Abstract
Biobased degradable materials focus on the bio-derived renewable raw materials, avoid the dependence on traditional polymer materials based on fossil raw materials, and have the dual effects of environmental protection and resource conservation. The production methods of biobased degradable materials are mainly divided into three types: one is to use chemical methods alone to transform biobased raw materials for polymer production; the second is to use biological methods alone to transform biobased raw materials for polymer production, and the third is to use biological and chemical methods together to transform biobased raw materials for polymer production. At present, most biobased polymers are produced by the third method. The second method, that is, directly transforming biobased raw materials into a polymer through biological methods, reduces the steps of intermediate chemical synthesis, is the best option for polymer production in terms of energy saving, safety, and economy, and is an important direction for future research and development of biobased materials. This chapter focuses on the more common biobased degradable polymer materials that can be directly prepared by biological transformation, including polyhydroxyalkanoates/poly-β-hydroxybutyrate (PHA/PHB), polylactic acid (PLA), chitin, polybutyramide (PA4), and polylactic acid. The background, advantages, and synthesis methods of these polymers are introduced.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ahmad SI, Ahmad R, Khan MS et al (2020) Chitin and its derivatives: structural properties and biomedical applications. Int J Biol Macromol 164:526–539
Aixia W, Xiuwen W, Jiayang Q et al (2020) Biosynthesis of ε-polylysine and its application in the medical field. J Binzhou Med College 43(3):6
An L, Luijk NV, Beek MT, Caspers M et al (2011) A clone-based transcriptomics approach for the identification of genes relevant for itaconic acid production in Aspergillus. Fungal Genet Biol 48(6):602–611
Andin N, Longieras A, Veronese T et al (2017) Improving carbon and energy distribution by coupling growth and medium chain length polyhydroxyalkanoate production from fatty acids by Pseudomonas putida KT2440. Biotechnol Bioprocess Eng 22:308–318
Andreessen B, Lange AB, Robenek H et al (2010) Conversion of glycerol to poly(3-Hydroxypropionate) in recombinant Escherichia coli. Appl Environ Microbiol 76(2):622–626
Aranaz I, Acosta N, Civera C et al (2018) Cosmetics and cosmeceutical applications of chitin, chitosan and their derivatives. Polymers (Basel) 10(2)
Ashby RD, Shi FY, Gross RA (1997) Use of poly(ethylene glycol) to control the end group structure and molecular weight of poly(3-hydroxybutyrate) formed by Alcaligenes latus DSM1122. Tetrahedron 53(45):15209–15223
Ashby RD, Solaiman DK, Strahan GD et al (2015) Methanol-induced chain termination in poly(3-hydroxybutyrate) biopolymers: molecular weight control. Int J Biol Macromol 74:195–201
Ashiuchi M (2013) Biochemical engineering of PGA. Microb Biotechnol 6(6):664–674
Ashiuchi M, Shimanouchi K, Nakamura H et al (2004) Enzymatic synthesis of high-molecular-mass poly-γ-glutamate and regulation of its stereochemistry. Appl Environ Microbiol 70(7):4249–4255
Ashiuchi M, Yamashiro D, Yamamoto K (2013) Bacillus subtilis EdmS(formerly PgsE) participates in the maintenance of episomes. Plasmid 70(2):209–215
Atsumi S, Hanai T, Liao JC (2008) Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451(7174):86–89
Bai C, Zhang Y, Zhao X et al (2015) Exploiting a precise design of universal synthetic modular regulatory elements to unlock the microbial natural products in Streptomyces. PNAS 111(39):12181–12186
Balogun-Agbaje OA, Odeniyi OA, Odeniyi MA (2021) Drug delivery applications of poly-γ-glutamic acid. Future J Pharm Sci 7(1):1–10
Bankar SB, Singhal RS (2011) Improved poly-ε-lysine biosynthesis using Streptomyces noursei NRRL 5126 by controlling dissolved oxygen during fermentation. J Microbiol Biotechnol 21(6):652–658
Bao T, Xiaohai F, Dan Z et al (2016) Enhancing the biosynthesis of γ-polyglutamic acid through the expression of vitreoscilla hemoglobin gene. Biochem Eng J 14(2):1–6
Bastian S, Xiang L, Meyerowitz JT et al (2011) Engineered ketol-acid reductoisomerase and alcohol dehydrogenase enable anaerobic 2-methylpropan-1-ol production at theoretical yield in Escherichia coli. Metab Eng 13(3):345–352
Bhatia SK, Otari SV, Jeon JM et al (2021) Biowaste-to-bioplastic (polyhydroxyalkanoates): conversion technologies, strategies, challenges, and perspective. Bioresour Technol 326:124733
Bin L, Haifeng Y (2018) Screening and identification of short stalk mold and the effect of dissolved oxygen on its fermentation. Food Industry Sci Technol 39(6):102–107
Borrero-de Acuña JM, Bielecka A, Häussler S et al (2014) Production of medium chain length polyhydroxyalkanoate in metabolic flux optimized Pseudomonas putida. Microb Cell Factories 13:88–102
Botic T, Kralj-Kuncic M, Spepcic K et al (2014) Biological activities of organic extracts of four Aureobasidium pollulans varieties isolated from extreme marine and terrestrial habitats. Nat Prod Res 28(12):874–882
Brandl H, Knee EJ Jr, Fuller RC et al (1989) Ability of the phototrophic bacterium Rhodospirillum rubrum to produce various poly(β-hydroxyalkanoates): potential sources for biodegradable polyesters. Int J Biol Macromol 11:49–55
Buschke N, Schröder H, Wittmann C (2015) Metabolic engineering of Corynebacterium glutamicum for production of 1,5-diaminopentane from hemicellulose. Biotechnol J 6(3):306–317
Cai D, Chen Y, He P et al (2018) Enhanced production of poly-γ-glutamic acid by improving ATP supply in metabolically engineered Bacillus licheniformis. Biotechnol Bioeng 115(10):2541–2553
Canhui S, Weiguo Z (2013) The effect of knocking out the aceE gene on the growth and pyruvate metabolism of E. coli. Biochem Eng 11(6):15–18
Causey TB, Zhou S, Shanmugam KT et al (2003) Engineering the metabolism of Escherichia coli W3110 for the conversion of sugar to redox-neutral and oxidized products: Homoacetate production. PNAS 100(3):825–832
Causey TB, Shanmugam KT, Yomano LP et al (2004) Engineering Escherichia coli for efficient conversion of glucose to pyruvate. PNAS 101(8):2235–2240
Cavalheiro JM, Raposo RS, de Almeida MC et al (2012) Effect of cultivation parameters on the production of poly(3-hydroxybutyrate- co -4-hydroxybutyrate) and poly(3-hydroxybutyrate-4-hydroxybutyrate-3-hydroxyvalerate) by Cupriavidus necator using waste glycerol. Bioresour Technol 111:391–397
Chao Z, Dongrong Z, Wei H et al (2006) A simple and sensitive method for screening ε-PL producing strains from soils. J Shandong Univ 44(11):1104–1107
Chemler JA, Fowler ZL, Mchugh KP et al (2010) Improving NADPH availability for natural product biosynthesis in Escherichia coli by metabolic engineering. Metab Eng 12(2):96–104
Chen GQ, Jiang XR (2017) Engineering bacteria for enhanced polyhydroxyalkanoates (PHA) biosynthesis. Synth Syst Biotechnol 2(3):192–197
Chen GQ, Patel MK (2012) Plastics derived from biological sources: present and future: a technical and environmental review. Chem Rev 112(4):2082–2099
Chen GQ, Wu Q (2005) The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials 26(33):6565–6578
Chen XS, Li S, Liao LJ et al (2011) Production of epsilon-poy-l-lysine using a novel two-stage pH control strategy by Streptomyces sp. M-Z18 from glycerol. Bioprocess Biosyst Eng 34(5):561–567
Chen XS, Tang L, Li S et al (2012a) Optimization of medium for enhancement of epsilon-poly-L-lysine production by Streptomyces sp M-Z18 with glycerol as carbon source. Bioprocess Biosyst Eng 35:469–475
