Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content

Gas Transport and Gill Function in Water-Breathing Fish

  • Chapter
  • First Online:
Cardio-Respiratory Control in Vertebrates
  • 1481 Accesses

  • 42 Citations

Abstract

This review focuses on four areas of fish gill function: oxygen transport and transfer, carbon dioxide transport and transfer, oxygen and carbon dioxide sensing, and ammonia excretion. Each section presents a synthesis of previous work while also highlighting recent and ongoing studies that are shaping the growth of these research fields. Where possible, we will comment on the utility of using emerging technologies, including gene knockdown in zebrafish, to evaluate the function of the fish gill.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 143.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Albrecht J, Wegrzynowicz M (2005) Endogenous neuro-protectants in ammonia toxicity in the central nervous system: facts and hypotheses. Metabolic Brain Disease 20:253–263

    PubMed  CAS  Google Scholar 

  • Allert N, Koller H, Siebler M (1998) Ammonia-induced depolarization of cultured rat cortical astrocytes. Brain Research 782:261–270

    PubMed  CAS  Google Scholar 

  • Avella M, Bornacin M (1989) A new analysis of ammonia and sodium transport through the gills of freshwater rainbow trout (Salmo gardneri). Journal of Experimental Biology 142:155–176

    Google Scholar 

  • Avella M, Masoni A, Bornancin M, Mayer-Gostan N (1987) Gill morphology and sodium influx in the rainbow trout (Salmo gairdneri) acclimated to artificial freshwater environments. Journal of Experimental Zoology 241:159–169

    CAS  Google Scholar 

  • Bagatto B (2005) Ontogeny of cardiovascular control in zebrafish (Danio rerio): Effects of developmental environment. Comparative Biochemistry and Physiology. A. Comparative Physiology 141:391–400

    Google Scholar 

  • Bailly Y, Dunel-Erb S, Laurent P (1992) The neuroepithelial cells of the fish gill filament: indolamine immunocytochemistry and innervation. The Anatomical Record 233:143–161

    PubMed  CAS  Google Scholar 

  • Bakouh N, Benjelloun F, Cherif-Zahar B, Planelles G (2006) The challenge of understanding ammonium homeostasis and the role of the Rh glycoproteins. Transfusion clinique et biologique: journal de la Société française de transfusion sanguine 13:139–146

    CAS  Google Scholar 

  • Baroin A, Garcia-Romeu F, Lamarre T, Motais R (1984) A transient sodium–hydrogen exchange system induced by catecholamines in erythrocytes of rainbow trout, Salmo gairdneri. Journal of Physiology 356:21–31

    PubMed  CAS  Google Scholar 

  • Becker HM, Deitmer JW (2007) Carbonic anhydrase II increases the activity of the human electrogenic \({\rm Na}^{+}/{\rm HCO}_{3}^{-}\) cotransporter. The Journal of Biological Chemistry 282:13508–13521

    PubMed  CAS  Google Scholar 

  • Becker HM, Hirnet D, Fecher-Trost C, Sultemeyer D, Deitmer JW (2005) Transport activity of MCT1 expressed in Xenopus oocytes is increased by interaction with carbonic anhydrase. The Journal of Biological Chemistry 280:39882–39889

    PubMed  CAS  Google Scholar 

  • Benjelloun F, Bakouh N, Fritsch J, Hulin P, Lipecka J, Edelman A, Planelles G, Thomas SR, Cherif-Zahar B (2005) Expression of the human erythroid Rh glycoprotein (RhAG) enhances both NH3 and \({\rm NH}_{4}^{+}\) transport in HeLa cells. Pflügers archiv 450:155–167

    PubMed  CAS  Google Scholar 

  • Berenbrink M, Koldkjaer P, Kepp O, Cossins AR (2005) Evolution of oxygen secretion in fishes and the emergence of a complex physiological system. Science 307:1752–1757

    PubMed  CAS  Google Scholar 

  • Bickler PE, Donohoe PH, Buck LT (2002) Molecular adaptations for survival during anoxia: lessons from lower vertebrates. Neuroscientist 8:234–242

    PubMed  CAS  Google Scholar 

  • Bindon SD, Gilmour KM, Fenwick JC, Perry SF (1994a) The effect of branchial chloride cell proliferation on respiratory function in the rainbow trout, Oncorhynchus mykiss. Journal of Experimental Biology 197:47–63

    PubMed  Google Scholar 

  • Bindon SF, Fenwick JC, Perry SF (1994b) Branchial chloride cell proliferation in the rainbow trout, Oncorhynchus mykiss: Implications for gas transfer. Canadian Journal of Zoology 72:1395–1402

    CAS  Google Scholar 

  • Binstock L, Lecar H (1969) Ammonium ion currents in the squid giant axon. The Journal of General Physiology 53(3):342–361

    PubMed  CAS  Google Scholar 

  • Booth JH (1979) Circulation in trout gills: the relationship between branchial perfusion and the width of the lamellar blood space. Canadian Journal of Zoology 57(11):2183–2185

    Google Scholar 

  • Borgese F, Sardet C, Cappadoro M, Pouyssegur J, Motais R (1992) Cloning and expression of a cAMP-activated Na+/H+ exchanger: evidence that the cytoplasmic domain mediates hormonal regulation. Proceedings of the National Academy of the United States of America 89:6765–6769

    CAS  Google Scholar 

  • Boutilier RG, Heming TA, Iwama GK (1984) Physiochemical parameters for use in fish respiratory physiology. In: Hoar WS, Randall DJ (eds) Fish Physiology, vol XA. Academic, New York, pp 403–430

    Google Scholar 

  • Boutilier RG, Iwama GK, Randall DJ (1986) The promotion of catecholamine release in rainbow trout, Salmo gairdneri, by acute acidosis: interaction between red cell pH and haemoglobin oxygen-carrying capacity. Journal of Experimental Biology 123:145–157

    PubMed  CAS  Google Scholar 

  • Boutilier RG, Dobson GP, Hoeger U, Randall DJ (1988) Acute exposure to graded levels of hypoxia in rainbow trout (Salmo gairdneri): metabolic and respiratory adaptations. Respiration Physiology 71:69–82

    PubMed  CAS  Google Scholar 

  • Bostick DL, Brooks CL (2007) Deprotonation by dehydration: the origin of ammonium sensing in the AmtB channel. PLoS Computer Biology 3:e22

    Google Scholar 

  • Brauner CJ (1995) The interaction between O2 and CO2 movements during aerobic exercise in fish. Brazilian Journal of Medical and Biological Research 28:1185–1189

    PubMed  CAS  Google Scholar 

  • Brauner CJ, Randall DJ (1996) The interaction between oxygen and carbon dioxide movements in fishes. Comparative Biochemistry and Physiology A 113:83–90

    Google Scholar 

  • Brauner CJ, Randall DJ (1998) The linkage between oxygen and carbon dioxide transport. In: Perry SF, Tufts BL (eds) Fish Physiology, vol 17 Fish Respiration. Academic, San Diego, pp 283–319

    Google Scholar 

  • Brauner CJ, Matey V, Wilson JM, Bernier NJ, Val AL (2004) Transition in organ function during the evolution of air-breathing; insights from Arapaima gigas, an obligate air-breathing teleost from the Amazon. Journal of Experimental Biology 207:1433–1438

    PubMed  CAS  Google Scholar 

  • Brinkman R, Margaria R, Meldrum NU, Roughton FJW (1932) The CO2 catalyst present in blood. Journal of Physiology 75:3–4

    CAS  Google Scholar 

  • Brown CR, Cameron JN (1991) The induction of specific dynamic action in channel catfish by infusion of essential amino acids. Physiological Zoology 64:276

    CAS  Google Scholar 

  • Burckhardt B-C, Frömter E (1992) Pathways of \({\rm NH}_{3}/{\rm NH}_{4}^{+}\) permeation across the Xenopus laevis oocyte cell membrane. Pflügers Archiv 420:83–86

    PubMed  CAS  Google Scholar 

  • Burggren WW,Haswell MS (1979) Aerial CO2 excretion in the obligate air breathing fish Trichogaster trichopterus: a role for carbonic anhydrase. Journal of Experimental Biology 82:215–225

    CAS  Google Scholar 

  • Burleson ML (1995) Oxygen availability: Sensory systems. In: Hochachka PW, Mommsen TP (eds) Biochemistry and molecular biology of fishes. Elsevier, Amsterdam, pp 1–18

    Google Scholar 

  • Burleson ML, Milsom WK (1993) Sensory receptors in the first gill arch of rainbow trout. Respiration Physiology 93:97–110

    PubMed  CAS  Google Scholar 

  • Burleson ML, Smatresk NJ, Milsom WK (1992) Afferent inputs associated with cardioventilatory control in fish. In: Hoar WS, Randall DJ, Farrell AP (eds) Fish Physiology, vol XIIB: The Cardiovascular System. Academic, San Diego, pp 389–423

    Google Scholar 

  • Burleson ML, Carlton AL, Silva PE (2002) Cardioventilatory effects of acclimatization to aquatic hypoxia in channel catfish. Respiratory Physiology and Neurobiology 131:223–232

