Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content

HCSeer: A Classification Tool for Human Genetic Variant Hot and Cold Spots Designed for PM1 and Benign Criteria in the ACMG Guideline

  • Conference paper
  • First Online:
Bioinformatics Research and Applications (ISBRA 2025)

Abstract

The PM1 criterion, which states that a variant is located in a mutational hot spot and/or critical and well-established functional domain without benign variation, is considered moderate evidence for assessing its pathogenicity. The application of PM1 criterion is limited due to the lack of a comprehensive and reliable database of variant hotspot regions. Compared to hotspots, coldspots have been neglected by the ACMG guidelines. In order to improve variant classification, we suggest including coldspots in the ACMG guidelines that support the classification of benignity. Consequently, we have developed the HCSeer tool to provide data support for PM1 and the ‘Benign’ criteria. HCSeer employs the Kernel Density Estimation (KDE) algorithm and the Expectation-Maximization (EM) algorithm to identify potential hotspot and coldspot regions. Through our HCSeer, we successfully identified 423 hotspots and 3,942 coldspots regions in 1,523 genes. We then provided a database for general geneticists and clinicians to easily query whether a variant is located in a hotspot or coldspot region (http://www.genemed.tech/hcseer/), so as to determine if it can apply the PM1 of ACMG or the Benign criteria.

Availability: Code and Supplementary data are available at https://github.com/xq-xia/HCSeer.

X. Xia and G. Zhao—contribute equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 55.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 69.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Goodwin, S., McPherson, J.D., McCombie, W.R.: Coming of age: ten years of next-generation sequencing technologies. Nat. Rev. Genet. 17(6), 333–51 (2016)

    Article  Google Scholar 

  2. Richards, S., et al.: Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 17(5), 405–24 (2015)

    Article  Google Scholar 

  3. Zhang, L., et al.: The recommendation of re-classification of variants of uncertain significance (VUS) in adult genetic disorders patients. J. Hum. Genet. 69(9), 425–431 (2024)

    Article  Google Scholar 

  4. Agaoglu, N.B., et al.: Consistency of variant interpretations among bioinformaticians and clinical geneticists in hereditary cancer panels. Eur. J. Hum. Genet. 30(3), 378–383 (2022)

    Article  Google Scholar 

  5. Amendola, L.M., et al.: Performance of ACMG-AMP variant-interpretation guidelines among nine laboratories in the clinical sequencing exploratory research consortium. Am. J. Hum. Genet. 99(1), 247 (2016)

    Article  Google Scholar 

  6. Dines, J.N., et al.: Systematic misclassification of missense variants in BRCA1 and BRCA2 “coldspots”. Genet. Med. 22(5), 825–830 (2020)

    Google Scholar 

  7. Chen, T., et al.: Hotspot mutations delineating diverse mutational signatures and biological utilities across cancer types. BMC Genom. 17(Suppl 2), 394 (2016)

    Google Scholar 

  8. Tokheim, C., et al.: Exome-scale discovery of hotspot mutation regions in human cancer using 3D protein structure. Cancer Res. 76(13), 3719–31 (2016)

    Article  Google Scholar 

  9. Wiel, L., et al.: De novo mutation hotspots in homologous protein domains identify function-altering mutations in neurodevelopmental disorders. Am. J. Hum. Genet. 110(1), 92–104 (2023)

    Article  Google Scholar 

  10. Jia, P., et al.: MSEA: detection and quantification of mutation hotspots through mutation set enrichment analysis. Genome Biol. 15(10), 489 (2014)

    Article  Google Scholar 

  11. Lu, X., et al.: DMCM: a Data-adaptive Mutation Clustering Method to identify cancer-related mutation clusters. Bioinformatics 35(3), 389–397 (2019)

    Article  Google Scholar 

  12. Pérez-Palma, E., et al.: Identification of pathogenic variant enriched regions across genes and gene families. Genome Res. 30(1), 62–71 (2020)

    Article  Google Scholar 

  13. Waring, A., et al.: Data-driven modelling of mutational hotspots and in silico predictors in hypertrophic cardiomyopathy. J. Med. Genet. 58(8), 556–564 (2021)