Chen XS, Ren XD, Dong N et al (2012b) Culture medium containing glucose and glycerol as a mixed carbon source improve epsilon-poly-l-lysine production by Streptomyces sp M-Z18. Bioprocess Biosyst Eng 35:469–475
Chen GQ, Hajnal I, Wu H et al (2015) Engineering biosynthesis mechanisms for diversifying polyhydroxyalkanoates. Trends Biotechnol 33(10):565–574
Chen L, Dingyu L, Baowei W et al (2019) Progress in the study of acetyl CoA metabolism regulation and its application in Escherichia coli. Chem Industry Progr 38(9):4218–4226
Chen S, Huang S, Li Y et al (2021) Recent advances in epsilon-poly-L-lysine and L-lysine-based dendrimer synthesis, modification, and biomedical applications. Front Chem 9:169
Cheung RC, Ng TB, Wong JH et al (2015) Chitosan: an update on potential biomedical and pharmaceutical applications. Mar Drugs 13(8):5156–5186
Chheda AH, Vernekar MR (2015) A natural preservative ε-poly-L-lysine: fermentative production and applications in food industry. Int Food Res J 22(1):23–30
Choi SY, Rhie MN, Kim HT et al (2020) Metabolic engineering for the synthesis of polyesters: a 100-year journey from polyhydroxyalkanoates to non-natural microbial polyesters. Metab Eng 58:47–81
Chung AL, Jin HL, Huang LJ et al (2011) Biosynthesis and characterization of poly(3-hydroxydodecanoate) by β-oxidation inhibited mutant of Pseudomonas entomophila L48. Biomacromolecules 12(10):3559–3566
Cromwick AM, Birrer GA, Gross RA (1996) Effects of pH and aeration on γ-poly (glutamic acid) formation by Bacillus licheniformis in controlled batch fermentor cultures. Biotechnol Bioeng 50(2):222–227
da Silva FRG, Campos ACA, Souza IS et al (2020) Production of poly-γ-glutamic acid (γ-PGA) by clinical isolates of Staphylococcus Epidermidis. Open Microbiol J 14(1):30–37
Dandan L, Yipeng Z, Li W et al (2021) Establishment of a rapid screening method for ARTP-induced high-yield γ-polyglutamic acid strains. J Anhui Univ Technol 36(1):7
Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. PNAS 97(12):6640–6645
Datta S, Costantino N, Court DL (2006) A set of recombineering plasmids for gram-negative bacteria. Gene 379:109–115
Dharmadi Y, Murarka A, Gonzalez R (2006) Anaerobic fermentation of glycerol by Escherichia coli: a new platform for metabolic engineering. Biotechnol Bioeng 94:821–829
Diegelmann RF, Dunn JD, Lindblad WJ et al (1996) Analysis of the effects of chitosan on inflammation, angiogenesis, fibroplasia, and collagen deposition in polyvinyl alcohol sponge implants in rat wounds. Wound Repair Regen 4(1):48–52
Dietrich K, Oliveira-Filho ER, Dumont M-J et al (2020) Increasing PHB production with an industrially scalable hardwood hydrolysate as a carbon source. Ind Crop Prod 154:112703
Do TH, Suzuki Y, Abe N et al (2011) Mutations suppressing the loss of DegQ function in Bacillus subtilis (natto) poly-γ-glutamate synthesis. Appl Environ Microbiol 77(23):8249–8258
Doi Y, Segawa A, Kunioka M (1989) Biodegradable poly(3-hydroxybutyrate- co -4-hydroxybutyrate) produced from γ-butyrolactone and butyric acid by Alcaligenes eutrophus. Polym Commun 30(6):169–171
El Hadrami A, Adam LR, El Hadrami I et al (2010) Chitosan in plant protection. Mar Drugs 8(4):968–987
Elieh Ali Komi D, Sharma L, Dela Cruz CS (2018) Chitin and its effects on inflammatory and immune responses. Clin Rev Allergy Immunol 54(2):213–223
El-Mansi M (2019) Contrasting effects of isocitrate dehydrogenase deletion on fluxes through enzymes of central metabolism in Escherichia coli. FEMS Microbiol Lett 366(15):187
Ewering C, Heuser F, Benölken JK et al (2006) Metabolic engineering of strains of Ralstonia eutropha and Pseudomonas putida for biotechnological production of 2-methylcitric acid. Metab Eng 8(6):587–602
Fan X, Huixian W, Jiawei H et al (2018) Research progress on gene editing methods—taking the gene knockout method of E. coli as an example. J Nanjing Normal Univ (Natural Sci Ed) 41(3):102–108
Flores-Albino B, Arias L, Gómez J et al (2012) Chitin and L(+)-lactic acid production from crab (Callinectes bellicosus) wastes by fermentation of Lactobacillus sp. B2 using sugar cane molasses as carbon source. Bioprocess Biosyst Eng 35(7):1193–1200
Fowler ZL, Gikandi WW, Koffas MAG (2009) Increased malonyl coenzyme A biosynthesis by tuning the Escherichia coli metabolic network and its application to flavanone production. Appl Environ Microbiol 75(18):5831–5839
Friedman M, Juneja VK (2010) Review of antimicrobial and antioxidative activities of chitosans in food. J Food Prot 73(9):1737–1761
Fujita M, Khazenzon NM, Ljubimov AV et al (2006) Inhibition of laminin-8 in vivo using a novel poly(malic acid)-based carrier reduces glioma angiogenesis. Angiogenesis 9(4):183–191
Fujita M, Lee BS, Khazenzon NM et al (2007) Brain tumor tandem targeting using a combination of monoclonal antibodies attached to biopoly(β-L-malic acid). J Control Release 122(3):356–363
Fujita KI, Tomiyama T, Inoi T et al (2021) Effect of pgsE expression on the molecular weight of poly (γ-glutamic acid) in fermentative production. Polym J 53(2):409–414
Fukui T, Kichise T, Iwata T et al (2001) Characterization of 13 kDa granule-associated protein in Aeromonas caviae and biosynthesis of polyhydroxyalkanoates with altered molar composition by recombinant bacteria. Biomacromolecules 2:148–153
Gao W, He Y, Zhang F et al (2019) Metabolic engineering of Bacillus amyloliquefaciens LL 3 for enhanced poly-γ-glutamic acid synthesis. Microbial Biotechnol 12(5):932–945
Geng W, Yang C, Gu Y et al (2014) Cloning of ε-poly-L-lysine (ε-PL) synthetase gene from a newly isolated ε-PL-producing Streptomyces albulus NK 660 and its heterologous expression in Streptomyces lividans. Microb Biotechnol 7(2):155–164
Ghorbel-Bellaaj O, Hmidet N, Jellouli K et al (2011) Shrimp waste fermentation with Pseudomonas aeruginosa A2: optimization of chitin extraction conditions through Plackett-Burman and response surface methodology approaches. Int J Biol Macromol 48(4):596–602
González-García Y, Grieve J, Meza-Contreras JC et al (2019) Tequila agave bagasse hydrolysate for the production of polyhydroxybutyrate by Burkholderia sacchari. Bioengineering (Basel, Switzerland) 6(4):115–127
Green PR, Kemper J, Schechtman L et al (2002) Formation of short chain length/medium chain length polyhydroxyalkanoate copolymers by fatty acid β-oxidation inhibited Ralstonia eutropha. Biomacromolecules 3(1):208–213
Gui L, Sunnarborg A, Pan B et al (1996) Autoregulation of iclR, the gene encoding the repressor of the glyoxylate bypass operon. J Bacteriol 178(1):321–324
Hadicke O, Klamt S (2017) EColiCore2: a reference network model of the central metabolism of Escherichia coli and relationships to its genome scale parent model. Sci Rep 7:39647
Haitao Z, Yan L, Jie O et al (2007) Induced breeding of ε-polylysine-producing bacterial mutants. Food Sci 28(9):398–401
Haiyan W, Ming L, Huajun W et al (2006) Microbial metabolic engineering in lactic acid production. J Process Eng 3:178–182
Halmschlag B, Steurer X, Putri SP et al (2019) Tailor-made poly-γ-glutamic acid production. Metab eng 55:239–248
Halmschlag B, Putri SP, Fukusaki E et al (2020) Poly-γ-glutamic acid production by Bacillus subtilis 168 using glucose as the sole carbon source: a metabolomic analysis. J Biosci Bioeng 130(3):272–282
Hamano Y, Nicchu I, Shimizu T et al (2007) epsilon-Poly-L-lysine producer, Streptomyces albulus, has feedback-inhibition resistant aspartokinase. Appl Microbiol Biotechnol 76(4):873–882
Han MJ, Yoon SS, Lee SY (2001) Proteome analysis of metabolically engineered Escherichia coli producing poly(3-hydroxybutyrate). J Bacteriol 183(1):301–308