    PubMed  Google Scholar 

  • Burleson ML, Mercer SE, Wilk-Blaszczak MA (2006) Isolation and characterization of putative O2 chemoreceptor cells from the gills of channel catfish (Ictalurus punctatus). Brain Research 1092:100–107

    PubMed  CAS  Google Scholar 

  • Cameron JN, Heisler N (1985) Ammonia transfer across fish gills: a review. In: Gilles R (ed) Circulation, Respiration, and Metabolism. Springer, Berlin, pp 91–100

    Google Scholar 

  • Cameron JN, Polhemus JA (1974) Theory of CO2 exchange in trout gills. Journal of Experimental Biology 60:183–191

    CAS  Google Scholar 

  • Chew SF, Hong LN, Wilson JM, Randall DJ, Ip YK (2003) Alkaline environmental pH has no effect on ammonia excretion in the mudskipper Periophthalmodon schlosseri but inhibits ammonia excretion in the related species Boleophthalmus boddaerti. Physiological and Biochemical Zoology 76:204–214

    PubMed  CAS  Google Scholar 

  • Chew SF, Sim MY, Phua ZC, Wong WP, Ip YK (2007) Active ammonia excretion in the giant mudskipper, Periophthalmodon schlosseri (Pallas), during emersion. Journal of Experimental Zoology A 307:357–369

    Google Scholar 

  • Claiborne JB, Evans DH (1988) Ammonia and acid-base balance during high ammonia exposure in a marine teleost (Myxocephalus octodecimspinous). Journal of Experimental Biology 140:89–105

    CAS  Google Scholar 

  • Cooper GJ, Boron WF (1998) Effect of PCMBS on CO2 permeability of Xenopus oocytes expressing aquaporin 1 or its C189S mutant. American Journal of Physiology 275:C1481–1486

    PubMed  CAS  Google Scholar 

  • Cooper AJ, Plum F (1987) Biochemistry and physiology of brain ammonia. Physiological Reviews 67:440–519

    PubMed  CAS  Google Scholar 

  • Cooper GJ, Zhou Y, Bouyer P, Grichtchenko II, Boron WF (2002) Transport of volatile solutes through AQP1. Journal of Physiology 542:17–29

    PubMed  CAS  Google Scholar 

  • Cossins AR, Richardson PA (1985) Adrenalin-induced Na+/H+ exchange in trout erythrocytes and its effects upon oxygen-carrying capacity. Journal of Experimental Biology 188:229–246

    Google Scholar 

  • Davie PS, Daxboeck C (1982) Effect of pulse pressure on fluid exchange between blood and tissues in trout gills. Canadian Journal of Zoology 60:1000–1006

    Google Scholar 

  • Daxboeck C, Heming TA (1982) Bimodal respiration in the intertidal fish, Xiphister atropurpureus (Kittlitz). Marine Behaviour and Physiology 9:23–33

    Google Scholar 

  • Desforges PR, Gilmour KM, Perry SF (2001) The effects of exogenous extracellular carbonic anhydrase on CO2 excretion in rainbow trout (Oncorhynchus mykiss): role of plasma buffering capacity. Journal of Comparative Physiology B 171:465–473

    CAS  Google Scholar 

  • Desforges PR, Harman SS, Gilmour KM, Perry SF (2002) Sensitivity of CO2 excretion to blood flow changes in trout is determined by carbonic anhydrase availability. American Journal of Physiology 282:R501–R508

    PubMed  CAS  Google Scholar 

  • Driedzic WR, Hochachka PW (1976) Control of energy metabolism in fish white muscle. American Journal of Physiology 230:579–582

    PubMed  CAS  Google Scholar 

  • Dobson GP, Hochachka PW (1987) Role of glycolysis in adenylate depletion and repletion during work and recovery in teleost white muscle. Journal of Experimental Biology 129:125–140

    PubMed  CAS  Google Scholar 

  • Dobson GP, Wood SC, Daxboeck C, Perry SF (1986) Intracellular buffering and oxygen transport in the Pacific blue marlin (Makaira nigricans): adaptations to high-speed swimming. Physiological Zoology 59:150–156

    Google Scholar 

  • Dunel-Erb S, Bailly Y, Laurent P (1982) Neuroepithelial cells in fish gill primary lamellae. Journal of Applied Physiology 53:1342–1353

    PubMed  CAS  Google Scholar 

  • Eladari D, Cheval L, Quentin F, Bertrand O, Mouro I, Cherif-Zahar B, Cartron JP, Paillard M, Doucet A, Chambrey R (2002) Expression of RhCG, a new putative \({\rm NH}_{3}/{\rm NH}_{4}^{+}\) transporter, along the rat nephron. Journal of the American Society of Nephrology 13:1999–2008

    PubMed  CAS  Google Scholar 

  • Endeward V, Cartron JP, Ripoche P, Gros G (2006a) Red cell membrane CO2 permeability in normal human blood and in blood deficient in various blood groups, and effect of DIDS. Transfusion clinique et biologique: journal de la Société française de transfusion sanguine 13:123–127

    CAS  Google Scholar 

  • Endeward V, Musa-Aziz R, Cooper GJ, Chen LM, Pelletier MF, Virkki LV, Supuran CT, King LS, Boron WF, Gros G (2006b) Evidence that aquaporin 1 is a major pathway for CO2 transport across the human erythrocyte membrane. The FASEB Journal 20:1974–81

    PubMed  CAS  Google Scholar 

  • Endeward V, Cartron JP, Ripoche P, Gros G (2007) RhAG protein of the Rhesus complex is a CO2 channel in the human red cell membrane. The FASEB Journal 22:64–73

    PubMed  Google Scholar 

  • Esbaugh AJ, Tufts BL (2006) Evidence of a high activity carbonic anhydrase isozyme in the red blood cells of an ancient vertebrate, the sea lamprey (Petromyzon marinus). Journal of Experimental Biology 209:1169–1178

    PubMed  CAS  Google Scholar 

  • Esbaugh AJ, Lund SG, Tufts BL (2004) Comparative physiology and molecular analysis of carbonic anhyrdase from the red blood cells of teleost fish. Journal of Comparative Physiology B 174:429–438

    CAS  Google Scholar 

  • Esbaugh AJ, Perry SF, Bayaa M, Georgalis T, Nickerson J, Tufts BL, Gilmour KM (2005) Cytoplasmic carbonic anhydrase isozymes in rainbow trout Oncorhynchus mykiss: comparative physiology and molecular evolution. Journal of Experimental Biology 208:1951–1961

    PubMed  CAS  Google Scholar 

  • Evans DH, More KJ, Robbins SL (1989) Modes of ammonia transport across the gill epithelium of the marine teleost fish, Opsanus beta. Journal of Experimental Biology 144:339–356

    Google Scholar 

  • Evans DH, Piermarini PM, Choe KP (2005) The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiological Reviews 85:97–177

    PubMed  CAS  Google Scholar 

  • Fago A,Weber RE (1998) Hagfish haemoglobins. In: Jørgensen JM, Lomholt JP, Weber RE, Malte H (eds) The Biology of Hagfishes. Chapman and Hall, London, 321–333

    Google Scholar 

  • Fago A, Malte H, Dohn N (1999) Bicarbonate binding to haemoglobin links oxygen and carbon dioxide transport in hagfish. Respiration Physiology 115:309–315

    PubMed  CAS  Google Scholar 

  • Fang X, Yang B, Matthay MA, Verkman AS (2002) Evidence against aquaporin-1-dependent CO2 permeability in lung and kidney. Journal of Physiology 542:63–69

    PubMed  CAS  Google Scholar 

  • Farrell AP (2007) Tribute to P. L. Lutz: a message from the heart – why hypoxic bradycardia in fishes? Journal of Experimental Biology 210:1715–1725

    PubMed  CAS  Google Scholar 

  • Farrell AP, Daxboeck C, Randall DJ (1979) The effect of input pressure and flow on the pattern and resistance to flow in the isolated perfused gill of a teleost fish. Journal of Comparative Physiology 133:233–240

    Google Scholar 

  • Farrell AP, Sobin SS, Randall DJ, Crosby S (1980) Intralamellar blood flow patterns in fish gills. American Journal of Physiology 239:R428–R436

    PubMed  CAS  Google Scholar 

  • Felipo V, Hermenegildo C, Montoliu C, Llansola M, Minana MD (1998) Neurotoxicity of ammonia and glutamate: molecular mechanisms and prevention. Neurotoxicology 19:675–681

    PubMed  CAS  Google Scholar 

  • Frick NT, Wright PA (2002) Nitrogen metabolism and excretion in the mangrove killifish Rivulus marmoratus II. Significant ammonia volatilization in a teleost during air-exposure. Journal of experimental biology 205:91–100

    PubMed  CAS  Google Scholar 

  • Fritsche R, Nilsson S (1990) Autonomic nervous control of blood pressure and heart rate during hypoxia in the cod, Gadus morhua. Journal of Comparative Physiology B 160:287–292

