Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content

Community Dynamics in a Homogeneous Environment

  • Chapter
Mathematical Ecology

Part of the book series: Biomathematics ((BIOMATHEMATICS,volume 17))

  • 828 Accesses

  • 19 Citations

Abstract

Populations do not exist as isolated entities in a physical environment. They interact with other biological populations on a regular long term basis and, because of these interactions, often coevolve as an ecological unit. An assemblage of two of more biotic populations is called a community. The simplest structure, one composed of two species, and the possible interactions between these two components will be discussed first. These would not be considered communities in the classical ecological literature, but I will be consistent in using this term whenever species interactions are involved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Addicott, J.E. (1974). Predation and prey community structure: an experimental study of the effect of mosquito larvae on the protozoan communities of pitcher plants. Ecology 55: 475–492

    Article  Google Scholar 

  • Albrecht, F., Gatzke, H., Haddad, A., Wax, N. (1974). The dynamics of two interacting populations. J. Math. Anal. Appl. 46: 658–670

    Google Scholar 

  • Boughey, A S. (1973). Ecology of Populations, 2nd ed., MacMillan, New York, 182 pp.

    Google Scholar 

  • Brauer, F. (1984). Constant yield harvesting of population systems. In Mathematical Ecology: Proceedings of the Conference, Trieste. (S.A. Levin and T.G. Hallam, eds.). Lecture Notes in Biomathematics 54: 234–242

    Google Scholar 

  • Brauer, F., Soudak, A.C. (1979a). Stability regions and transition phenomena for harvested predator-prey systems. J. Math. Biol. 7: 319–337

    Google Scholar 

  • Brauer, F., Soudak, A.C. (1979b). Stability regions in predator-prey systems with constant rate harvesting. J. Math. Biol. 8: 55–71

    Article  MATH  Google Scholar 

  • Brauer, F., Soudak, A.C., Jarosch,H.S. (1976). Stabilization and destabilization of predator-prey systems under harvesting and nutrient enrichment. Int. J. Control. 23: 553–573

    Google Scholar 

  • Braun, M. (1975). Differential Equations and Their Applications, Springer-Verlag, New York, 718 pp.

    MATH  Google Scholar 

  • Caswell, H. (1978). Predator-mediated coexistence: a nonequilibrium model. Amer. Nat. 112: 127–154

    Google Scholar 

  • Clark, C.E., Hallam, T.G. (1982). The community matrix in three species community models. J. Math. Biol. 16: 25–31

    Google Scholar 

  • Cohen, J.E. (1978). Food Webs and Niche Space, Princeton University Press, Princeton, N.J., 189 pp.

    Google Scholar 

  • Coleman, C.S. (1976). Biological cycles and the five-fold way. MAA College Faculty Workshop. Cornell University

    Google Scholar 

  • Connell, J.H. (1961). The influence ofinterspecific competition and other factors in the distribution of the barnacle Chthamalus stellus. Ecology 42: 710–723

    Article  Google Scholar 

  • Connell, J.H. (1975). Some mechanisms producing structure in natural communities. In M.C. Cody and J.M. Diamond (Eds.), Ecology and Evolution of Communities. Harvard University Press, Cambridge, Mass. 460–490

    Google Scholar 

  • Cramer, N.F., May, R.M. (1972). Interspecific competition, predation, and species diversity: a comment. J. Theor. Biol. 34: 289–293

    Google Scholar 

  • Crombie, A.C. (1945). The competition between different species of graminivorus insects. Proc. Roy. Soc. London 132B: 362–395

    Google Scholar 

  • Crombie, A.C. (1946). Further experiments on insect competition. Proc. Roy. Soc. Lond. 133B: 76–109

    Article  Google Scholar 

  • Crombie, A.C. (1947). Interspecific competition. J. Anim. Ecol. 16: 44–73

    Google Scholar 

  • DeAngelis, D.C., Post III, W.M., Travis, C.C. (1986). Positive Feedback Systems in Nature, to appear