Han J, Hou J, Zhang F et al (2013) Multiple propionyl coenzyme A-supplying pathways for production of the bioplastic poly(3-hydroxybutyrate- co -3-hydroxyvalerate) in Haloferax mediterranei. Appl Environ Microbiol 79(9):2922–2931
Hao W, Yifeng Z, Yuanai C et al (2010) Extraction of polymalic acid from fermentation broth by ion exchange method. Ion Exchange Adsorp 27(3):257–263
Haywood GW, Anderson AJ, Williams DR et al (1991) Accumulation of a poly(hydroxyalkanoate) copolymer containing primarily 3-hydroxyvalerate from simple carbohydrate substrates by Rhodococcus sp. NCIMB 40126. Int J Biol Macromol 13:83–88
He Y, Weiguang L, Juanqin Z et al (2020) Research progress on γ-polyglutamic acid. Anhui Agric Sci 48(18):18–22
Hiraki J, Masakazu H, Hiroshi M et al (1998) Improved ε-Poly-L-Lysine production of an S-(2-Aminoethyl)-L-cysteine resistant mutant of Streptomyces albulus. Seibutsu Kogakkaishi 76:487–493
Hiraki J, Ichikawa T, Ninomiya S et al (2003) Use of ADME studies to confirm the safety of epsilon-polylysine as a preservative in food. Regul Toxicol Pharmacol 37(2):328–340
Hsueh YH, Huang KY, Kunene SC et al (2017) Poly-γ-glutamic acid synthesis, gene regulation, phylogenetic relationships, and role in fermentation. Int J Mol Sci 18(12):2644
Hu D, Chung AL, Wu LP et al (2011) Biosynthesis and characterization of polyhydroxyalkanoate block copolymer P3HB- b -P4HB. Biomacromolecules 12:3166–3173
Huang X, Mei C, Li J et al (2016) Establishing an efficient gene-targeting system in an itaconic-acid producing Aspergillus terreus strain. Biotechnol Lett 38(9):1603–1610
Hui J (2012) Expression of vitreoscilla hemoglobin in γ-PGA synthesis bacterium B.amyloliquefaciens LL3. Nankai University
Inoue S, Ding H, Portilla-Arias J et al (2011) Polymalic acid-based nanobiopolymer provides efficient systemic breast cancer treatment by inhibiting both HER2/neu receptor synthesis and activity. Cancer Res 71(4):1454
Inoue S, Pati R, Portilla-Arias J et al (2012) Nanobiopolymer for direct targeting and inhibition of EGFR expression in triple negative breast cancer. PLoS ONE 7(2):e31070
Israni N, Venkatachalam P, Gajaraj B et al (2020) Whey valorization for sustainable polyhydroxyalkanoate production by Bacillus megaterium: production, characterization and in vitro biocompatibility evaluation. J Environ Manag 255:109884
Jianfeng W, Zhilong X, Haijun L et al (2001) Research on the microaerobic fermentation of 1,3-propanediol by Klebsiella pneumoniae. Modern Chem Industry 5:28–31
Jiang W, Bikard D, Cox D et al (2013) RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol 31(3):233–239
Jiang Y, Qian F, Yang J et al (2017) CRISPR-Cpf1 assisted genome editing of Corynebacterium glutamicum. Nat Commun 8:15179
Jiayang Q, Aixia W, Yubin X et al (2019) A genetically engineered strain of Streptomyces albus and its application in the production of ε-polylysine. China, 201911198884.5
Jimtaisong A, Saewan N (2014) Utilization of carboxymethyl chitosan in cosmetics. Int J Cosmet Sci 36(1):12–21
Jin H, Ning C (2005) Properties and production methods of γ-polyglutamic acid. Amino Acids Biol Resour 26(3):4–8
Juanjuan Y, Xiaoyu M, Xiaorui W et al (2020) Research progress in gene editing of Corynebacterium glutamicum. J Biol Eng 5:820–828
Jun C, Yang C, Ding-Qi W et al (2021) The effect of enhancing the carboxylation pathway of glutamic acid rod-shaped bacteria on the yield of organic acids. J Wuhan Univ Sci Technol 44(2):112–118
Jung YM, Lee JN, Shin HD et al (2004) Role of tktA gene in pentose phosphate pathway on odd-ball biosynthesis of poly-β-hydroxybutyrate in transformant Escherichia coli harboring phbCAB operon. J Biosci Bioeng 98(3):224–227
Jung YK, Kim TY, Park SJ et al (2010) Metabolic engineering of Escherichia coli for the production of polylactic acid and its copolymers. Biotechnol Bioeng 105(1):161–171
Junnan F, Juan L, Lishan X et al (2018) Progress in microbial fermentation production of γ-polyglutamic acid. J Appl Environ Biol 24(5):1041–1049
Junwei L, Ye L, Wang Y et al (2020) Condition optimization of base editing in Corynebacterium glutamicum. J Biol Eng 36(1):143–151
Kahar P, Iwata T, Hiraki J et al (2001) Enhancement of ε-polyysine production by Streptomyces albulus strain 410 using pH control. J Biosci Bioeng 91(2):190–194
Kahar P, Kobayashi K, Iwata T et al (2002) Production of epsilon-polylysine in an airlift bioreactor (ABR). J Biosci Bioeng 93(3):274–280
Kanamasa S, Dwiarti L, Okabe M et al (2008) Cloning and functional characterization of the cis-aconitic acid decarboxylase (CAD) gene from Aspergillus terreus. Appl Microbiol Biotechnol 80(2):223–229
Karmann S, Panke S, Zinn M (2019) Fed-batch cultivations of Rhodospirillum rubrum under multiple nutrient-limited growth conditions on syngas as a novel option to produce poly(3-hydroxybutyrate) (PHB). Front Bioeng Biotechnol 7:59–69
Kejia W, Shuyi Q (2020) Research progress on the application of genome rearrangement technology in microbial strain breeding. Food Industry Sci Technol 41(3):6
Kichise T, Taguchi S, Doi Y (2002) Enhanced accumulation and changed monomer composition in Polyhydroxyalkanoate(PHA) Ccopolyester by in vitro evolution of Aeromonas caviae PHA synthase. Appl Environ Microbiol 68:2411–2419
Kim YM, Cho HS, Jung GY et al (2011) Engineering the pentose phosphate pathway to improve hydrogen yield in recombinant Escherichia coli. Biotechnol Bioeng 108(12):2941–2946
Kimura K, Tran LSP, Do TH et al (2009) Expression of the pgsB encoding the poly-gamma-DL-glutamate synthetase of Bacillus subtilis (natto). Biosci Biotechnol Biochem 73(5):1149–1155
Kimura K, Tran LSP, Funane K (2011) Loss of poly-γ-glutamic acid synthesis of bacillus subtilis (natto) due to IS4Bsu1 translocation to swrA gene. Food Sci Technol Res 17(5):447–451
Kobayashi K, Nishikawa M (2007) Promotion of ε-poly-l-lysine roduction by iron in Kitasatosporakifunense. World J Microbiol Biotechnol 23(7):1033–1036
Kobayashi G, Shiotani T, Shima Y et al (1994) Biosynthesis and characterization of poly(3-hydroxybutyrate- co -3-hydroxyhexanoate) from oils and fats by Aeromonas sp. OL-338 and Aeromonas sp. FA-440. Biodegrad Plastics Polym 12:410–416
Kroumova AB, Wagner GJ, Davies HM (2002) Biochemical observations on medium-chain-length polyhydroxyalkanoate biosynthesis and accumulation in Pseudomonas mendocina. Arch Biochem Biophys 405(1):95–103
Kucera D, Pernicová I, Kovalcik A et al (2018) Characterization of the promising poly(3-hydroxybutyrate) producing halophilic bacterium Halomonas halophila. Bioresour Technol 256:552–556
Kurata H, Sugimoto Y (2018) Improved kinetic model of Escherichia coli central carbon metabolism in batch and continuous cultures. J Biosci Bioeng 125(2):251–257
Lee BS, Fujita M, Khazenzon NM et al (2006) Polycefin, a new prototype of a multifunctional nanoconjugate based on poly(β-L-malic acid) for drug delivery. Bioconjug Chem 17(2)
Lee HC, Kim JS, Jang W et al (2010) High NADPH/NADP+ ratio improves thymidine production by a metabolically engineered Escherichia coli strain. J Biotechnol 149(1-2):24–32
Lee SH, Kang K, Kim EY et al (2013) Metabolic engineering of Escherichia coli for enhanced biosynthesis of poly(3-hydroxybutyrate) based on proteome analysis. Biotechnol Lett 35(10):1631–1637
Lei J, Xia M (2011) Improvement of extraction methods for γ-polyglutamic acid. Modern Chem Industry S1:267–270
Leilei L, Danfeng Z, Linjie C et al (2020) Screening and identification of high-yield polymalic acid bacteria. Food Industry Science and Technology
Lemoigne M (1926a) Products of dehydration and polymerization of beta-oxybutyric acid. Finanz-Rundschau Ertragsteuerrecht 91(1):449–454
