling. Springerplus 5:205. https://doi.org/10.1186/s40064-016-1843-z

    Article  PubMed  PubMed Central  Google Scholar 

  77. Korman P, Kusy K, Straburzyńska-Lupa A, Sillero-Quintana M, Zarębska E, Zieliński J (2024) Exploring the correlation of skin temperature and body composition in athletes undergoing exhaustive physical exercise. J Therm Biol 123:103918. https://doi.org/10.1016/j.jtherbio.2024.103918

    Article  PubMed  Google Scholar 

  78. Ross M, Kargl CK, Ferguson R, Gavin TP, Hellsten Y (2023) Exercise-induced skeletal muscle angiogenesis: impact of age, sex, angiocrines and cellular mediators. Eur J Appl Physiol 123(7):1415–1432. https://doi.org/10.1007/s00421-022-05128-6

    Article  PubMed  PubMed Central  Google Scholar 

  79. Casas A (2008) Physiology and methodology of intermittent resistance training for acyclic sports. J Human Sport Exerc 3(1):23–52

    Article  Google Scholar 

  80. Correia V, Araújo D, Vilar L, Davids K (2013) From recording discrete actions to studying continuous goal-directed behaviours in team sports. J Sports Sci. https://www.tandfonline.com/doi/abs/10.1080/02640414.2012.738926

  81. Afonso J, Peña J, Sá M, Virgile A, García-de-Alcaraz A, Bishop C (2022) Why sports should embrace bilateral asymmetry: a narrative review. Symmetry 14(10):1993. https://doi.org/10.3390/sym14101993

    Article  Google Scholar 

  82. Bartlett R, Wheat J, Robins M (2007) Is movement variability important for sports biomechanists? Sports Biomech 6(2):224–243. https://doi.org/10.1080/14763140701322994

    Article  PubMed  Google Scholar 

  83. Grouios G (2004) Motoric dominance and sporting excellence: training versus heredity. Percept Mot Skills 98(1):53–66. https://doi.org/10.2466/pms.98.1.53-66

    Article  PubMed  Google Scholar 

  84. Bishop C, Turner A, Read P (2018) Effects of inter-limb asymmetries on physical and sports performance: a systematic review. J Sports Sci 36(10):1135–1144. https://doi.org/10.1080/02640414.2017.1361894

    Article  PubMed  Google Scholar 

  85. Maloney SJ (2019) The relationship between asymmetry and athletic performance: a critical review. J Strength Cond Res 33(9):2579–2593. https://doi.org/10.1519/JSC.0000000000002608

    Article  PubMed  Google Scholar 

  86. Johnson JM (1998) Physical training and the control of skin blood flow. Med Sci Sports Exerc 30(3):382

    Article  CAS  PubMed  Google Scholar 

  87. Lorenzo S, Minson CT (2010) Heat acclimation improves cutaneous vascular function and sweating in trained cyclists. J Appl Physiol 109(6):1736–1743. https://doi.org/10.1152/japplphysiol.00725.2010

    Article  PubMed  PubMed Central  Google Scholar 

  88. Duarte TS, Ferreira-Júnior JB, Oliveira JCG, Costa CMA, Coelho DB, Marins JCB, Bara-Filho MG (2025) Is skin temperature associated with training load during preparatory period of a professional volleyball team? J Therm Biol:104038. https://doi.org/10.1016/j.jtherbio.2024.104038

  89. Lino-Samaniego Á, de la Rubia A, Sillero-Quintana M (2022) Acute effect of auxotonic and isometric contraction evaluated by infrared thermography in handball players. J Therm Biol 109:103318. https://doi.org/10.1016/j.jtherbio.2022.103318

    Article  PubMed  Google Scholar 

  90. Majano C, Garcia-Unanue J, Fernández-Cuevas I, Escamilla-Galindo V, Alonso-Callejo A, Sanchez-Sanchez J, Gallardo L, Felipe JL (2023) Association between physical demands, skin temperature and wellbeing status in elite football players. Sci Rep 13(1):13780. https://doi.org/10.1038/s41598-023-40396-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Hennessy MP, Parker AW (1990) Electromyography of arrow release in archery. Electromyogr Clin Neurophysiol 30(1):7–17