    Google Scholar 

  • Fritsche R, Nilsson S (1993) Cardiovascular and ventilatory control during hypoxia. In: Rankin JC, Jensen FB (eds) Fish Ecophysiology. Chapman & Hall, London, pp 180–206

    Google Scholar 

  • Gallaugher P, Axelsson M, Farrell AP (1992) Swimming performance and haematological variables in splenectomized rainbow trout, Oncorhynchus mykiss. Journal of Experimental Biology 171:301–314

    Google Scholar 

  • Gallaugher P, Thorarensen H, Farrell AP (1995) Haematocrit in oxygen transport and swimming in rainbow trout (Oncorhynchus mykiss). Respiration Physiology 102:279–292

    PubMed  CAS  Google Scholar 

  • Gallaugher PE, Thorarensen H, Kiessling A, Farrell AP (2001) Effects of high intensity exercise training on cardiovascular function, oxygen uptake, internal oxygen transport and osmotic balance in chinook salmon (Oncorhynchus tshawytscha) during critical speed swimming. Journal of Experimental Biology 204:2861–2872

    PubMed  CAS  Google Scholar 

  • Gervais MR, Tufts BL (1998) Evidence for membrane-bound carbonic anhydrase in the air bladder of bowfin (Amia calva), a primitive air-breathing fish. Journal of Experimental Biology 201:2205–12

    PubMed  CAS  Google Scholar 

  • Gilmour KM (1997) Gas exchange. In: Evans DH (ed) The Physiology of Fishes. CRC, Boca Raton, pp 101–127

    Google Scholar 

  • Gilmour KM (2001) The CO2/pH ventilatory drive in fish. Comparative Biochemistry and Physiology A 130:219–240

    CAS  Google Scholar 

  • Gilmour KM, Perry SF (2004) Branchial membrane-associated carbonic anhydrase activity maintains CO2 excretion in severely anemic dogfish. American Journal of Physiology 286:R1138–R1148

    PubMed  CAS  Google Scholar 

  • Gilmour KM, Perry SF (2006) Branchial chemoreceptor regulation of cardiorespiratory function. In: Hara T, Zielinski, B (eds) Fish Physiology vol 25: Sensory Systems Neuroscience. Academic, San Diego, pp 97–151

    Google Scholar 

  • Gilmour KM, Perry SF, Bernier NJ, Henry RP, Wood CM (2001) Extracellular carbonic anhydrase in the dogfish, Squalus acanthias: a role in CO2 excretion. Physiological and Biochemical Zoology 74:477–492

    PubMed  CAS  Google Scholar 

  • Gilmour KM, Shah B, Szebedinszky C (2002) An investigation of carbonic anhydrase activity in the gills and blood plasma of brown bullhead (Ameiurus nebulosus), longnose skate (Raja rhina), and spotted raffish (Hydrolagus colliei). Journal of Comparative Physiology B 172:77–86

    CAS  Google Scholar 

  • Gilmour KM, Desforges PR, Perry SF (2004) Buffering limits plasma \({\rm HCO}_{3}^{-}\) dehydration when red blood cell anion exchange is inhibited. Respiratory Physiology and Neurobiology 140:173–87

    PubMed  CAS  Google Scholar 

  • Gilmour KM, Milsom WK, Rantin FT, Reid SG, Perry SF (2005) Cardiorespiratory responses to hypercarbia in tambaqui (Colossoma macropomum): chemoreceptor orientation and specificity. Journal of Experimental Biology 208:1095–1107

    PubMed  CAS  Google Scholar 

  • Gilmour KM, Bayaa M, Kenney L, McNeill B, Perry SF (2007) Type IV carbonic anhydrase is present in the gills of spiny dogfish (Squalus acanthias). American Journal of Physiology 292:R556–R567

    PubMed  CAS  Google Scholar 

  • Goniakowska-Witalinska L, Zaccone G, Fasulo S, Mauceri A, Licata A, Youson J (1995) Neuroendocrine cells in the gills of the bowfin Amia calva. An ultrastructural and immunocytochemical study. Folia Histochemica et Cytobiologica 33:171–177

    PubMed  CAS  Google Scholar 

  • Good DW, Knepper MA, Burg MB (1984) Ammonia and bicarbonate transport by thick ascending limb of rat kidney. American Journal of Physiology 247:F35–F44

    PubMed  CAS  Google Scholar 

  • Graham G (2006) Aquatic and aerial respiration. In: Evans DH, Claiborne JB (eds) The Physiology of Fishes. CRC, Boca Raton, pp 85–152

    Google Scholar 

  • Greaney GS, Powers DA (1978) Allosteric modifiers of fish haemoglobins: in vitro and in vivo studies of the effect of ambient oxygen and pH on erythrocyte ATP concentrations. Journal of Experimental Zoology 203:339–350

    PubMed  CAS  Google Scholar 

  • Greco AM, Gilmour KM, Fenwick JC, Perry SF (1995) The effects of soft-water acclimation on respiratory gas transfer in the rainbow trout, Oncorhynchus mykiss. Journal of Experimental Biology 198:2557–2567

    Google Scholar 

  • Greco AM, Fenwick JC, Perry SF (1996) The effects of softwater acclimation on gill morphology in the rainbow trout, Oncorhynchus mykiss. Cell and Tissue Research 285:75–82

    PubMed  CAS  Google Scholar 

  • Gross E, Pushkin A, Abuladze N, Fedotoff O, Kurtz I (2002) Regulation of the sodium bicarbonate cotransporter kNBC1 function: role of Asp986, Asp988 and kNBC1-carbonic anhydrase II binding. Journal of Physiology 544:679–685

    PubMed  CAS  Google Scholar 

  • Heisler N (1990) Mechanisms of ammonia elimination in fishes. In: Truchot J-P, Lahlou B (eds) Animal Nutrition and Transport Processes. 2. Transport, Respiration and Excretion: Comparative and Environmental Aspects. Karger, Basel, pp 137–151

    Google Scholar 

  • Heming TA, Randall DJ, Boutilier RG, Iwama GK, Primmett D (1986) Ionic equilibria in red blood cells of rainbow trout (Salmo gairdneri): Cl−, \({\rm HCO}_{3}^{-}\) and H+. Respiration Physiology 65:223–234

    PubMed  CAS  Google Scholar 

  • Henry RP, Heming TA (1998) Carbonic anhydrase and respiratory gas exchange. In: Perry SF, Tufts BL (eds) Fish Respiration. Academic, San Diego, pp 75–111

    Google Scholar 

  • Henry RP, Swenson ER (2000) The distribution and physiological significance of carbonic anhydrase in vertebrate gas exchange organs. Respiration Physiology 121:1–12

    PubMed  CAS  Google Scholar 

  • Henry RP, Tufts BL, Boutilier RG (1993) The distribution of carbonic anhydrase type I and II isozymes in lamprey and trout: possible co-evolution with erythrocyte chloride/bicarbonate exchange. Journal of Comparative Physiology B 163:380–388

    CAS  Google Scholar 

  • Henry RP, Gilmour KM, Wood CM, Perry SF (1997) Extracellular carbonic anhydrase activity and carbonic anhydrase inhibitors in the circulatory system of fish. Physiological Zoology 70:650–659

    PubMed  CAS  Google Scholar 

  • Hill WG, Mathai JC, Gensure RH, Zeidel JD, Apodaca G, Saenz JP, Kinne-Saffran E, Kinne R, Zeidel ML (2004) Permeabilities of teleost and elasmobranch gill apical membranes: evidence that lipid bilayers alone do not account for barrier function. American Journal of Physiology Cell physiology 287:C235–C242

    PubMed  CAS  Google Scholar 

  • Holeton GF (1970) Oxygen uptake and circulation by a haemoglobinless Antarctic fish (Chaenocephalus aceratus Lonnberg) compared with three red-blooded Antarctic fish. Comparative Biochemistry and Physiology 34:457–471

    PubMed  CAS  Google Scholar 

  • Holeton GF, Randall DJ (1967) Changes in blood pressure in the rainbow trout during hypoxia. Journal of Experimental Biology 46:297–305

    PubMed  CAS  Google Scholar 

  • Hsieh DJ, Liao CF (2002) Zebrafish M2 muscarinic acetylcholine receptor: cloning, pharmacological characterization, expression patterns and roles in embryonic bradycardia. British Journal of Pharmacology 137:782–792

    PubMed  CAS  Google Scholar 

  • Hung CY, Tsui KN, Wilson JM, Nawata CM, Wood CM, Wright PA (2007) Rhesus glycoprotein gene expression in the mangrove killifish Kryptolebias marmoratus exposed to elevated environmental ammonia levels and air. Journal of Experimental Biology 210:2419–2429

    PubMed  CAS  Google Scholar 

  • Iles JF, Jack JJ (1980) Ammonia: assessment of its action on postsynaptic inhibition as a cause of convulsions. Brain 103:555–578

    PubMed  CAS  Google Scholar 

  • Ip YK, Chew SF, Randall DJ (2001) Ammonia toxicity, tolerance, and excretion. In: Wright PA, Anderson PM (eds) Fish Physiology, vol 20 Nitrogen Excretion. Academic, San Diego, pp 109–148