Lemoigne M (1926b) Products of dehydration and of polymerization of β-hydroxybutyric acid. Bull Soc Chem Biol 8:770–782
Le-Ping G, Yu-Min D, Hua-Tang Y (2002) Study on the decolorization conditions and molecular weight of hydrogen peroxide chitosan. J Wuhan Univ Sci Ed 48(4):4
Li H (2017) High-throughput screening and fermentation characteristics of polymalic acid-producing bacteria. Southwest University, Chongqing
Li SP, Yan YH, Zhang QS et al (2009) Biodegradable conductive biomedical polymer materials. ZL200810197694.7
Li ZJ, Shi ZY, Jian J et al (2010) Production of poly(3-hydroxybutyrate- co -4-hydroxybutyrate) from unrelated carbon sources by metabolically engineered Escherichia coli. Metab Eng 12(4):352–359
Li S, Chen X, Dong C et al (2013) Combining genome shuffling and interspecific hybridization among Streptomyces improved ε-poly-L-lysine production. Appl Biochem Biotechnol 169(1):338–350
Li S, Cai L, Wu L et al (2014a) Microbial synthesis of functional homo-, random, and block polyhydroxyalkanoates by β-oxidation deleted Pseudomonas entomophila. Biomacromolecules 15(6):2310–2319
Li T, Chen XB, Chen JC et al (2014b) Open and continuous fermentation: products, conditions and bioprocess economy. Biotechnol J:1503–1511
Li M, Chen X, Che X et al (2018) Engineering Pseudomonas entomophila for synthesis of copolymers with defined fractions of 3-hydroxybutyrate and medium-chain-length 3-hydroxyalkanoates. Metab Eng 52:253–262
Li M, Chen J, Wang Y et al (2020) Efficient multiplex gene repression by CRISPR-dCpf1 in Corynebacterium glutamicum. Front Bioeng Biotechnol 8:357
Liebergesell M, Hustede E, Timm A et al (1991) Formation of poly(3-hydroxyalkanoates) by phototrophic and chemolithotrophic bacteria. Arch Microbiol 155(5):415–421
Lìfei C (2015) Strain improvement of high-yield 1,3-propanediol Klebsiella pneumoniae. Master’s thesis, Qilu University of Technology
Lijuan L, Fulin Z, Xusheng C et al (2011) The effect of amino acids on the biosynthesis of ε-polylysine by Streptomyces griseus. Industrial Microbiol 04:43–49
Lim SJ, Jung YM, Shin HD et al (2002) Amplification of the NADPH-related genes zwf and gnd for the oddball biosynthesis of PHB in an E. coli transformant harboring a cloned phbCAB operon. J Biosci Bioeng 93(6):543–549
Lin Y, Lin Z, Huang C et al (2015) Metabolic engineering of Escherichia coli using CRISPR-Cas9 meditated genome editing. Metab Eng
Ling M, Wu Y, Tian R et al (2022) Combinatorial pathway engineering of Bacillus subtilis for production of structurally defined and homogeneous chitooligosaccharides. Metab Eng 70:55–66
Lingtian W, Yunlan Z, Mengrong C et al (2020) A strain of Bacillus velezensis and its application in the co-production of microbial polysaccharides and γ-polyglutamic acid. CN202010649356.3
Linhui W, Xu L, Jiaojiao L et al (2018) A method for producing polyglutamic acid by fermenting glutamic acid fermentation waste mycelium, CN108841882A
Liu H, Lu T (2015) Autonomous production of 1,4-butanediol via a de novo biosynthesis pathway in engineered Escherichia coli. Metab Eng 29:135–141
Liu Q, Luo G, Zhou XR et al (2010) Biosynthesis of poly(3-hydroxydecanoate) and 3-hydroxydodecanoate dominating polyhydroxyalkanoates by β-oxidation pathway inhibited Pseudomonas putida. Metab Eng 13(1):11–17
Liu H, Jing H, Liu X et al (2011a) Development of pyrF -based gene knockout systems for genome-wide manipulation of the archaea Haloferax mediterranei and Haloarcula hispanica. J Genet Genomics 38(6):261–269
Liu SR, Wu QP, Zhang JM et al (2011b) Production of epsilon-poly-L-lysine by Streptomyces sp using resin-based, in situ product removal. Biotechnol Lett 33(8):1581–1585
Liu J, Wang Y, Lu Y et al (2017a) Development of a CRISPR/Cas9 genome editing toolbox for Corynebacterium glutamicum. Microb Cell Factories 16(1):205
Liu M, Ding Y, Chen H et al (2017b) Improving the production of acetylCoA-derived chemicals in Escherichia coli BL21(DE3) through iclR and arcA deletion. BMC Microbiol 17(1):2–9
Liu YJ, Chen XS, Zhao JJ et al (2017c) Development of microtiter plate culture method for rapid screening of ε-poly-L-lysine-producing strains. Appl Biochem Biotechnol 183(4):1209–1223
Liu SR, Yang XJ, Sun DF (2021) Enhanced production of ε-poly-L-lysine by immobilized Streptomyces ahygroscopicus through repeated-batch or fed-batch fermentation with in situ product removal. Bioprocess Biosyst Eng:1–12
Ljubimova JY, Fujita M, Khazenzon NM et al (2008a) Nanoconjugate based on polymalic acid for tumor targeting. Chem Biol Interact 171(2):195–203
Ljubimova JY, Fujita M, Ljubimov AV et al (2008b) Poly(malic acid) nanoconjugates containing various antibodies and oligonucleotides for multi-targeting drug delivery. Nanomedicine 3(2):247–265
Lockwood LB, Raper KB, Moyer AJ et al (1945) The production and characterization of ultravioletnduced mutations in Aspergillus terreus. III. Biochemical characteristics of the mutations. Am J Bot 32(4):214–217
Lopes C, Antelo LT, Franco-Uría A et al (2017) Chitin production from crustacean biomass: Sustainability assessment of chemical and enzymatic processes. J Clean Prod 172(PT.4):4140–4151
Lu L (2019) Research on CRISPR/Cpf1 system in genome editing of Corynebacterium glutamicum ATCC 14067. Master’s thesis, South China University of Technology
Lu X, Zhang J, Wu Q et al (2010) Enhanced production of poly(3-hydroxybutyrate- co -3-hydroxyhexanoate) via manipulating the fatty acid β-oxidation pathway in E. coli. FEMS Microbiol Lett 221(1):97–101
Lv L, Ren YL, Chen JC et al (2015) Application of CRISPRi for prokaryotic metabolic engineering involving multiple genes, a case study: controllable P(3HB- co -4HB) biosynthesis. Metab Eng 29:160–168
Macrae RM, Wilkinson JF (1958) Poly-beta-hydroxybutyrate metabolism in washed suspensions of Bacillus cereus and Bacillus megaterium. J Microbiol 19(1):210–222
Mader U, Antelmann H, Buder T (2002) Bacillus subtilis functional genomics: genome-wide analysis of the DegS-DegU regulon by transcriptomics and proteomics. Mol Gen Genomics 268(4):455–467
Madi N, McNeil B, Harvey L (1997) Effect of exogenous calcium on morphological development and biopolymer synthesis in the fungus Aureobasidium pullulans. Enzyme Microb Technol 21(2):102–107
Madi N, McNeil B, Harvey L (2015) Influence of culture pH and aeration on ethanol production and pullulan molecular weight by Aureobasidium pullulans. J Chem Technol Biotechnol 65(4):343–350
Magocha TA, Zabed H, Yang M et al (2018) Improvement of industrially important microbial strains by genome shuffling: current status and future prospects. Bioresour Technol 6:1–14
Malerba M, Cerana R (2019) Recent applications of chitin- and chitosan-based polymers in plants. Polymers (Basel) 11(5)
Manni L, Ghorbel-bellaaj O, Jellouli K et al (2010) Extraction and characterization of chitin, chitosan, and protein hydrolysates prepared from shrimp waste by treatment with crude protease from Bacillus cereus SV1. Appl Biochem Biotechnol 162(2):345–357
Martínez I, Zhu J, Lin H et al (2008) Replacing Escherichia coli NAD-dependent glyceraldehyde 3-phosphate dehydrogenase (GAPDH) with a NADP-dependent enzyme from Clostridium acetobutylicum facilitates NADPH dependent pathways. Metab Eng 10(6):352–359
Martins AF, Facchi SP, Follmann HD et al (2014) Antimicrobial activity of chitosan derivatives containing N-quaternized moieties in its backbone: a review. Int J Mol Sci 15(11):20800–20832
Matsumoto K, Aoki E, Takase K et al (2006) In vivo and in vitro characterization of Ser477X mutations in polyhydroxyalkanoate (PHA) synthase 1 from Pseudomonas sp. 61-3: effects of beneficial mutations on enzymatic activity, substrate specificity, and molecular weight of PHA. Biomacromolecules 7:2436–2442