    CAS  PubMed  Google Scholar 

  92. Nishizono H, Shibayama H, Izuta T, Saito K (1987) Analysis of archery shooting techniques by means of electromyography. In: ISBS - Conference Proceedings Archive. https://ojs.ub.uni-konstanz.de/cpa/article/view/2332

  93. Kim RN, Lee J-H, Hong SH, Jeon JH, Jeong WK (2018) The characteristics of shoulder muscles in archery athletes. Clin Should Elbow 21(3):145–150. https://doi.org/10.5397/cise.2018.21.3.145

    Article  Google Scholar 

  94. Kolayiş İE, Ertan H (2016) Differences in activation patterns of shoulder girdle muscles in recurve archers. Pamukkale J Sport Sci 7(1):1

    Google Scholar 

  95. Li WW, Carter MJ, Mashiach E, Guthrie SD (2016) Vascular assessment of wound healing: a clinical review. Int Wound J 14(3):460–469. https://doi.org/10.1111/iwj.12622

    Article  PubMed  PubMed Central  Google Scholar 

  96. Montaner Sesmero AM, Llana Belloch S, Gámez Payá J, Montaner Sesmero C (2013) Estudio epidemiológico en pelota valenciana. Revista Internacional de Medicina y Ciencias de la Actividad Fisica y del Deporte 13(50):235–255

    Google Scholar 

  97. Pritchard MH, Pugh N, Wright I, Brownlee M (1999) A vascular basis for repetitive strain injury. Rheumatology 38(7):636–639. https://doi.org/10.1093/rheumatology/38.7.636

    Article  CAS  PubMed  Google Scholar 

  98. Hildebrandt C, Raschner C, Ammer K (2010) An overview of recent application of medical infrared thermography in sports medicine in Austria. Sensors (Basel, Switzerland) 10(5):4700–4715. https://doi.org/10.3390/s100504700

    Article  PubMed  Google Scholar 

  99. Bongers CCWG, Thijssen DHJ, Veltmeijer MTW, Hopman MTE, Eijsvogels TMH (2015) Precooling and percooling (cooling during exercise) both improve performance in the heat: a meta-analytical review. Br J Sports Med 49(6):377–384. https://doi.org/10.1136/bjsports-2013-092928

    Article  PubMed  Google Scholar 

  100. Costello JT, McInerney CD, Bleakley CM, Selfe J, Donnelly AE (2012) The use of thermal imaging in assessing skin temperature following cryotherapy: a review. J Therm Biol 37(2):103–110. https://doi.org/10.1016/j.jtherbio.2011.11.008

    Article  Google Scholar 

  101. Masur L, Brand F, Düking P (2024) Response of infrared thermography related parameters to (non-)sport specific exercise and relationship with internal load parameters in individual and team sport athletes—a systematic review. Front Sports Active Living 6. https://doi.org/10.3389/fspor.2024.1479608

  102. Folk GE, Riedesel ML, Thrift DL (1998) Principles of integrative environmental physiology. Austin & Winfield

    Google Scholar 

  103. Lim CL, Byrne C, Lee JK (2008) Human thermoregulation and measurement of body temperature in exercise and clinical settings. Ann Acad Med Singap 37(4):347–353

    Article  PubMed  Google Scholar 

  104. Grgic J (2022) What is the effect of paracetamol (acetaminophen) ingestion on exercise performance? Current findings and future research directions. Sports Med 52(3):431–439. https://doi.org/10.1007/s40279-021-01633-4

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Hermo Argibay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Marzano-Felisatti, J.M., Argibay, A.H., Sanchis-Sanchis, R., Encarnación-Martínez, A. (2025). Effects of Sports Disciplines on Skin Temperature Asymmetries. In: Priego-Quesada, J.I. (eds) Application of Infrared Thermography in Sports Science. Springer, Cham. https://doi.org/10.1007/978-3-031-93311-0_8

Download citation

Publish with us

Policies and ethics