    Google Scholar 

  • Ip YK, Leong MW, Sim MY, Goh GS, Wong WP, Chew SF (2005) Chronic and acute ammonia toxicity in mudskippers, Periophthalmodon schlosseri and Boleophthalmus boddaerti: brain ammonia and glutamine contents, and effects of methionine sulfoximine and MK801. Journal of Experimental Biology 208:1993–2004

    PubMed  CAS  Google Scholar 

  • Jensen FB (1991) Multiple strategies in oxygen and carbon dioxide transport by haemoglobin. In: Woakes AJ, Grieshaber MK, Bridges CR (eds) Physiological Strategies for Gas Exchange and Metabolism (Society for Experimental Biology Seminar Series). Cambridge University Press, Cambridge, pp 55–78

    Google Scholar 

  • Jensen FB (2004) Red blood cell pH, the Bohr effect, and other oxygenation-linked phenomena in blood O2 and CO2 transport. Acta Physiologica Scandinavica 182:215–27

    PubMed  CAS  Google Scholar 

  • Jonz MG, Nurse CA (2003) Neuroepithelial cells and associated innervation of the zebrafish gill: a confocal immunofluorescence study. Journal of Comparative Neurology 461:1–17

    PubMed  Google Scholar 

  • Jonz MG, Nurse CA (2005) Development of oxygen sensing in the gills of zebrafish. Journal of Experimental Biology 208:1537–1549

    PubMed  Google Scholar 

  • Jonz MG, Fearon IM, Nurse CA (2004) Neuroepithelial oxygen chemoreceptors of the zebrafish gill. Journal of Physiology 560:737–752

    PubMed  CAS  Google Scholar 

  • Kelly SP, Wood CM (2001) The cultured branchial epithelium of the rainbow trout as a model for diffusive fluxes of ammonia across the fish gill. Journal of Experimental Biology 204:4115–4124

    PubMed  CAS  Google Scholar 

  • Kikeri D, Son A, Zeidel ML, Herbert SC (1989) Cell membranes impermeable to NH3. Nature 339:478–480

    PubMed  CAS  Google Scholar 

  • Kinkead R, Fritsche R, Perry SF, Nilsson S (1991) The role of circulating catecholamines in the ventilatory and hypertensive responses to hypoxia in the Atlantic cod (Gadus morhua). Physiological Zoology 64:1087–1109

    CAS  Google Scholar 

  • Kleiner D (1985) Bacterial ammonium transporters. FEMS Microbiol Rev 32:87–100

    CAS  Google Scholar 

  • Klejman A, Wegrzynowicz M, Szatmari EM, Mioduszewska B, Hetman M, Albrecht J (2005) Mechanisms of ammonia-induced cell death in rat cortical neurons: roles of NMDA receptors and glutathione. Neurochemistry International 47:51–57

    PubMed  CAS  Google Scholar 

  • Lai NC, Graham JB, Bhargava V, Lowell WR, Shabetai R (1989) Branchial blood flow distribution in the blue shark (Prionace glauca) and the leopard shark (Triakis semifasciata). Experimental Biology 48:273–278

    PubMed  CAS  Google Scholar 

  • Lai JCC, Kakuta I, Mok HOL, Rummer JL, Randall DJ (2006) Effects of moderate and substantial hypoxia on erythropoietin levels in rainbow trout kidney and spleen. Journal of Experimental Biology 209:2734–2738

    PubMed  CAS  Google Scholar 

  • Laurent P, Hobe H, Dunel-Erb S (1985) The role of environmental sodium chloride relative to calcium in gill morphology of freshwater salmonid fish. Cell and Tissue Research 240:675–692

    CAS  Google Scholar 

  • Leino RL, McCormick JH, Jensen KM (1987) Changes in gill histology of fathead minnows and yellow perch transferred to soft water or acidified soft water with particular reference to chloride cells. Cell and Tissue Research 250:389–399

    Google Scholar 

  • Li X, Alvarez B, Casey JR, Reithmeier RA, Fliegel L (2002) Carbonic anhydrase II binds to and enhances activity of the Na+/H+ exchanger. The Journal of Biological Chemistry 277:36085–36091

    PubMed  CAS  Google Scholar 

  • Lin HL, Pfeiffer DC, Vogl AW, Pan J, Randall DJ (1994) Immunolocalization of H+-ATPase in the gill epithelia of rainbow trout. Journal of Experimental Biology 195:169–183

    PubMed  CAS  Google Scholar 

  • Litwiller SL, O'Donnell MJ, Wright PA (2006) Rapid increase in the partial pressure of NH3 on the cutaneous surface of air-exposed mangrove killifish, Rivulus marmoratus. Journal of Experimental Biology 209:1737–1745

    PubMed  CAS  Google Scholar 

  • Loiselle FB, Morgan PE, Alvarez BV, Casey JR (2004) Regulation of the human NBC3 \({\rm Na}^{+}/{\rm HCO}_{3}^{-}\) cotransporter by carbonic anhydrase II and PKA. American Journal of Physiology 286:C1423–C1433

    PubMed  CAS  Google Scholar 

  • Lu J, Daly CM, Parker MD, Gill HS, PiermariniPM, Pelletier MF, Boron WF (2006) Effect of human carbonic anhydrase II on the activity of the human electrogenic Na/HCO3 cotransporter NBCe1-A in Xenopus oocytes. The Journal of Biological Chemistry 281:19241–19250

    PubMed  CAS  Google Scholar 

  • Lund SG, Dyment P, Gervais MR, Moyes CD, Tufts BL (2002) Characterization of erythrocyte carbonic anhydrase in an ancient fish, the longnose gar (Lepisosteus osseus). Journal of Comparative Physiology B 172:467–476

    CAS  Google Scholar 

  • Malte H, Lomholt JP (1998) Ventilation and gas exchange. In: Jørgensen JM, Lomholt JP, Weber RE, Malte H (eds) The Biology of Hagfishes. Chapman and Hall, New York, 223–234

    Google Scholar 

  • Marcaida G, Felipo V, Hermenegildo C, Minana MD, Grisolia S (1992) Acute ammonia toxicity is mediated by the NMDA type of glutamate receptors. FEBS letters 296:67–68

    PubMed  CAS  Google Scholar 

  • Maren TH,Swenson ER (1980) A comparative study of the kinetics of the Bohr effect in vertebrates. Journal of Physiology 303:535–547

    PubMed  CAS  Google Scholar 

  • Marini AM, Vissers S, Urrestarazu A, Andre B (1994) Cloning and expression of the MEP1 gene encoding an ammonium transporter in Saccharomyces cerevisiae. The EMBO Journal 13:3456–3463

    PubMed  CAS  Google Scholar 

  • Marini AM, Matassi G, Raynal V, Andre B (1997a) A family of ammonium transporters in Saccharomyces cerevisiae. Molecular and Cellular Biology 17:4282–4293

    PubMed  CAS  Google Scholar 

  • Marini AM, Urrestarazu A, Beauwens R, Andre B (1997b) The Rh (rhesus) blood group polypeptides are related to \({\rm NH}_{4}^{+}\) transporters. Trends in Biochemical Sciences 22:460–461

    PubMed  CAS  Google Scholar 

  • Marini AM, Matassi G, Raynal V, Andre B, Cartron JP, Cherif-Zahar B (2000) The human Rhesus-associated RhAG protein and a kidney homologue promote ammonium transport in yeast. Nature Genetics 26:341–344

    PubMed  CAS  Google Scholar 

  • Marini AM, Boeckstaens M, Andre B (2006) From yeast ammonium transporters to Rhesus proteins, isolation and functional characterization. Transfusion clinique et biologique: journal de la Société française de transfusion sanguine 13:95–96

    Google Scholar 

  • Mayer M, Schaaf G, Mouro I, Lopez C, Colin Y, Neumann P, Cartron JP, Ludewig U (2006) Different transport mechanisms in plant and human AMT/Rh-type ammonium transporters. The Journal of General Physiology 127:133–144

    PubMed  CAS  Google Scholar 

  • McDonald DG, Cavdek V, Calvert L, Milligan CL (1991) Acid-base regulation in the Atlantic hagfish Myxine glutinosa. Journal of Experimental Biology 161:201–215

    Google Scholar 

  • McGeer JC, Eddy FB (1998) Ionic regulation and nitrogenous excretion in rainbow trout exposed to buffered and unbuffered freshwater of pH 10.5. Physiological Zoology 71:179–190

    PubMed  CAS  Google Scholar 

  • McKendry JE, Perry SF (2001) Cardiovascular effects of hypercapnia in rainbow trout (Oncorhynchus mykiss): A role for externally oriented chemoreceptors. Journal of Experimental Biology 204:115–125

    PubMed  CAS  Google Scholar 

  • Meldrum NU, Roughton FJW (1933) Carbonic anhydrase: its preparation and properties. Journal of Physiology 80:113–142

    PubMed  CAS  Google Scholar 

  • Milsom WK (1989) Mechanisms of ventilation in lower vertebrates: adaptations to respiratory and non-respiratory constraints. Canadian Journal of Zoology 67:2943–2955