Mcconville TH, Giddins MJ, Uhlemann AC (2021) An efficient and versatile CRISPR-Cas9 system for genetic manipulation of multi-drug resistant Klebsiella pneumoniae. STAR Protocols 2(1):100373
Meng DC, Wang Y, Wu LP et al (2015) Production of poly(3-hydroxypropionate) and poly(3-hydroxybutyrate- co -3-hydroxypropionate) from glucose by engineering Escherichia coli. Metab Eng 29:189–195
Mengdi W (2021) Synthesis methods of polyglutamic acid and its applications in agriculture. China Salt Industry 395(20):48–50
Mengying Z, Yahui L, Yuanlong Z et al (2019) Research progress on the biosynthesis of polyhydroxyalkanoates (PHAs) by halophilic bacteria. Biotechnol Bull 35(6):172–177
Menzel K, Zeng A, Deckwer W (1997) High concentration and productivity of 1,3-propanediol from continuous fermentation of glycerol by Klebsiella pneumoniae. Enzym Microb Technol 20(2):82–86
Mey M, Maeseneire S, Soetaert W et al (2007) Minimizing acetate formation in E. coli fermentations. J Ind Microbiol Biotechnol 34(11):689–700
Milin Z, Baojun K, Hui Z et al (2019) Comparison of CRISPR-Cpf1 and Cre/loxP gene knockout technologies in Corynebacterium glutamicum. Microbiol Bull 46(2):65–78
Min P, Yingqing Z, Ting W et al (2021) Research progress on the functional impact of polyglutamic acid on food. China Food Addit 7:138–142
Mingfeng C, Yinghong J, Hui X et al (2011) Microbial synthesis of γ-polyglutamic acid, related genes and application prospects. Microbiol Bull 38(3):388–395
Moussian B (2019) Chitin: structure, chemistry and biology. Adv Exp Med Biol 1142:5–18
Murphy KC (1998) Use of bacteriophage λ recombination functions to promote gene replacement in Escherichia coli. J Bacteriol 180(8):2063–2071
Myoung PJ, Yu-Sin J, Yong KT et al (2010) Development of a gene knockout system for Ralstonia eutropha H16 based on the broad-host-range vector expressing a mobile group II intron. Fems Metab Eng 2:193–200
Nagai T, Phan Tran LS, Inatsu Y et al (2000) A new IS 4 family insertion sequence, IS 4Bsu 1, responsible for genetic instability of poly-γ-glutamic acid production in Bacillus subtilis. J Bacteriol 182(9):2387–2392
Nan L (2006) Screening and optimization of γ-PGA producing strain S004-50-01. Food Ferment Industries 6(31):1–6
Ngo DH, Kim SK (2014) Antioxidant effects of chitin, chitosan, and their derivatives. Adv Food Nutr Res 73:15–31
Nielsen DR, Yoon SH, Yuan CJ et al (2010) Engineering Acetoin and meso-2,3-butanediol biosynthesis in E. coli. Biotechnol J 5(3):274–284
Nishikawa AM, Ogawa K (2002) Distribution of microbes producing antimicrobial epsilon-poly-L-lysine polymers in soil microflora determined by a novel method. Appl Environ Microbiol 68(7):3575–3581
Ogawa Y, Hosoyama H, Hamano M et al (1991) Purification and properties of γ-Glutamyltranspeptidase from Bacillus subtilis (natta). Agric Biol Chem 55(12):2971–2977
Ogunleye A, Bhat A, Irorere VU et al (2015) Poly-γ-glutamic acid: production, properties and applications. Microbiology 161(1):1–17
Ohsawa T, Tsukahara K, Ogura M (2009) Bacillus subtilis response regulator DegU is a direct activator of pgsB transcription involved in γ-poly-glutamic acid synthesis. Biosci Biotechnol Biochem 73(9):2096–2102
Ouyang P, Wang H, Hajnal I et al (2017) Increasing oxygen availability for improving poly(3-hydroxybutyrate) production by Halomonas. Metab Eng 45:20–31
Pan L, Chen X, Wang K et al (2019) Understanding high ε-poly-l-lysine production by Streptomyces albulus using pH shock strategy in the level of transcriptomics. J Ind Microbiol Biotechnol 46(12):1781–1792
Park SJ, Lee SY (2003) Identification and characterization of a new enoyl coenzyme a hydratase involved in biosynthesis of medium-chain-length polyhydroxyalkanoates in recombinant Escherichia coli. J Bacteriol 185:5391–5397
Park SJ, Lee SY, Kim TW et al (2012) Biosynthesis of lactate-containing polyesters by metabolically engineered bacteria. Biotechnol J 7(2):199–212
Park SJ, Jang YA, Lee H et al (2013) Metabolic engineering of Ralstonia eutropha for the biosynthesis of 2-hydroxyacid-containing polyhydroxyalkanoates. Metab Eng 20:20–28
Patil NA, Kandasubramanian B (2021) Functionalized polylysine biomaterialls for advanced medical applications: a review. Eur Polym J 146:110248
Pederson EN, McChalicher CWJ, Srienc F (2006) Bacterial synthesis of PHA block copolymers. Biomacromolecules 7:1904–1911
Peng F, Wang X, Sun Y et al (2017) Efficient gene editing in Corynebacterium glutamicum using the CRISPR/Cas9 system. Microb Cell Factories 16(1):201
Peng G, Kun W, Yahui C et al (2019) Synthesis and application of γ-polyglutamic acid. J Xuchang Univ 38(5):92–95
Peng D, Jinlu Z, Bingrong L et al (2020) Chemical modification and application of chitin and chitosan. Polym Bull 7:17
Pernicova I, Kucera D, Nebesarova J et al (2019) Production of polyhydroxyalkanoates on waste frying oil employing selected Halomonas strains. Bioresour Technol 292:122028
Pfeiffer D, Wahl A, Jendrossek D (2011) Identification of a multifunctional protein, PhaM, that determines number, surface to volume ratio, subcellular localization and distribution to daughter cells of poly(3-hydroxybutyrate), PHB, granules in Ralstonia eutropha H16. Mol Microbiol 81:936–951
Poblete-Castro I, Binger D, Rodrigues A et al (2013) In-silico-driven metabolic engineering of Pseudomonas putida for enhanced production of poly-hydroxyalkanoates. Metab Eng 15:113–123
Poo H, Park C, Kwak MS et al (2010) New biological functions and applications of high-molecular-mass poly-γ-glutamic acid. Chem Biodivers 7(6):1555–1562
Portilla-Arias J, Pati R, Hu J et al (2010) Nanoconjugate platforms development based in poly(β-L-malic acid) methyl esters for tumor drug delivery. J Nanomater:825363
Przystałowska H, Zeyland J, PowałOwska DS et al (2015) 1,3-Propanediol production by new recombinant Escherichia coli containing genes from pathogenic bacteria. Microbiol Res 171:1–7
Qi QS, Steinbüchel A, Rehm BHA (1998) Metabolic routing towards polyhydroxyalkanoic acid synthesis in recombinant Escherichia coli ( fadR ): inhibition of fatty acid β-oxidation by acrylic acid. FEMS Microbiol Lett 167(1):89–94
Qianqian Y, Feiran L, Hao L et al (2017) Discovery of new strategies for microbial metabolic engineering modification from metabolic network analysis. Chem Industry Progr 36(12):4592–4600
Qianqian T, Yaliang L, Shunchang W et al (2019) Research progress on microbial genome rearrangement technology. J Chifeng Univ (Natural Sci Ed) 35(10):18–19
Qin Q, Ling C, Zhao Y et al (2018) CRISPR/Cas9 editing genome of extremophile Halomonas spp. Metab Eng 47:219–229
Raza ZA, Abid S, Banat IM (2018) Polyhydroxyalkanoates: characteristics, production, recent developments and applications. Int Biodeterior Biodegradation 126:45–56
Ren XD, Chen XS, Zeng X et al (2015) Acidic pH shock induced overproduction of epsilon-poly-l-lysine in fed-batch fermentation by Streptomyces sp M-Z18 from agro-industrial by-products. Bioprocess Biosyst Eng 38(6):1113–1125
Roberts RL, Bowers B, Slater ML et al (1983) Chitin synthesis and localization in cell division cycle mutants of Saccharomyces cerevisiae. Mol Cell Biol 3(5):922–930
Saeed KA, Eribo BE, Ayorin De FO et al (2019) Characterization of copolymer hydroxybutyrate/hydroxyvalerate from Saponified Vernonia, soybean, and “Spent” frying oils. J AOAC Int 4:4
Salah R, Michaud P, Mati F et al (2013) Anticancer activity of chemically prepared shrimp low molecular weight chitin evaluation with the human monocyte leukaemia cell line, THP-1. Int J Biol Macromol 52:333–339