    Article  Google Scholar 

  14. Rüžička, M., et al.: DNA mutation motifs in the genes associated with inherited diseases. PLoS ONE 12(8), e0182377 (2017)

    Article  Google Scholar 

  15. Trevino, V.: HotSpotAnnotations-a database for hotspot mutations and annotations in cancer. Database (Oxford) (2020)

    Google Scholar 

  16. Gonzalez-Cárdenas, M., Treviño, V.: The Impact of Mutational Hotspots on Cancer Survival. Cancers (Basel) 16(5) (2024)

    Google Scholar 

  17. Martinez-Ledesma, E., Flores, D., Trevino, V.: Computational methods for detecting cancer hotspots. Comput. Struct. Biotechnol. J. 18, 3567–3576 (2020)

    Article  Google Scholar 

  18. Kovács, Z., et al.: Bioinformatic identification of TP53 gene mutation hotspots in colorectal cancer. Int. J. Mol. Sci. 25(12) (2024)

    Google Scholar 

  19. Baeissa, H., et al.: Identification and analysis of mutational hotspots in oncogenes and tumour suppressors. Oncotarget 8(13), 21290–21304 (2017)

    Article  Google Scholar 

  20. Madsen, R.R., Vanhaesebroeck, B., Semple, R.K.: Cancer-associated PIK3CA mutations in overgrowth disorders. Trends Mol. Med. 24(10), 856–870 (2018)

    Article  Google Scholar 

  21. Quinodoz, M., et al.: Analysis of missense variants in the human genome reveals widespread gene-specific clustering and improves prediction of pathogenicity. Am. J. Hum. Genet. 109(3), 457–470 (2022)

    Article  Google Scholar 

  22. Havrilla, J.M., et al.: A map of constrained coding regions in the human genome. Nat. Genet. 51(1), 88–95 (2019)

    Article  Google Scholar 

  23. Chao, K.R., et al.: The landscape of regional missense mutational intolerance quantified from 125,748 exomes. bioRxiv (2024)

    Google Scholar 

  24. Zhang, X., et al.: Genetic constraint at single amino acid resolution in protein domains improves missense variant prioritisation and gene discovery. Genome Med 16(1), 88 (2024)

    Article  Google Scholar 

  25. Hudson, A.M., et al.: Discrepancies in cancer genomic sequencing highlight opportunities for driver mutation discovery. Cancer Res. 74(22), 6390–6396 (2014)

    Article  Google Scholar 

  26. Fisher, R.A.: On the interpretation of \(\psi \) 2 from contingency tables, and the calculation of P. J. Roy. Stat. Soc. 85(1), 87–94 (1922)

    Article  Google Scholar 

  27. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)

    Article  Google Scholar 

  28. Do, C.B., Batzoglou, S.: What is the expectation maximization algorithm? Nat. Biotechnol. 26(8), 897–899 (2008)

    Article  Google Scholar 

  29. McLaren, W., et al.: The ensembl variant effect predictor. Genome Biol. 17(1), 122 (2016)

    Article  Google Scholar 

Download references

Funding

This work was funded by Natural Science Foundation of Hunan Province, China [2024JJ9550], Natural Science Foundation of Hunan Province, China [2023JJ30975] and Postgraduate Scientific Research Innovation Project of Hunan Province, China [LXBZZ2024316].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinpan Yuan .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 9661 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2026 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xia, X., Zhao, G., Yuan, X. (2026). HCSeer: A Classification Tool for Human Genetic Variant Hot and Cold Spots Designed for PM1 and Benign Criteria in the ACMG Guideline. In: Tang, J., Lai, X., Cai, Z., Peng, W., Wei, Y. (eds) Bioinformatics Research and Applications. ISBRA 2025. Lecture Notes in Computer Science(), vol 15756. Springer, Singapore. https://doi.org/10.1007/978-981-95-0698-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-95-0698-9_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-95-0697-2

  • Online ISBN: 978-981-95-0698-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Keywords

Publish with us

Policies and ethics