    Google Scholar 

  • Milsom WK (1995a) Regulation of respiration in lower vertebrates: Role of CO2/pH chemoreceptors. In: Heisler N (ed) Advances in Comparative and Environmental Physiology, volume 21, Mechanisms of Systemic Regulation: Acid-Base Regulation, Ion Transfer and Metabolism. Springer, Berlin, pp 62–104

    Google Scholar 

  • Milsom WK (1995b) The role of CO2/pH chemoreceptors in ventilatory control. Brazilian Journal of medical and biological research 28:1147–1160

    PubMed  CAS  Google Scholar 

  • Milsom WK (2002) Phylogeny of CO2/H+ chemoreception in vertebrates. Respiratory physiology and neurobiology 131:29–41

    PubMed  CAS  Google Scholar 

  • Milsom WK, Brill RW (1986) Oxygen-sensitive afferent information arising from the first gill arch of yellowfin tuna. Respiration Physiology 66:193–203

    PubMed  CAS  Google Scholar 

  • Milsom WK, Sundin L, Reid S, Kalinin A, Rantin FT (1999) Chemoreceptor control of cardiovascular reflexes. In: Val AL, Almeida-Val VMF (eds) Biology of Tropical Fishes. INPA, Manaus, pp 363–374

    Google Scholar 

  • Mommsen TP, Walsh PJ (1989) Evolution of urea synthesis in vertebrates: the piscine connection. Science 243:72–75

    PubMed  CAS  Google Scholar 

  • Mommsen TP, Walsh PJ (1992) Biochemical and environmental perspectives on nitrogen metabolism in fishes. Experientia 48:583–593

    CAS  Google Scholar 

  • Nakada T, Westhoff CM, Kato A, Hirose S (2007a) Ammonia secretion from fish gill depends on a set of Rh glycoproteins. The FASEB Journal 21:1067–1074

    PubMed  CAS  Google Scholar 

  • Nakada T, Hoshijima K, Esaki M, Nagayoshi S, Kawakami K, Hirose S (2007b) Localization of ammonia transporter Rhcg1 in mitochondrion-rich cells of yolk sac, gill, and kidney of zebrafish and its ionic strength-dependent expression. American Journal of Physiology 293:R1743–R1753

    PubMed  CAS  Google Scholar 

  • Nakhoul NL, Hamm LL (2004) Non-erythroid Rh glycoproteins: a putative new family of mammalian ammonium transporters. Pflügers Archiv 447:807–812

    PubMed  CAS  Google Scholar 

  • Nakhoul NL, Davis BA, Romero MF, Boron WF (1998) Effect of expressing the water channel aquaporin-1 on the CO2 permeability of Xenopus oocytes. American Journal of Physiology 274:C543–C548

    PubMed  CAS  Google Scholar 

  • Nakhoul NL, Schmidt E, Abdulnour-Nakhoul SM, Hamm LL (2006) Electrogenic ammonium transport by renal Rhbg. Transfusion clinique et biologique: journal de la Société française de transfusion sanguine 13:147–153

    CAS  Google Scholar 

  • Nawata CM, Hung CC, Tsui TK, Wilson JM, Wright PA, Wood CM (2007) Ammonia excretion in rainbow trout (Oncorhynchus mykiss): evidence for Rh glycoprotein and H+-ATPase involvement. Physiological Genomics 31:463–474

    PubMed  CAS  Google Scholar 

  • Nickerson JG, Dugan SG, Drouin G, Perry SF, Moon TW (2003) Activity of the unique β-adrenergic Na+/H+ exchanger in trout erythrocytes is controlled by a novel β3–AR subtype. American Journal of Physiology 285:R526–R535

    PubMed  Google Scholar 

  • Nickerson JG, Drouin G, Perry SF, Moon TW (2004) In vitro regulation of adrenoceptor signaling in the rainbow trout (Oncorhynchus mykiss). Comparative Biochemistry Physiology A 27:157–171

    Google Scholar 

  • Nikinmaa M (1982) Effects of adrenaline on red cell volume and concentration gradient of protons across the red cell membrane in the rainbow trout, Salmo gairdneri. Molecular Physiology 2:287–297

    CAS  Google Scholar 

  • Nikinmaa M (1983) Adrenergic regulation of haemoglobin oxygen affinity in rainbow trout red cells. Journal of Comparative Physiology B 152:67–72

    CAS  Google Scholar 

  • Nikinmaa M (1986) Red cell pH of lamprey (Lampetra fluviatilis) is actively regulated. Journal of Comparative Physiology B 156:747–750

    CAS  Google Scholar 

  • Nikinmaa M (1992) Membrane transport and control of haemoglobin–oxygen affinity in nucleated erythrocytes. Physiological Reviews 72:301–321

    PubMed  CAS  Google Scholar 

  • Nikinmaa M (1997) Oxygen and carbon dioxide transport in vertebrate erythrocytes: an evolutionary change in the role of membrane transport. Journal of Experimental Biology Pt 2:369–80

    Google Scholar 

  • Nikinmaa M (2001) Haemoglobin function in vertebrates: evolutionary changes in cellular regulation in hypoxia. Respiration Physiology 128:317–329

    PubMed  CAS  Google Scholar 

  • Nikinmaa M (2002) Oxygen-dependent cellular functions – why fishes and their aquatic environment are a prime choice of study. Comparative Biochemistry and Physiology A 133:1–16

    Google Scholar 

  • Nikinmaa M (2006) Gas Transport. In: Evans DH, Claiborne JB (eds) The Physiology of Fishes. CRC, Boca Raton, pp 153–174

    Google Scholar 

  • Nikinmaa M, Boutilier RG (1995) Adrenergic control of red cell pH, organic phosphate concentrations and haemoglobin function in teleost fish. In: Heisler N (ed) Advances in Comparative and Environmental Physiology, vol 21. Mechanisms of Systemic Regulation: Respiration and Circulation. Springer, Berlin, pp 107–133

    Google Scholar 

  • Nikinmaa M, Huestis WH (1984) Adrenergic swelling of nucleated erythrocytes: Cellular mechanisms in a bird, domestic goose, and two teleosts, striped bass and rainbow trout. Journal of Experimental Biology 113:215–224

    CAS  Google Scholar 

  • Nikinmaa M, Tufts BL (1989) Regulation of acid and ion transfer across the membrane of nucleated erythrocytes. Canadian Journal of Zoology 67:3039–3045

    CAS  Google Scholar 

  • Nikinmaa M, Kunnamo-Ojala T, Railo E (1986) Mechanisms of pH regulation in lamprey (Lampetra fluviatilis) red blood cells. Journal of Experimental Biology 122:355–367

    PubMed  CAS  Google Scholar 

  • Nikinmaa M, Tufts BL, Boutilier RG (1993) Volume and pH regulation in agnthan erythrocytes – comparsions between the hagfish, Myxine glutinosa, and the lampreys, Pertromyzon marinus and Lampetra fluviatilis. Journal of Comparative Physiology B 163:608–613

    Google Scholar 

  • Nilsson GE (2007) Gill remodeling in fish: a new fashion or an ancient secret? Journal of Experimental Biology 210:2403–2409

    PubMed  Google Scholar 

  • Nilsson S, Grove DJ (1974) Adrenergic and cholinergic innervation of the spleen of the cod, Gadus morhua. European Journal of Pharmacology 28:135–143

    PubMed  CAS  Google Scholar 

  • Ninnemann O, Jauniaux JC, Frommer WB (1994) Identification of a high affinity \({\rm NH}_{4}^{+}\) transporter from plants. The EMBO Journal 13:3464–3471

    PubMed  CAS  Google Scholar 

  • Norenberg MD, Neary JT, Bender AS, Dombro RS (1992) Hepatic encephalopathy: a disorder in glial–neuronal communication. Progress in Brain Research 94:261–269

    PubMed  CAS  Google Scholar 

  • Obaid AL,Critz AM,Crandall ED (1979) Kinetics of bicarbonate/chloride exchange in dogfish erythrocytes. American Journal of Physiology 237:R132–R138

    PubMed  CAS  Google Scholar 

  • Ong KJ, Stevens ED, Wright PA (2007) Gill morphology of the mangrove killifish (Kryptolebias marmoratus) is plastic and changes in response to terrestrial air exposure. Journal of Experimental Biology 210:1109–1115

    PubMed  CAS  Google Scholar 

  • Pearson MP, Stevens DE (1991a) Splenectomy impairs aerobic swim performance in trout. Canadian Journal of Zoology 69:2089–2092

    Google Scholar 

  • Pearson MP, Stevens ED (1991b) Size and hematological impact of the splenic erythrocyte reservoir in rainbow trout, Oncorhynchus mykiss. Fish Physiology and Biochemistry 9:39–50

    Google Scholar 

  • Pelster B (2002) Developmental plasticity in the cardiovascular system of fish, with special reference to the zebrafish. Comparative Biochemistry and Physiology 133:547–553

    PubMed  Google Scholar 

  • Pelster B, Bridges CR, Grieshaber MK (1988) Physiological adaptations of the intertidal rockpool teleost Blennius pholis L., to aerial exposure. Respiration Physiology 71:355–73