Sánchez RJ, Schripsema J, Da Silva LF et al (2003) Medium-chain-length polyhydroxyalkanoic acids (PHA mcl) produced by Pseudomonas putida IPT046 from renewable sources. Eur Polym J 39(7):1385–1394
Sánchez AM, Bennett GN, San KY (2005) Novel pathway engineering design of the anaerobic central metabolic pathway in Escherichia coli to increase succinate yield and productivity. Metab Eng 7(3):229–239
Sanda F, Fnjiyama T, Endo T (2001) Chemical synthesis of poly-γ-glutamic acid by condensation of γ -glutamic acid dimer: synthesis and reaction of poly-γ-glutamic acid methyester. Polym Sci 39(5):732–741
Satitsri S, Muanprasat C (2020) Chitin and chitosan derivatives as biomaterial resources for biological and biomedical applications. Molecules 25(24)
Schubert P, Steinbüchel A, Schlegel HG (1988) Cloning of the Alcaligenes eutrophus genes for synthesis of poly-beta-hydroxybutyric acid (PHB) and synthesis of PHB in Escherichia coli. J Biotechnol 170:5837–5847
Senlin W, Wen L, Yan W et al (2021) A strain of methylotrophic Bacillus, method for fermenting γ-polyglutamic acid and its application. CN202110869912.2
Shahbaz U (2020) Chitin, characteristic, sources, and biomedical application. Curr Pharm Biotechnol 21(14):1433–1443
Shan C, Yanling H, Le Z et al (2017) Determination study of polymalic acid production by microbial fermentation. Agric Products Process 5:51–53
Shih IL, Shen MH (2006) Application of response surface methodology to optimize production of poly-epsilon-lysine by Streptomyces albulus IFO 1417. Enzym Microb Technol 39(1):15–21
Shih L, Van YT (2001) The production of poly-(γ-glutamic acid) from microorganisms and its various applications. Bioresour Technol 79(3):207–225
Shiloach J, Kaufman J, Guillard AS et al (1996) Effect of glucose supply strategy on acetate accumulation, growth, and recombinant protein production by Escherichia coli BL21(λDE3) and Escherichia coli JM109. Biotechnol Bioeng 49:421–428
Shima S, Sakai H (1977) Polylysin produced by Streptomyces. Agric Biol Chem 41(9):1807–1809
Shima S, Sakai H (1981) Poly-L-lysine produced by Streptomyces. Part II. Taxonomy and fermentation studies. Agric Biol Chem 45:2497–2502
Shozui F, Ken’ichiro M, Motohashi R et al (2011) Biosynthesis of a lactate (LA)-based polyester with a 96 mol% LA fraction and its application to stereocomplex formation. Polym Degrad Stab 96(4):499–504
Shuangxi C, Erchao Z, Lele Z, Qihao X (2015) Atmospheric pressure room temperature plasma mutation breeding of γ-polyglutamic acid producing strains. Chin J Pharm Industry 46(9):960–964
Shuiyang Z, Dan Z (2012) Method for producing γ-polyglutamic acid by adding NaCl during fermentation, CN102533885A
Siedler S, Bringer S, Bott M (2011) Increased NADPH availability in Escherichia coli : improvement of the product per glucose ratio in reductive whole-cell biotransformation. Appl Microbiol Biotechnol 92(5):929
Sim SJ, Snell KD, Hogan SA et al (1997) PHA synthase activity controls the molecular weight and polydispersity of polyhydroxybutyrate in vivo. Nat Biotechnol 15:63–67
Solaiman D, Foglia A (2002) Synthesis of poly(hydroxyalkanoates) by Escherichia coli expressing mutated and chimeric PHA synthase genes. Biotechnol Lett 24:1011–1016
Song BG, Kim TK, Jung YM et al (2006) Modulation of talA gene in pentose phosphate pathway for overproduction of poly- β -hydroxybutyrate in transformant Escherichia coli harboring phbCAB operon. J Biosci Bioeng 102(3):237–240
Song Y, Matsumoto K, Yamada M et al (2012) Corynebacterium glutamicum as an endotoxin-free platform strain for lactate-based polyester production. Appl Microbiol Biotechnol 93(5):1917–1925
Stark D, von Stockar U (2003) In situ product removal (ISPR) in whole cell biotechnology during the last twenty years. Adv Biochem Eng Biotechnol 80:149–175
Stavila E, Loos K (2013) Synthesis of lactams using enzyme-catalyzed aminolysis. Tetrahedron Lett 54(5):370–372
Steinbüchel A, Füchtenbusch B (1998) Bacterial and other biological systems for polyester production. Trends Biotechnol 16(10):419–427
Steinbüchel A, Valentin HE (1995) Diversity of bacterial polyhydroxyalkanoic acids. FEMS Microbiol Lett 128(3):219–228
Stephan B, Solvej S, Jan M et al (2013) Recombineering in Corynebacterium glutamicum combined with optical nanosensors: a general strategy for fast producer strain generation. Nucleic Acids Res 41(12):6360–6369
Su Y, Li X, Liu Q et al (2010) Improved poly-γ-glutamic acid production by chromosomal integration of the Vitreoscilla hemoglobin gene (vgb) in Bacillus subtilis. Bioresour Technol 101(12):4733–4736
Sun Q, Wang Y, Shen L et al (2019) Application of CRISPR/Cas9-based genome editing in studying the mechanism of pandrug resistance in Klebsiella pneumoniae. Antimicrob Agents Ch 63(7):e00113–e00119
Taguchi S, Yamada M, Matsumoto K et al (2008) A microbial factory for lactate-based polyesters using a lactate-polymerizing enzyme. PNAS 105(45):17323–17327
Taibo H, Kai Y, Weiqiang Z et al (2020) Research on the preparation of poly(malic acid) by fermentation of budding short stalk mold. Biochem Eng 6:134–139
Tajima K, Han X, Satoh Y et al (2012) In vitro synthesis of polyhydroxyalkanoate (PHA) incorporating lactate (LA) with a block sequence by using a newly engineered thermostable PHA synthase from Pseudomonas sp. SG4502 with acquired LA-polymerizing activity. Appl Microbiol Biotechnol 94(2):365–376
Tan D, Xue YS, Aibaidula G et al (2011) Unsterile and continuous production of polyhydroxybutyrate by Halomonas TD01. Bioresour Technol 102(17):8130–8136
Tan Y, Xu D, Ye L et al (2012) Construction of a novel sacB-based system for marker-free gene deletion in Corynebacterium glutamicum. Plasmid 67(1):44–52
Tan D, Wu Q, Chen JC et al (2014) Engineering Halomonas TD01 for the low-cost production of polyhydroxyalkanoates. Metab Eng 26:34–47
Tao Y, Hongsheng X (2015) Progress in the study of microbial synthesis of γ-polyglutamic acid, related genes, synthesis mechanism and fermentation. Biotechnol Bull 31(3):25–34
Tao W, Lv L, Chen GQ (2017) Engineering Halomonas species TD01 for enhanced polyhydroxyalkanoates synthesis via CRISPRi. Microb Cell Factories 16(1):48
Tappel RC, Kucharski JM, Mastroianni JM et al (2012) Biosynthesis of Poly[(R)-3-hydroxyalkanoate] copolymers with controlled repeating unit compositions and physical properties. Biomacromolecules 13(9):2964–2972
Terpe K (2006) Overview of bacterial expression systems for heterologous protein production: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol 72(2):211–222
Tripathi L, Wu LP, Chen JC et al (2012) Synthesis of diblock copolymer poly-3-hydroxybutyrate-block-poly-3-hydroxyhexanoate [PHB- b -PHHx] by a β-oxidation weakened Pseudomonas putida KT2442. Microb Cell Factories 11(1):44–54
Tripathi L, Wu LP, Dechuan M et al (2013) Pseudomonas putida KT2442 as a platform for the biosynthesis of polyhydroxyalkanoates with adjustable monomer contents and compositions. Bioresour Technol 142:225–231
Troy FA (1973) Chemistry and biosynthesis of the poly (γ-d-glutamyl) capsule in Bacillus licheniformis: I. Properties of the membrane-mediated biosynthetic reaction. J Biol Chem 248(1):305–315
Tsuge T, Watanabe S, Shimada D et al (2007) Combination of N149S and D171G mutations in Aeromonas caviae polyhydroxyalkanoate synthase and impact on polyhydroxyalkanoate biosynthesis. FEMS Microbiol Lett 277:217–222
Tuersuntuoheti T, Wang Z, Wang Z et al (2019) Review of the application of ε-poly-L-lysine in improving food quality and preservation. J Food Preserv 42(10):e14153
Utsunomia C, Matsumoto K, Taguchi S (2017) Microbial secretion of D-lactate-based oligomers. ACS Sustain Chem Eng 5(3):2360–2367
