Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content

Biomanufacturing of Biobased Polymers

  • Chapter
  • First Online:
Research and Applications of Bio-based Degradable Materials

Abstract

Biobased degradable materials focus on the bio-derived renewable raw materials, avoid the dependence on traditional polymer materials based on fossil raw materials, and have the dual effects of environmental protection and resource conservation. The production methods of biobased degradable materials are mainly divided into three types: one is to use chemical methods alone to transform biobased raw materials for polymer production; the second is to use biological methods alone to transform biobased raw materials for polymer production, and the third is to use biological and chemical methods together to transform biobased raw materials for polymer production. At present, most biobased polymers are produced by the third method. The second method, that is, directly transforming biobased raw materials into a polymer through biological methods, reduces the steps of intermediate chemical synthesis, is the best option for polymer production in terms of energy saving, safety, and economy, and is an important direction for future research and development of biobased materials. This chapter focuses on the more common biobased degradable polymer materials that can be directly prepared by biological transformation, including polyhydroxyalkanoates/poly-β-hydroxybutyrate (PHA/PHB), polylactic acid (PLA), chitin, polybutyramide (PA4), and polylactic acid. The background, advantages, and synthesis methods of these polymers are introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 143.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmad SI, Ahmad R, Khan MS et al (2020) Chitin and its derivatives: structural properties and biomedical applications. Int J Biol Macromol 164:526–539

    Article  CAS  PubMed  Google Scholar 

  • Aixia W, Xiuwen W, Jiayang Q et al (2020) Biosynthesis of ε-polylysine and its application in the medical field. J Binzhou Med College 43(3):6

    Google Scholar 

  • An L, Luijk NV, Beek MT, Caspers M et al (2011) A clone-based transcriptomics approach for the identification of genes relevant for itaconic acid production in Aspergillus. Fungal Genet Biol 48(6):602–611

    Article  Google Scholar 

  • Andin N, Longieras A, Veronese T et al (2017) Improving carbon and energy distribution by coupling growth and medium chain length polyhydroxyalkanoate production from fatty acids by Pseudomonas putida KT2440. Biotechnol Bioprocess Eng 22:308–318

    Article  CAS  Google Scholar 

  • Andreessen B, Lange AB, Robenek H et al (2010) Conversion of glycerol to poly(3-Hydroxypropionate) in recombinant Escherichia coli. Appl Environ Microbiol 76(2):622–626

    Article  CAS  PubMed  Google Scholar 

  • Aranaz I, Acosta N, Civera C et al (2018) Cosmetics and cosmeceutical applications of chitin, chitosan and their derivatives. Polymers (Basel) 10(2)

    Google Scholar 

  • Ashby RD, Shi FY, Gross RA (1997) Use of poly(ethylene glycol) to control the end group structure and molecular weight of poly(3-hydroxybutyrate) formed by Alcaligenes latus DSM1122. Tetrahedron 53(45):15209–15223

    Article  CAS  Google Scholar 

  • Ashby RD, Solaiman DK, Strahan GD et al (2015) Methanol-induced chain termination in poly(3-hydroxybutyrate) biopolymers: molecular weight control. Int J Biol Macromol 74:195–201

    Article  CAS  PubMed  Google Scholar 

  • Ashiuchi M (2013) Biochemical engineering of PGA. Microb Biotechnol 6(6):664–674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashiuchi M, Shimanouchi K, Nakamura H et al (2004) Enzymatic synthesis of high-molecular-mass poly-γ-glutamate and regulation of its stereochemistry. Appl Environ Microbiol 70(7):4249–4255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashiuchi M, Yamashiro D, Yamamoto K (2013) Bacillus subtilis EdmS(formerly PgsE) participates in the maintenance of episomes. Plasmid 70(2):209–215

    Article  CAS  PubMed  Google Scholar 

  • Atsumi S, Hanai T, Liao JC (2008) Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451(7174):86–89

    Article  CAS  PubMed  Google Scholar 

  • Bai C, Zhang Y, Zhao X et al (2015) Exploiting a precise design of universal synthetic modular regulatory elements to unlock the microbial natural products in Streptomyces. PNAS 111(39):12181–12186

    Article  Google Scholar 

  • Balogun-Agbaje OA, Odeniyi OA, Odeniyi MA (2021) Drug delivery applications of poly-γ-glutamic acid. Future J Pharm Sci 7(1):1–10