    PubMed  CAS  Google Scholar 

  • Peng J, Huang CH (2006) Rh proteins vs Amt proteins: an organismal and phylogenetic perspective on CO2 and NH3 gas channels. Transfusion clinique et biologique: journal de la Société française de transfusion sanguine 13:85–94

    CAS  Google Scholar 

  • Perry SF (1986) Carbon dioxide excretion in fishes. Canadian journal of zoology 64:565–572

    Google Scholar 

  • Perry SF (1998) Relationships between branchial chloride cells and gas transfer in freshwater fish. Comparative Biochemistry and Physiology A 119:9–16

    CAS  Google Scholar 

  • Perry SF, Desforges PR (2006) Does bradycardia or hypertension enhance gas transfer in rainbow trout (Oncorhynchus mykiss) exposed to hypoxia or hypercarbia? Comparative Biochemistry and Physiology A 144:163–172

    CAS  Google Scholar 

  • Perry SF, Gilmour KM (1993) An evaluation of factors limiting carbon dioxide excretion by trout red blood cells in vitro. Journal of Experimental Biology 180:39–54

    Google Scholar 

  • Perry SF, Gilmour KM (2002) Sensing and transfer of respiratory gases at the fish gill. Journal of Experimental Zoology 293:249–263

    PubMed  Google Scholar 

  • Perry SF, Kinkead R (1989) The role of catecholamines in regulating arterial oxygen content during acute hypercapnic acidosis in rainbow trout (Salmo gairdneri). Respiration Physiology 77:365–3378

    PubMed  CAS  Google Scholar 

  • Perry SF, Laurent P (1989) Adaptational responses of rainbow trout to lowered external NaCl concentration: contribution of the branchial chloride cell. Journal of Experimental Biology 147:147–168

    CAS  Google Scholar 

  • Perry SF, McDonald DG (1993) Gas exchange. In: Evans DH (ed) The Physiology of Fishes. CRC, Boca Raton, Florida, pp 251–278

    Google Scholar 

  • Perry SF, McKendry JE (2001) The relative roles of external and internal CO2 versus H+ in eliciting the cardiorespiratory responses of Salmo salar and Squalus acanthias to hypercarbia. Journal Experimental Biology 204:3963–3971

    CAS  Google Scholar 

  • Perry SF, Reid SG (2002) Cardiorespiratory adjustments during hypercarbia in rainbow trout (Oncorhynchus mykiss) are initiated by external CO2 receptors on the first gill arch. Journal of Experimental Biology 205:3357–3356

    PubMed  CAS  Google Scholar 

  • Perry SF, Vermette MG (1987) The effects of prolonged epinephrine infusion on the physiology of the rainbow trout, Salmo gairdneri. I. Blood respiratory, acid-base and ionic states. Journal of Experimental Biology 128:235–253

    PubMed  CAS  Google Scholar 

  • Perry SF, Wood CM (1989) Control and coordination of gas transfer in fishes. Canadian Journal of Zoology 67:2961–2970

    Google Scholar 

  • Perry SF, Reid SG, Wankiewicz E, Iyer V, Gilmour KM (1996) Physiological responses of rainbow trout (Oncorhynchus mykiss) to prolonged exposure to softwater. Physiological Zoology 69:1419–1441

    Google Scholar 

  • Perry SF, Fritsche R, Hoagland T, Duff DW, Olson KR (1999) The control of blood pressure during external hypercapnia in the rainbow trout (Oncorhynchus mykiss). Journal of Experimental Biology 202:2177–2190

    PubMed  Google Scholar 

  • Perry SF, Gilmour KM, Swenson ER, Vulesevic B, Chew SF, Ip YK (2005) An investigation of the role of carbonic anhydrase in aquatic and aerial gas transfer in the African lungfish Protopterus dolloi. Journal of Experimental Biology 208:3805–15

    PubMed  CAS  Google Scholar 

  • Piermarini PM, Kim EY, Boron WF (2007) Evidence against a direct interaction between intracellular carbonic anhydrase II and pure C-terminal domains of SLC4 bicarbonate transporters. Journal of Biological Chemistry 282:1409–1421

    PubMed  CAS  Google Scholar 

  • Piiper J (1989) Factors affecting gas transfer in respiratory organs of vertebrates. Canadian Journal of Zoology 67:2956–2960

    Google Scholar 

  • Piiper J (1998) Branchial gas transfer models. Comparative Biochemistry and Physiology 119A:125–130

    CAS  Google Scholar 

  • Piiper J, Scheid P (1992) Modeling of gas exchange in vertebrate lungs, gills and skin. In: Wood SC, Weber RE, Hargens AR, Millard RW (eds) Physiological Adaptations in Vertebrates. Respiration, Circulation and Metabolism. Marcel Dekker, New York, pp 69–95

    Google Scholar 

  • Prasad GV, Coury LA, Finn F, Zeidel ML (1998) Reconstituted aquaporin 1 water channels transport CO2 across membranes. The Journal of Biological Chemistry 273:33123–33126

    PubMed  CAS  Google Scholar 

  • Primmett DRN, Randall DJ, Mazeaud M, Boutilier RG (1986) The role of catecholamines in erythrocyte pH regulation and oxygen transport in rainbow trout (Salmo gairdneri) during exercise. Journal of Experimental Biology 122:139–148

    PubMed  CAS  Google Scholar 

  • Quentin F, Eladari D, Cheval L, Lopez C, Goossens D, Colin Y, Cartron JP, Paillard M, Chambrey R (2003) RhBG and RhCG, the putative ammonia transporters, are expressed in the same cells in the distal nephron. Journal of the American Society of Nephrology 14:545–554

    PubMed  CAS  Google Scholar 

  • Raabe W (1987) Synaptic transmission in ammonia intoxication. Neurochem Pathol 6:145–166

    PubMed  CAS  Google Scholar 

  • Rama Rao KV, Jayakumar AR, Norenberg DM (2003) Ammonia neurotoxicity: role of the mitochondrial permeability transition. Metabolic Brain Disease 18:113–127

    PubMed  CAS  Google Scholar 

  • Randall DJ (1990) Control and co-ordination of gas exchange in water breathers. In: Boutilier RG (ed) Advances in Comparative and Environmental Physiology. Springer, Berlin, pp 253–278

    Google Scholar 

  • Randall DJ, Daxboeck C (1984) Oxygen and carbon dioxide transfer across fish gills. In: Hoar WS, Randall DJ (eds) Fish Physiology vol XA. Academic, New York, pp 263–314

    Google Scholar 

  • Randall DJ, Ip YK (2006) Ammonia as a respiratory gas in water and air-breathing fishes. Respiratory Physiology and Neurobiology 154:216–225

    PubMed  CAS  Google Scholar 

  • Randall DJ, Tsui TK (2002) Ammonia toxicity in fish. Marine Pollution Bulletin 45:17–23

    PubMed  CAS  Google Scholar 

  • Randall DJ, Val AL (1995) The role of carbonic anhydrase in aquatic gas exchange. In: Heisler N (ed) Advances in Comparative and Environmental Physiology, Vol 21. Springer, Berlin, Heidelberg, pp 25–39

    Google Scholar 

  • Randall DJ, Wright PA (1989) The interaction between carbon dioxide and ammonia excretion and water pH in fish. Canadian Journal of Zoology 67:2936–2942

    CAS  Google Scholar 

  • Randall DJ, Perry SF, Heming TA (1982) Gas transfer and acid-base regulation in salmonids. Comparative Biochemistry and Physiology B 73:93–103

    Google Scholar 

  • Randall DJ, Wood CM, Perry SF, Bergman H, Maloiy GM, Mommsen TP, Wright PA (1989) Urea excretion as a strategy for survival in a fish living in a very alkaline environment. Nature 337:165–166

    PubMed  CAS  Google Scholar 

  • Randall DJ, Wilson JM, Peng KW, Kok TW, Kuah SS, Chew SF, Lam TJ, Ip YK (1999) The mudskipper, Periophthalmodon schlosseri, actively transports \({\rm NH}_{4}^{+}\) against a concentration gradient. American Journal of Physiology 277:R1562–R1567

    PubMed  CAS  Google Scholar 

  • Reid SG, Perry SF (2003) Peripheral O2 chemoreceptors mediate humoral catecholamine secretion from fish chromaffin cells. American Journal of Physiology 284:R990–R999

    PubMed  CAS  Google Scholar 

  • Reithmeier RA (2001) A membrane metabolon linking carbonic anhydrase with chloride/bicarbonate anion exchangers. Blood Cells, Molecules and Diseases 27:85–89

    CAS  Google Scholar 

  • Ripoche P, Goossens D, Devuyst O, Gane P, Colin Y, Verkman AS, Cartron JP (2006) Role of RhAG and AQP1 in NH3 and CO2 gas transport in red cell ghosts: a stopped-flow analysis. Transfusion clinique et biologique: journal de la Société française de transfusion sanguine 13:117–22

    CAS  Google Scholar 

  • Rose C (2002) Increased extracellular brain glutamate in acute liver failure: decreased uptake or increased release? Metabolic Brain Disease 17:251–261