    Google Scholar 

  • Dyer, M.C. (1980). Mammalian epidermal growth factor promotes plant growth, Proc. Natl. Acad. Sci. USA 77: 4836–4837

    Article  Google Scholar 

  • Fiedler, M., Ptak, V. (1967). Diagonally dominant matrices. Czech. Math. J 17: 420–433

    Google Scholar 

  • Freedman, H I., Waltman, P. (1977). Mathematical analysis of some three species food chain models. Math. Biosci. 33: 257–276

    Google Scholar 

  • Freedman, H.I. (1980). Deterministic Mathematical Models in Population Biology. Dekker, New York, 254 pp.

    Google Scholar 

  • Freedman, H.I., Waltman, P. (1984). Persistence in models of three interacting predator-prey populations. Math. Biosci. 68: 213–231

    Article  MathSciNet  MATH  Google Scholar 

  • Gard, T.C. (1982). Top predator persistence in differential equation models of food chains: the effects of omnivory and external forcing of lower trophic levels. J. Math. Biol. 14: 285–299

    Google Scholar 

  • Gard, T.C. (1984). Persistence in food webs. In Mathematical Ecology: Proceedings of the Conference (S.A. Levin and T.G. Hallam eds.). Lectures Notes in Biomathematics 54: 208–219

    Google Scholar 

  • Gard, T.C., Hallam, T.G. (1979). Persistence in food webs: I Lotka-Volterra food chains. Bull. Math. Biol. 41: 877–891

    MathSciNet  MATH  Google Scholar 

  • Gause, G.F. (1934). The Struggle for Existence. Hafner New York (reprinted 1964 by Williams and Wilkins, Baltimore, MD ), 163 pp.

    Google Scholar 

  • Gilpin, M.E. (1975). Limit cycles in competition communities. Amer. Nat. 109: 51–60

    Google Scholar 

  • Gilpin, M.E. (1978). Spiral chaos in a predator-prey model. Amer. Nat. 113: 306–308

    Article  MathSciNet  Google Scholar 

  • Ginzburg, L.R. (1983). Theory of Natural Selection and Population Growth. Benjamin/Cummings, Menlo Park, CA, 160 pp.

    Google Scholar 

  • Goh, B.S. (1977). Global stability in many species systems. Amer. Nat. Ill: 135–143

    Google Scholar 

  • Goh, B.S. (1979). Stability in models of mutualism. Amer. Nat. 113: 261–275

    Article  MathSciNet  Google Scholar 

  • Grossberg, S. (1978). Decisions, patterns, and oscillations in nonlinear competitive systems with applications to Lotka-Volterra systems. J. Theor. Biol. 73: 101–130

    Google Scholar 

  • Hallam, T.G., Svoboda, L., Gard, T.C. (1979). Persistence and extinction in three species Lotka-Volterra competitive systems. Math. Biosci. 46: 117–124

    Google Scholar 

  • Hallam, T.G. (1980). Effects of cooperation on competitive systems. J. Theor. Biol. 82: 415–424

    Article  MathSciNet  Google Scholar 

  • Hallam, T.G. (1981). Effects of competition and predation on diversity of communities. Applied Systems and Cybernetics. Vol. IV, G. Lasker (Ed.) 2054–2058

    Google Scholar 

  • Hallett, J.G., Pimm, S.L. (1979). Direct estimation of competition. Amer. Nat. 113: 593–600

    Google Scholar 

  • Harrison, G.W. (1979). Global stability of predator-prey interactions. J. Math. Biol. 8: 159–171

    Article  MathSciNet  MATH  Google Scholar 

  • Hastings, A (1978). Global stability in two species systems. J. Math. Biol. 5: 399–403

    Google Scholar 

  • Herbert, D., Elsworth, R., Telling, R.C. (1956). The continuous culture of bacteria: A theoretical and experimental study. J. Gen. Microbiol. 14: 601–622

    Google Scholar 

  • Hirsch, M.W., Smale, S. (1974). Differential Equations, Dynamical Systems, and Linear Algebra. Academic Press, New York, 358 pp.