Valdez-Pena AU, Espinoza-perez JD, Sandoval-fabian GC et al (2010) Screening of industrial enzymes for deproteinization of shrimp head for chitin recovery. Food Sci Biotechnol 19(2):553–557
Valentin HE, Dennis D (1997) Production of poly(3-hydroxybutyrate- co -4-hydroxybutyrate) in recombinant Escherichia coli grown on glucose. J Biotechnol 58(1):33–38
Valentin HE, Schönebaum A, Steinbüchel A (1991) Identification of 5-hydroxyhexanoic acid, 4-hydroxyheptanoic acid and 4-hydroxyoctanoic acid as new constituents of bacterial polyhydroxyalkanoic acids. Appl Bacteria Arch Microbiol 155(5):415–421
Valentino F, Moretto G, Lorini L et al (2019) Pilot-scale polyhydroxyalkanoate production from combined treatment of organic fraction of municipal solid waste and sewage sludge. Ind Eng Chem Res 58(27):12149–12158
Van Thuoc D, My DN, Loan TT et al (2019) Utilization of waste fish oil and glycerol as carbon sources for polyhydroxyalkanoate production by Salinivibrio sp. M318. Int J Biol Macromol 141:885–892
Wang HH, Li XT, Chen GQ (2009) Production and characterization of homopolymer polyhydroxyheptanoate (P3HHp) by a fadBA knockout mutant Pseudomonas putida KTOY06 derived from P. Putida KT2442. Process Biochem 44(1):106–111
Wang G, Jia S, Wang T et al (2011) Effect of ferrous ion on epsilon-poly-L-lysine biosynthesis by Streptomyces diastatochromogenes CGMCC3145. Curr Microbiol 62(3):1062–1067
Wang Y, Chen R, Cai JY et al (2013a) Biosynthesis and thermal properties of PHBV produced from Levulinic acid by Ralstonia eutropha. PLoS One 8(4)
Wang Y, San KY, Bennett GN (2013b) Improvement of NADPH bioavailability in Escherichia coli by replacing NAD(+)-dependent glyceraldehyde-3-phosphate dehydrogenase GapA with NADP (+)-dependent GapB from Bacillus subtilis and addition of NAD kinase. J Ind Microbiol Biotechnol 40(12):1449–1460
Wang Y, San KY, Bennett GN (2013c) Improvement of NADPH bioavailability in Escherichia coli through the use of phosphofructokinase deficient strains. Appl Microbiol Biotechnol 97(15):6883–6893
Wang Q, Yang P, Xian M et al (2013d) Biosynthesis of poly(3-hydroxypropionate- co -3-hydroxybutyrate) with fully controllable structures from glycerol. Bioresour Technol 142:741–744
Wang Q, Liu XL, Qi QS (2014a) Biosynthesis of poly(3-hydroxybutyrate- co -3-hydroxyvalerate) from glucose with elevated 3-hydroxyvalerate fraction via combined citramalate and threonine pathway in Escherichia coli. Appl Microbiol Biotechnol 98(9):3923–3931
Wang Y, Quan Y, Song C (2014b) Progress in microbial synthesis and application of polymalic acid. Chin J Biotechnol 30(9):1331–1340
Wang L, Chen X, Wu G et al (2016) Genome shuffling and gentamicin-resistance to improve ε-poly-l-lysine productivity of Streptomyces albulus W-156. Appl Biochem Biotechnol 180(8):1601–1617
Wang Y, Zhang G, Zhao X et al (2017) Genome shuffling improved the nucleosides production in Cordyceps kyushuensis. J Biotechnol 260(1):42
Wang L, Li S, Zhao J et al (2019) Efficiently activated ε-poly-l-lysine production by multiple antibiotic-resistance mutations and acidic pH shock optimization in Streptomyces albulus. MicrobiologyOpen 8(5):e00728
Ward PG, O’Connor KE (2005) Bacterial synthesis of polyhydroxyalkanoates containing aromatic and aliphatic monomers by Pseudomonas putida CA-3. Int J Biol Macromol 35(3/4):127–133
Wei X, Ji Z, Chen S (2010) Isolation of halotolerant Bacillus licheniformis WX-02 and regulatory effects of sodium chloride on yield and molecular sizes of poly-γ-glutamic acid. Appl Biochem Biotechnol 160(5):1332–1340
Weiwei C, Hongyang Z, Hong X (2007a) Breeding of mass-producing ε-polylysine mutant and its batch fermentation. Industrial Microbiol 37(2):28–30
Weiwei C, Hongyang Z, Hong X (2007b) Research on the selection and batch fermentation of high-yield ε-polylysine strains. Industrial Microbiol 37(2):28–30
Wenjing H, Yingchao L, Guanghao Z et al (2019) Study on the conditions for fermentation production of polyglutamic acid using monosodium glutamate and by-products. Food Ferment Technol 55(3):39–42
Wenjuan Y, Wenjun F, Xiaole X et al (2012) Bioinformatics analysis of the structure of PgsBCA, the γ-polyglutamic acid synthase system. J Nantong Univ (Natural Sci Ed) 11(2):41–46
Wu F, Cai D, Li L et al (2019) Modular metabolic engineering of lysine supply for enhanced production of bacitracin in Bacillus licheniformis. Appl Microbiol Biotechnol 103(21–22):8799–8812
Xiang-Yu S, Qi-Feng W, Xiu-Lian R (2018) Progress in the extraction process and application of chitosan/chitin from shrimp and crab shells. Food Res Dev 39(22):6
Xiao J, Xu ZX, Xu H et al (2014) Economical production of poly(epsilon-L-lysine) and poly(L-diaminopropionic acid) using cane molasses and hydrolysate of streptomyces cells by Sreptomyces albulus PD-1. Bioresour Technol 164:241–247
Xiaoli Y, Zhiqiang F, Xiaohong H et al (2012) Synthesis of a new γ-polyglutamic acid water-absorbing resin. Synthetic Chemistry
Xiaolong S, Yongqian F (2019) Morphological mutant strain of Rhizopus with high yield of L-lactic acid screened by compound mutation and carbon metabolic flux analysis. Jiangsu Agric Sci 47(01):294–299
Xiaoming S, Xiaoya W, Zhen W et al (2008) Research progress on the fermentation production of lactic acid by immobilized Rhizopus. Chem Industry Progr 2:206–208
Xiaoxing Z (2017) pH regulation and variable temperature fermentation of Bacillus amyloliquefaciens YP-2 for γ-polyglutamic acid production. Henan Agricultural University, Zhengzhou
Xinwei X, Changqing S, Jialong W et al (2004) Biosynthesis of γ-polyglutamic acid and its related genes. Chin J Biotechnol 24(8):38–41, 47
Xu P, Ranganathan S, Fowler ZL et al (2011) Genome-scale metabolic network modeling results in minimal interventions that cooperatively force carbon flux towards malonyl-CoA. Metab Eng 13(5):578–587
Xu ZX, Cao CH, Sun ZZ et al (2015a) Construction of a genetic system for Streptomyces albulus PD-1 and improving poly(epsilon-L-lysine) production through expression of vitreoscilla hemoglobin. J Microbiol Biotechnol 25(11):1819
Xu Z, Feng X, Sun Z et al (2015b) Economic process to co-produce poly(ε-l-lysine) and poly (l-diaminopropionic acid) by a pH and dissolved oxygen control strategy. Bioresour Technol 187:70–76
Xu Z, Bo F, Xia J et al (2015c) Effects of oxygen-vectors on the synthesis of epsilon-poly-lysine and the metabolic characterization of Streptomyces albulus PD-1. Biochem Eng J 94:58–64
Xu D, Yao H, Cao C et al (2018) Enhancement of epsilon-poly-L-lysine production by overexpressing the ammonium transporter gene in Streptomyces albulus PD-1. Bioprocess Biosyst Eng 41(9):1337–1345
Xu G, Wang J, Gu L et al (2021) Functional characterization of CapBCA in controlling poly-γ-glutamic acid synthesis in corynebacterium glutamicum
Xueliang Z (2018) Regulation of γ-polyglutamic acid molecular weight and its adsorption of heavy metal ions. Henan University, Kaifeng
Xueliang Z, Wenya L, Guang L et al (2022) Adsorption properties of γ-polyglutamic acid hydrogel for Cd^2+,Pb^2+. 13
Xueming Z, Tao C, Zhiwen W (2015) Metabolic engineering. Higher Education Press, Beijing
Xuenian H, Shen T, Xuefeng L (2020) Progress and prospects in the synthetic biology research of the industrial filamentous fungus Aspergillus terreus. Synth Biol 2:187–211
Xuexiao C, Qixing J, Yanshun X et al (2014) Study on the decolorization technology of chitin from Antarctic krill shell. J Zhengzhou Univ Light Ind 29(3):2095-476X(2014)03-0021-04
Yahui C, Qing W, Wenyu W et al (2021) Optimization of fermentation medium for γ-polyglutamic acid production by Bacillus siamensis LW-1. Food Industry Sci Technol 42(16):163–170