    PubMed  CAS  Google Scholar 

  • Rutjes HA, Nieveen MC, Weber RE, Witte F, Van den Thillart GEEJ (2007) Multiple strategies of Lake Victoria cichlids to cope with lifelong hypoxia include haemoglobin switching. American Journal of Physiology 293:R1376–R1383

    PubMed  CAS  Google Scholar 

  • Saltys HA, Jonz MG, Nurse CA (2006) Comparative study of gill neuroepithelial cells and their innervation in teleosts and Xenopus tadpoles. Cell and Tissue Research 323:1–10

    PubMed  Google Scholar 

  • Sardet C (1980) Freeze-fracture of the gill epithelium of euryhaline teleost fish. American Journal of Physiology 273:F321–F339

    Google Scholar 

  • Semenza GL (2004) O2-regulated gene expression: transcriptional control of cardiorespiratory physiology by HIF-1. Journal of Applied Physiology 96:1173–1177

    PubMed  CAS  Google Scholar 

  • Shelton G, Jones DR, Milsom WK (1986) Control of breathing in ectothermic vertebrates. In: Cherniak NS, Widdicombe JG (eds) Handbook of Physiology, section 3. The Respiratory System, vol. 2, Control of Breathing. American Physiological Society, Bethesda, pp 857–909

    Google Scholar 

  • Short S, Taylor EW, Butler PJ (1979) The effectiveness of oxygen transfer during normoxia and hypoxia in the dogfish (Scyliohinus canicula L.) before and after cardiac vagotomy. Journal of Comparative Physiology B 132:289–295

    Google Scholar 

  • Smatresk NJ (1990) Chemoreceptor modulation of endogenous respiratory rhythms in vertebrates. American Journal of Physiology 259:R887–R897

    PubMed  CAS  Google Scholar 

  • Smatresk NJ, Cameron BA (1982) Respiration and acid-base physiology of the spotted gar, a bimodal breather. III. Response to a transfer from fresh water to 50% sea water and control of ventilation. Journal of Experimental Biology 96:295–306

    Google Scholar 

  • Smith RR, Rumsey GL (1976) Nutrient utilization by fish. In: Fonnesbeck PV, Harris LE, Kearl LC (eds) First Int. Symp., Feed Comparisons, Animal Nutrient Requirements, and Computerization of Diets. Utah State University, Logan, Utah, p 320

    Google Scholar 

  • Soitamo AJ, Rabergh CM, Gassmann M, Sistonen L, Nikinmaa M (2001) Characterization of a hypoxia-inducible factor (HIF-1alpha) from rainbow trout. Accumulation of protein occurs at normal venous oxygen tension. The Journal of Biological Chemistry 276:19699–19705

    PubMed  CAS  Google Scholar 

  • Soivio A, Nikinmaa M, Westman K (1980) The blood oxygen binding properties of hypoxic Salmo gairdneri. Journal of Comparative Physiology 136:83–87

    Google Scholar 

  • Sollid J, Nilsson GE (2006) Plasticity of respiratory structures – adaptive remodeling of fish gills induced by ambient oxygen and temperature. Respiratory Physiology and Neurobiology 154:241–251

    PubMed  CAS  Google Scholar 

  • Sollid J, De Angelis P, Gundersen K, Nilsson GE (2003) Hypoxia induces adaptive and reversible gross morphological changes in crucian carp gills. Journal of Experimental Biology 206:3667–3673

    PubMed  Google Scholar 

  • Sollid J, Weber RE, Nilsson GE (2005) Temperature alters the respiratory surface area of crucian carp Carassius carassius and goldfish Carassius auratus. Journal of Experimental Biology 208:1109–1116

    PubMed  Google Scholar 

  • Soupene E, Ramirez RM, Kustu S (2001) Evidence that fungal MEP proteins mediate diffusion of the uncharged species NH3 across the cytoplasmic membrane. Molecular and Cellular Biology 21:5733–5741

    PubMed  CAS  Google Scholar 

  • Sterling D, Reithmeier RAF, Casey JR (2001) A transport metabolon: functional interaction of carbonic anhydrase II and chloride/bicarbonate exchangers. Journal of Biological Chemistry 276:47886–47894

    PubMed  CAS  Google Scholar 

  • Sterling D, Brown NJD, Supuran CT, Casey JR (2002) The functional and physical relationship between the DRA bicarbonate transporter and carbonic anhydrase II. American Journal of Physiology 283:C1522–C1529

    PubMed  CAS  Google Scholar 

  • Sullivan G, Fryer J, Perry S (1995) Immunolocalization of proton pumps (H+-ATPase) in pavement cells of rainbow trout gill. Journal of Experimental Biology 198:2619–2629

    PubMed  CAS  Google Scholar 

  • Sundin L, Holmgren S, Nilsson S (1998) The oxygen receptor of the teleost gill? Acta Zoologica 79:207–214

    Google Scholar 

  • Svoboda N, Zierler S, Kerschbaum HH (2007) cAMP mediates ammonia-induced programmed cell death in the microglial cell line BV-2. The European Journal of Neuroscience 25:2285–2295

    PubMed  Google Scholar 

  • Swenson ER (1990) Kinetics of oxygen and carbon dioxide exchange. In: Boutilier RG (ed) Advances in Comparative and Environmental Physiology. Springer, Berlin, pp 163–210

    Google Scholar 

  • Swenson ER, Maren TH (1978) A quantitative analysis of CO2 transport at rest and during maximal exercise. Respiration Physiology 35:129–159

    PubMed  CAS  Google Scholar 

  • Taylor EW, Barrett DJ (1985) Evidence of a respiratory role for the hypoxic bradycardia in the dogfish Scyliohinus canicula L. Comparative Biochemistry and Physiology A 80:99–102

    CAS  Google Scholar 

  • Taylor EW, Short S, Butler PJ (1977) The role of the cardiac vagus in the response of the dogfish Scyliorhinus canicula to hypoxia. Journal of Experimental Biology 70:57–75

    Google Scholar 

  • Thomas RC (1984) Experimental displacement of intracellular pH and the mechanism of its subsequent recovery. Journal of Physiology 354:3–22

    Google Scholar 

  • Thomas S, Motais R (1990) Acid-base balance and oxygen transport during acute hypoxia in fish. Comparative Physiology 6:76–91

    Google Scholar 

  • Thomas S, Perry SF (1992) Control and consequences of adrenergic activation of red blood cell Na+/H+ exchange on blood oxygen and carbon dioxide transport. Journal of Experimental Zoology 263:160–175

    PubMed  CAS  Google Scholar 

  • Thorarensen H, Gallaugher PE, Kiessling AK, Farrell AP (1993) Intestinal blood flow in swimming chinook salmon Oncorhynchus tshawytscha and the effects of haematocrit on blood flow distribution. Journal of Experimental Biology 179115–129:-129

    Google Scholar 

  • Towle DW, Holleland T (1987) Ammonium ion substitute for K+ in ATP-dependent Na+ transport by basolateral membrane vesicles. American Journal of Physiology 252:R479–R489

    PubMed  CAS  Google Scholar 

  • Tsui TKN, Randall DJ, Hanson L, Farrell AP, Chew SF, Ip YK (2004) Dogmas and controversies in the handling of nitrogenous wastes: Ammonia tolerance in the oriental weatherloach Misgurnus anguillicaudatus. Journal of Experimental Biology 207:1977–1983

    PubMed  CAS  Google Scholar 

  • Tufts BL (1992) In vitro evidence for sodium-dependent pH regulation in sea lamprey (Petromyzon marinus) red blood cells. Canadian Journal of Zoology 70:411–416

    CAS  Google Scholar 

  • Tufts BL, Perry SF (1998) Carbon dioxide transport and excretion. In: Perry SF, Tufts BL (eds) Fish Physiology vol 17: Fish Respiration. Academic, San Diego, pp 229–281

    Google Scholar 

  • Tufts BL, Vincent CJ, Currie S (1998) Different red blood cell characteristics in a primitive agnathan (M. glutinosa) and a more recent teleost (O. mykiss) influence their strategies for blood CO2 transport. Comparative Biochemistry and Physiology A 119A:533–541

    CAS  Google Scholar 

  • Tufts BL, Gervais MR, Staebler M, Weaver J (2002) Subcellular distribution and characterization of gill carbonic anhydrase and evidence for a plasma carbonic anhydrase inhibitor in Antarctic fish. Journal of Comparative Physiology B 172:287–95

    CAS  Google Scholar 

  • Ultsch GR (1996) Gas exchange, hypercarbia and acid-base balance, paleoecology, and the evolutionary transition from water-breathing to air-breathing among vertebrates. Palaeogeography, Palaeoclimatology, Palaeoecology 123:1–27

    Google Scholar 

  • Val AL (1995) Oxygen transfer in fish: morphological and molecular adjustments. Brazilian Journal of Medical and Biological Research 28:1119–1127

    PubMed  CAS  Google Scholar 

  • Val AL (2000) Organic phosphates in the red blood cells of fish. Comparative Biochemistry and Physiology A 125:417–435