    MATH  Google Scholar 

  • Hsu, S.B., Hubbell, S., Waltman, P. (1977). A mathematical theory for single-nutrient competition in continuous cultures of microorganisms. SIAM J. Appl. Math. 32: 366–383

    Google Scholar 

  • Hsu, S.B. (1978). On global stability of a predator-prey system. Math. Biosci. 39: 1–10

    Article  MathSciNet  MATH  Google Scholar 

  • Hsu, S.B., Hubbell, S.P. (1979). Two predators competing for two prey species: an analysis of MacArthur’s model. Math. Biosci. 47: 143–171

    Google Scholar 

  • Hutchinson, G.E. (1978). An Introduction to Population Ecology, Yale University Press, New Haven, 260 pp.

    MATH  Google Scholar 

  • Janzen, D.H. (1966). Coevolution of mutualism between ants and acacias in Central America. Evolution 20: 24–75

    Article  Google Scholar 

  • Kaplan, J.L., Yorke, J.A. (1975). Competitive exclusion and nonequilibrium coexistence. Amer. Nat. III: 1030–1036

    Google Scholar 

  • LaSalle, J.P., Lefschetz, S. (1961). Stability by Liapunov’s Direct Method, Academic Press, New York, 134 pp.

    Google Scholar 

  • Leon, J.A., Tumpson, D.B. (1975). Competition between two species for two complementary or substitutable resources. J. Theor. Biol. 50: 185–201

    Google Scholar 

  • Levin, S.A. (1970). Community equilibria and stability, and an extension of the competitive exclusion principle. Amer. Nat. 104: 413–423

    Google Scholar 

  • Levins, R. (1968). Evolution in Changing Environments. Princeton University Press, Princeton, N.J.

    Google Scholar 

  • Luckinbill, L.S. (1973). Coexistence in laboratory populations of Paramecium aurelia and its predator Didinium nasutum. Ecology 54: 1320–1327

    Article  Google Scholar 

  • MacArthur, R.H. (1958). Population ecology of some warblers of northeastern coniferous forests. Ecology 39: 599–619

    Article  Google Scholar 

  • MacArthur, R.H. (1968). The theory of the niche. In: Lewontin, R.C. (ed.) Population Biology and Evolution. Syracuse University Press, Syracuse, N.Y. 159–176

    Google Scholar 

  • MacArthur, R.H., Levins, R. (1967). The limiting similarity, convergence, and divergence of coexisting species. Amer. Nat. 101: 377–385

    Google Scholar 

  • May, R.M. (Ed.) (1976). Theoretical Ecology, Principles and Applications. Saunders, Philadelphia. 317 pp.

    Google Scholar 

  • May, R.M., Leonard, W.J. (1975). Nonlinear aspects of competition between three species. Siam. J. Appl. Math. 29: 243–253

    Google Scholar 

  • Maynard Smith, J. (1974). Models in Ecology, Cambridge University Press, Cambridge, 146 pp.

    Google Scholar 

  • McGehee, R., Armstrong, R.A. (1977). Some mathematical problems concerning the ecological principle of competitive exclusion. J. Diff. Equations 23: 30–52

    Google Scholar 

  • Neill, W.E. (1975). Experimental studies of microcrustacean competition, community composition and efficiency of resource utilization. Ecology 56: 809–826

    Article  Google Scholar 

  • Novick, A., Szilard, L. (1950). Description of the Chemostat, Science 112: 715–716

    Article  Google Scholar 

  • Odum, E.P. (1974). Ecology ( 2nd ed. ). Holt, Rinehart, and Winston, New York, 244 pp.