Yamada M, Matsumoto K, Nakai T et al (2009) Microbial production of lactate-enriched poly[(R)-lactate-co-(R)-3-hydroxybutyrate]. Biomacromolecules 10(4):677–681
Yamada M, Matsumoto, Ken’ichiro et al (2010) Adjustable mutations in lactate (LA)-polymerizing enzyme for the microbial production of LA-based polyesters with tailor-made monomer composition. Biomacromolecules 11(3):815–819
Yamanaka K, Hamano Y, Oikawa T (2020) Enhancement of metabolic flux toward ε-poly-l-lysine biosynthesis by targeted inactivation of concomitant polyene macrolide biosynthesis in Streptomyces albulus. J Biosci Bioeng
Yan Z (2007) Research on gene transformation technology of Klebsiella pneumoniae. Master’s thesis, Shanghai Jiaotong University
Yan X (2019) Exploration of gene knockout and recombination engineering mediated point mutation methods in Corynebacterium glutamicum ATCC 13032. Master’s thesis, Nanjing Normal University
Yang J, Shih II, Tzeng Y et al (2000) Production and purification of protease from a Bacillus subtilis that can deproteinize crustacean wastes. Enzym Microb Technol 26(5-6):406–413
Yang TH, Kim TW, Kang HO et al (2010) Biosynthesis of polylactic acid and its copolymers using evolved propionate CoA transferase and PHA synthase. Biotechnol Bioeng 105(1):150–160
Yang L, Yang Z, Liqiang F et al (2021) Study on the cold resistance of N-acetylglucosamine in rice. Southern Agric J 52(6):11
Yanli Z (2018) Cultivation of Bacillus subtilis to produce γ-polyglutamic acid using monosodium glutamate wastewater and preliminary characterization. J Ecol Environ 27(10):1949–1957
Yanyan L, Shanshan Z, Guodong R (2015) Progress in the extraction of chitin from crustaceans, insects, and fungi. Food Res Dev 36(7):5
Yanyun F, Haijuan G, Hailiang L et al (2019) Research progress on the biological preservative polylysine. Agric Products Process 477(4):57–62
Yeh CM, Wang JP, Lo SC et al (2010) Chromosomal integration of a synthetic expression control sequence achieves poly-γ-glutamate production in a Bacillus subtilis strain. Biotechnol Prog 26(4):1001–1007
Yicheng B, Hongyan L, Hao W et al (2015) Two-step ultrafiltration method for separating and extracting polymalic acid from fermentation broth. Membr Sci Technol 35(1):97–102
Yin J, Chen JC, Wu Q et al (2015a) Halophiles, coming stars for industrial biotechnology. Biotechnol Adv 33:1433–1442
Yin J, Wang H, Fu XZ et al (2015b) Effects of chromosomal gene copy number and locations on polyhydroxyalkanoate synthesis by Escherichia coli and Halomonas sp. Appl Microbiol Biotechnol 99(13):5523–5534
Yin H, Ma Y, Deng Y et al (2016) Genome shuffling of Saccharomyces cerevisiae for enhanced glutathione yield and relative gene expression analysis using fluorescent quantitation reverse transcription polymerase chain reaction. J Microbiol Methods 127:188–192
Yongzhu C (2005) Mutation breeding of γ-polyglutamic acid producing bacteria and application research of heavy metal adsorption. Sichuan University
Younes I, Rinaudo M (2015) Chitin and chitosan preparation from marine sources. Structure, properties and applications. Mar Drugs 13(3):1133–1174
Younes I, Ghorbel-bellaaj O, Nasri R et al (2012) Chitin and chitosan preparation from shrimp shells using optimized enzymatic deproteinization. Process Biochem 47(12):2032–2039
Yu Y, Zhu X, Xu H et al (2019) Construction of an energy-conserving glycerol utilization pathways for improving anaerobic succinate production in Escherichia coli. Metab Eng 56:181–189
Yue HT, Ling C, Yang T et al (2014) A seawater-based open and continuous process for polyhydroxyalkanoates production by recombinant Halomonas campaniensis LS21 grown in mixed substrates. Biotechnol Biofuels 7:108–120
Yuhui W (2018) Study on the synthesis of ethylene glycol by E. coli transformation of xylose, Master’s thesis, Shandong University
Zelić B, Gostović S, Vuorilehto K et al (2010) Process strategies to enhance pyruvate production with recombinant Escherichia coli: from repetitive fed-batch to in situ product recovery with fully integrated electrodialysis. Biotechnol Bioeng 85(6):638–646
Zeng AP, Menzel K, Deckwer WD (2015) Kinetic, dynamic, and pathway studies of glycerol metabolism by Klebsiella pneumoniae in anaerobic continuous culture: II. Analysis of metabolic rates and pathways under oscillation and steady-state conditions. Biotechnol Bioeng 52(5):561–571
Zeng X, Miao W, Wen B et al (2019) Transcriptional study of the enhanced ε-poly-L-lysine productivity in culture using glucose and glycerol as a mixed carbon source. Bioprocess Biosyst Eng 42(4):555–566
Zhang Q, Xiu Z (2010) Metabolic pathway analysis of glycerol metabolism in Klebsiella pneumoniae incorporating oxygen regulatory system. Biotechnol Prog 25(1):103–115
Zhang Y, Feng X, Xu H et al (2010) Epsilon-poly-L-lysine production by immobilized cells of Kitasatospora sp. MY 5-36 in repeated fed-batch cultures. Bioresour Technol 101(14):5523–5527
Zhang Y, Lin Z, Liu Q et al (2014) Engineering of Serine-Deamination pathway, Entner-Doudoroff pathway and pyruvate dehydrogenase complex to improve poly(3-hydroxybutyrate) production in Escherichia coli. Microb Cell Factories 13(1):172
Zhang C, Ren H, Zhong C (2021a) Preparation of γ-polyglutamic acid from enzymatic hydrolysate of poplar sawdust. Arab J Chem 14(4):103095
Zhang J, Chen D, Liang G, Xu W et al (2021b) Biosynthetic polymalic acid as a delivery nanoplatform for translational cancer medicine. Trends Biochem Sci 46(3):213–224
Zhang X, Zhang C, Zhou M et al (2022) Enhanced bioproduction of chitin in engineered Pichia pastoris. Food Biosci:47
Zheng Z, Li M, Xue XJ et al (2006) Mutation on N-terminus of polyhydroxybutyrate synthase of Ralstonia eutropha enhanced PHB accumulation. Appl Microbiol Biotechnol 72(5):896–905
Zhong Z, Jianguang W, Lequan Q et al (2010) Research progress on microbial polyglutamic acid (γ-PGA) synthase and synthesis mechanism. Biotechnol Bull 6:52–56
Zhou XY, Yuan XX, Shi ZY et al (2012) Hyperproduction of poly(4-hydroxybutyrate) from glucose by recombinant Escherichia coli. Microb Cell Factories 11:54–61
Zhou YP, Ren XD, Wang L et al (2015) Enhancement of ε-poly-lysine production in ε-poly-lysine-tolerant Streptomyces sp. by genome shuffling. Bioprocess Biosyst Eng 38(9):1705–1713
Zhu Y, Eiteman MA, Dewitt K et al (2007) Homolactate fermentation by metabolically engineered Escherichia coli strains. Appl Environ Microbiol 73(2):456–464
Zhu LW, Li XH, Zhang L et al (2013) Activation of glyoxylate pathway without the activation of its related gene in succinate-producing engineered Escherichia coli. Metab Eng 20:9–19
Zhuang Q, Wang Q, Liang Q et al (2014) Synthesis of polyhydroxyalkanoates from glucose that contain medium-chain-length monomers via the reversed fatty acid β-oxidation cycle in Escherichia coli. Metab Eng 24:78–86
Zong H, Zhan Y, Li X et al (2012) A new mutation breeding method for Streptomyces albulus by an atmospheric and room temperature plasma. Afr J Microbiol Res 6:3154–3158
Zou X, Li S, Wang P et al (2020) Sustainable production and biomedical application of polymalic acid from renewable biomass and food processing wastes. Crit Rev Biotechnol 41(2):216–228
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this chapter
Cite this chapter
Luo, Y. et al. (2025). Biomanufacturing of Biobased Polymers. In: Zhao, L. (eds) Research and Applications of Bio-based Degradable Materials. Springer, Singapore. https://doi.org/10.1007/978-981-95-1188-4_3
Download citation
DOI: https://doi.org/10.1007/978-981-95-1188-4_3
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-95-1187-7
Online ISBN: 978-981-95-1188-4
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)