    CAS  Google Scholar 

  • Verlander JW, Miller RT, Frank AE, Royaux IE, Kim YH, Weiner ID (2003) Localization of the ammonium transporter proteins RhBG and RhCG in mouse kidney. American Journal Physiology Renal Physiology 284:F323–F337

    CAS  Google Scholar 

  • Vermette MG, Perry SF (1988a) Adrenergic involvement in blood oxygen transport and acid-base balance during hypercapnic acidosis in the rainbow trout, Salmo gairdneri. Journal of Comparative Physiology B 158:107–115

    CAS  Google Scholar 

  • Vermette MG, Perry SF (1988b) Effects of prolonged epinephrine infusion on blood respiratory and acid-base states in the rainbow trout: Alpha and beta effects. Fish Physiology and Biochemistry 4:189–202

    CAS  Google Scholar 

  • Vince JW, Reithmeier RA (1998) Carbonic anhydrase II binds to the carboxyl terminus of human band 3, the erythrocyte \({\rm Cl}^{-}/{\rm HCO}_3^-\) exchanger. Journal of Biological Chemistry 273:28430–28437

    PubMed  CAS  Google Scholar 

  • Vince JW, Reithmeier RA (2000) Identification of the carbonic anhydrase II binding site in the \({\rm Cl}^{-}/{\rm HCO}_{3}^{-}\) anion exchanger AE1. Biochemistry 39:5527–5533

    PubMed  CAS  Google Scholar 

  • Vince JW, Carlsson U, Reithmeier RA (2000) Localization of the \({\rm Cl}^{-}/{\rm HCO}_{3}^{-}\) anion exchanger binding site to the amino-terminal region of carbonic anhydrase II. Biochemistry 39:13344–13349

    PubMed  CAS  Google Scholar 

  • von Wiren N, Gazzarrini S, Gojon A, Frommer WB (2000) The molecular physiology of ammonium uptake and retrieval. Current Opinion in Plant Biology 3:254–261

    PubMed  CAS  Google Scholar 

  • Vulesevic B, Perry SF (2006) Developmental plasticity of ventilatory control in zebrafish, Danio rerio. Respiratory Physiology and Neurobiology 154:396–405

    PubMed  CAS  Google Scholar 

  • Vulesevic B, McNeill B, Perry SF (2006) Chemoreceptor plasticity and respiratory acclimation in the zebrafish, Danio rerio. Journal of Experimental Biology 209:1261–1273

    PubMed  CAS  Google Scholar 

  • Walsh PJ, Henry RP (1991) Carbon dioxide and ammonia metabolism and exchange. In: Hochachka PW, Mommsen TP (eds) Biochemistry and molecular biology of fishes. Phylogenetic and biochemical perspectives. Elsevier, Amsterdam, pp 181–207

    Google Scholar 

  • Weber RE, Jensen FB (1988) Functional adaptations in haemoglobins from ectothermic vertebrates. Annual Review of Physiology 50:161–179

    PubMed  CAS  Google Scholar 

  • Weiner ID, Miller RT, Verlander JW (2003) Localization of the ammonium transporters, Rh B glycoprotein and Rh C glycoprotein, in the mouse liver. Gastroenterology 124:1432–1440

    PubMed  CAS  Google Scholar 

  • Wells RMG, Weber RE (1990) The spleen in hypoxic and exercised rainbow trout. Journal of Experimental Biology 150:461–466

    Google Scholar 

  • Wells RMG, Weber RE (1991) Is there an optimal haematocrit for rainbow trout, Oncorhynchm mykiss (Walbaum)? An interpretation of recent data based on blood viscosity measurements. Journal of Fish Biology 38:53–65

    Google Scholar 

  • Wieth JO, Andersen OS, Brahm J, Bjerrum PJ, Borders CL (1982) Chloride–bicarbonate exchange in red blood cells: physiology of transport and chemical modification of binding sites. Philosophical Transactions of Royal Society of London B 299:383–399

    CAS  Google Scholar 

  • Wilkie MP (2002) Ammonia excretion and urea handling by fish gills: present understanding and future research challenges. Journal of Experimental Zoology 293:284–301

    PubMed  CAS  Google Scholar 

  • Wilson R, Wright P, Munger S, Wood C (1994) Ammonia excretion in freshwater rainbow trout (Oncorhynchus mykiss) and the importance of gill boundary layer acidification: lack of evidence for \({\rm Na}^{+}/{\rm NH}_{4}^{+}\) exchange. Journal of Experimental Biology 191:37–58

    PubMed  CAS  Google Scholar 

  • Wilson JM, Randall DJ, Donowitz M, Vogl AW, Ip AK (2000) Immunolocalization of ion-transport proteins to branchial epithelium mitochondria-rich cells in the mudskipper (Periophthalmodon schlosseri). Journal of Experimental Biology 203:2297–2310

    PubMed  CAS  Google Scholar 

  • Wood CM (1988) Acid-base and ionic exchanges at gills and kidney after exhaustive exercise in the rainbow trout. Journal of Experimental Biology 136:461–481

    Google Scholar 

  • Wood CM (1993) Ammonia and urea metabolism and excretion. In: Evans DE (ed) The Physiology of Fishes. CRC, Boca Raton, Florida, pp 379–427

    Google Scholar 

  • Wood SC, Johansen K (1973) Blood oxygen transport and acid-base balance in eels during hypoxia. American Journal of Physiology 225:849–851

    PubMed  CAS  Google Scholar 

  • Wood CM, Shelton G (1980) The reflex control of heart rate and cardiac output in the rainbow trout: Intractive influences of hypoxia, haemorrhage, and systemic vasomotor tone. Journal of Experimental Biology 87:271–284

    PubMed  CAS  Google Scholar 

  • Wood CM, McMahon BR, McDonald DG (1979) Respiratory gas exchange in the resting starry flounder, Platichthys stellatus: a comparison with other teleosts. Journal of Experimental Biology 78:167–179

    PubMed  CAS  Google Scholar 

  • Wood CM, Perry SF, Walsh PJ, Thomas S (1994) \({\rm HCO}_{3}^{-}\) dehydration by the blood of an elasmobranch in the absence of a Haldane effect. Respiration Physiology 98:319–37

    PubMed  CAS  Google Scholar 

  • Wood C, Pärt P, Wright P (1995) Ammonia and urea metabolism in relation to gill function and acid-base balance in a marine elasmobranch, the spiny dogfish (Squalus acanthias). Journal of Experimental Biology 198:1545–1558

    PubMed  Google Scholar 

  • Wright PA (1995) Nitrogen excretion: three end products, many physiological roles. Journal of Experimental Biology 198:273–281

    PubMed  CAS  Google Scholar 

  • Wright PA, Heming T, Randall DJ (1986) Downstream pH changes in water flowing over the gills of rainbow trout. Journal of Experimental Biology 126:499

    Google Scholar 

  • Wright PA, Randall DJ, Perry SF (1989) Fish gill boundary layer: a site of linkage between carbon dioxide and ammonia excretion. Journal of Comparative Physiology B 158:627–635

    Google Scholar 

  • Wright PA, Iwama GK, Wood CM (1993) Ammonia and urea excretion in Lahontan cut-throat trout (Onchorhynchus clarki henshawi) adapted to highly alkaline Pyramid lake (pH 9.4). Journal of Experimental Biology 114:329–353

    Google Scholar 

  • Yamamoto K (1988) Contraction of spleen in exercised freshwater teleost. Comparative Biochemistry and Physiology A 89:65–66

    Google Scholar 

  • Yamamoto K, Itazawa Y (1989) Erythrocyte supply from the spleen of exercised carp. Comparative Biochemistry and Physiology A 92:139–144

    Google Scholar 

  • Yamamoto K, Itazawa Y, Kobayashi H (1980) Supply of erythrocytes into the circulating blood from the spleen of exercised fish. Comparative Biochemistry and Physiology A 65:5–11

    Google Scholar 

  • Yamamoto K, Itazawa Y, Kobayashi H (1985) Direct observation of fish spleen by an abdominal window method and its application to exercised and hypoxic yellowtail. Japanese Journal of Ichthyology 31:427–433

    Google Scholar 

  • Yang B, Fukuda N, van Hoek A, Matthay MA, Ma T, Verkman AS (2000) Carbon dioxide permeability of aquaporin-1 measured in erythrocytes and lung of aquaporin-1 null mice and in reconstituted proteoliposomes. Journal of Biological Chemistry 275:2686–92

    PubMed  CAS  Google Scholar 

  • Zaccone G, Fasulo S, Ainis L, Licata A (1997) Paraneurons in the gills and airways of fishes. Microscopy Research and Technique 37:4–12

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Original research of the authors reported above was supported by NSERC of Canada Discovery and Research Tools and Instruments grants. AE was supported by an NSERC postdoctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S.F. Perry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Perry, S., Esbaugh, A., Braun, M., Gilmour, K. (2009). Gas Transport and Gill Function in Water-Breathing Fish. In: Glass, M., Wood, S. (eds) Cardio-Respiratory Control in Vertebrates. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-93985-6_2

Download citation

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Publish with us

Policies and ethics