    Google Scholar 

  • Owen, D.F., Wiegert, R.G. (1983). Grasses and grazers: is there a mutualism? Oikos 38: 258–260

    Article  Google Scholar 

  • Park, T. (1954). Experimental studies of interspecific competition. II. Temperature, humidity, and competition in two species of Tribolium. Physiol. Zool. 27: 177–238

    Google Scholar 

  • Park, T. (1962). Beetles, competition, and populations. Science 138: 1369–1375

    Article  Google Scholar 

  • Paine, R.T. (1966). Food web complexity and species diversity. Amer. Nat. 100: 65–76

    Google Scholar 

  • Pimentel, D., Feinberg, E.H., Wood, P.W., Hayes, J.T. (1965). Selection, spatial distribution, and the coexistence of competing fly species. Amer. Nat. 99: 97–109

    Article  Google Scholar 

  • Pimm, S.L. (1982). Food webs. Chapman and Hall, London Rosenzweig, M.L. (1969). Why the prey curve has a hump. Amer. Nat. 103: 81–87

    Google Scholar 

  • Schoener, T.W. (1974). Some methods for calculating competition coefficients from resource utilization spectra. Amer. Nat. 108: 332–340

    Google Scholar 

  • Siljak, D.D. (1975). When is a complex ecosystem stable ? Math. Biosci. 35: 25–50

    Article  MathSciNet  Google Scholar 

  • Silvertown, J.W. (1982). No evolved mutualism between grasses and grazers. Oikos 38: 253–259

    Article  Google Scholar 

  • Slobodkin, L.B. (1961). Growth and Regulation of Animal Populations. Holt, Rinehart, and Winston, New York

    Google Scholar 

  • Slobodkin, L.B. (1964). Experimental populations of Hydrida. J. Ecol. 52: 131–148

    Google Scholar 

  • Stenseth, N.C. (1983). Grasses, grazers, mutualism, and coevolution: a comment about handwaving in ecology. Oikos 41: 152–153

    Article  Google Scholar 

  • Strobeck, C.N. (1973). N species competition. Ecology 54: 650–654

    Article  Google Scholar 

  • Tanner, J.T. (1975). The stability and intrinsic growth rates of prey and predator populations. Ecology 56: 855–867

    Article  Google Scholar 

  • Thompson, K., Uttley, M.G. (1982). Do grasses benefit from grazing? Oikos 39: 113–116

    Article  Google Scholar 

  • Travis, C.C., Post III, W.M. (1979). Dynamics and comparative statics of mutualistic communities. J. Theor. Biol. 78: 553–571

    Google Scholar 

  • Utida, S. (1953). Interspecific competition between two species of bean weevil. Ecology 34: 301–307

    Article  Google Scholar 

  • Vance, R.R. (1978). Predation and resource partitioning in one predator-two prey model communities. Amer. Nat. 112: 797–813

    Google Scholar 

  • Vandermeer, J.H. (1969). The competitive structure of communities: An experimental approach with protozoa. Ecology 50: 362–371

    Article  Google Scholar 

  • Vandermeer, J.H., Boucher, D.H. (1978). Varieties of mutualistic interaction in population models. J. Theor. Biol. 74: 549–558

    Google Scholar 

  • Waltman, P. (1964). The equations of growth. Bull. Math. Biophys. 26: 39–43

    Article  MathSciNet  Google Scholar 

  • Waltman, P. (1983). Competition Models in Population Biology. CBMS 45 SIAM. 84 pp.

    Google Scholar 

  • Whittaker, R.H., Levin, S.A. (Eds.) (1975). Niche: Theory and Application. Dowden, Hutchinson, and Ross, New York

    Google Scholar 

  • Yodzis, P. (1976). The effects of harvesting on competitive systems. Bull. Math. Biol. 38: 97–109

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hallam, T.G. (1986). Community Dynamics in a Homogeneous Environment. In: Hallam, T.G., Levin, S.A. (eds) Mathematical Ecology. Biomathematics, vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69888-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69888-0_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69890-3

  • Online ISBN: 978-3-642-69888-0

  • eBook Packages: Springer Book Archive

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Publish with us

Policies and ethics