    Google Scholar 

  • Bankar SB, Singhal RS (2011) Improved poly-ε-lysine biosynthesis using Streptomyces noursei NRRL 5126 by controlling dissolved oxygen during fermentation. J Microbiol Biotechnol 21(6):652–658

    Article  CAS  PubMed  Google Scholar 

  • Bao T, Xiaohai F, Dan Z et al (2016) Enhancing the biosynthesis of γ-polyglutamic acid through the expression of vitreoscilla hemoglobin gene. Biochem Eng J 14(2):1–6

    Google Scholar 

  • Bastian S, Xiang L, Meyerowitz JT et al (2011) Engineered ketol-acid reductoisomerase and alcohol dehydrogenase enable anaerobic 2-methylpropan-1-ol production at theoretical yield in Escherichia coli. Metab Eng 13(3):345–352

    Article  CAS  PubMed  Google Scholar 

  • Bhatia SK, Otari SV, Jeon JM et al (2021) Biowaste-to-bioplastic (polyhydroxyalkanoates): conversion technologies, strategies, challenges, and perspective. Bioresour Technol 326:124733

    Article  CAS  PubMed  Google Scholar 

  • Bin L, Haifeng Y (2018) Screening and identification of short stalk mold and the effect of dissolved oxygen on its fermentation. Food Industry Sci Technol 39(6):102–107

    Google Scholar 

  • Borrero-de Acuña JM, Bielecka A, Häussler S et al (2014) Production of medium chain length polyhydroxyalkanoate in metabolic flux optimized Pseudomonas putida. Microb Cell Factories 13:88–102

    Article  Google Scholar 

  • Botic T, Kralj-Kuncic M, Spepcic K et al (2014) Biological activities of organic extracts of four Aureobasidium pollulans varieties isolated from extreme marine and terrestrial habitats. Nat Prod Res 28(12):874–882

    Article  CAS  PubMed  Google Scholar 

  • Brandl H, Knee EJ Jr, Fuller RC et al (1989) Ability of the phototrophic bacterium Rhodospirillum rubrum to produce various poly(β-hydroxyalkanoates): potential sources for biodegradable polyesters. Int J Biol Macromol 11:49–55

    Article  CAS  PubMed  Google Scholar 

  • Buschke N, Schröder H, Wittmann C (2015) Metabolic engineering of Corynebacterium glutamicum for production of 1,5-diaminopentane from hemicellulose. Biotechnol J 6(3):306–317

    Article  Google Scholar 

  • Cai D, Chen Y, He P et al (2018) Enhanced production of poly-γ-glutamic acid by improving ATP supply in metabolically engineered Bacillus licheniformis. Biotechnol Bioeng 115(10):2541–2553

    Article  CAS  PubMed  Google Scholar 

  • Canhui S, Weiguo Z (2013) The effect of knocking out the aceE gene on the growth and pyruvate metabolism of E. coli. Biochem Eng 11(6):15–18

    Google Scholar 

  • Causey TB, Zhou S, Shanmugam KT et al (2003) Engineering the metabolism of Escherichia coli W3110 for the conversion of sugar to redox-neutral and oxidized products: Homoacetate production. PNAS 100(3):825–832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Causey TB, Shanmugam KT, Yomano LP et al (2004) Engineering Escherichia coli for efficient conversion of glucose to pyruvate. PNAS 101(8):2235–2240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cavalheiro JM, Raposo RS, de Almeida MC et al (2012) Effect of cultivation parameters on the production of poly(3-hydroxybutyrate- co -4-hydroxybutyrate) and poly(3-hydroxybutyrate-4-hydroxybutyrate-3-hydroxyvalerate) by Cupriavidus necator using waste glycerol. Bioresour Technol 111:391–397

    Article  CAS  PubMed  Google Scholar 

  • Chao Z, Dongrong Z, Wei H et al (2006) A simple and sensitive method for screening ε-PL producing strains from soils. J Shandong Univ 44(11):1104–1107

    Google Scholar 

  • Chemler JA, Fowler ZL, Mchugh KP et al (2010) Improving NADPH availability for natural product biosynthesis in Escherichia coli by metabolic engineering. Metab Eng 12(2):96–104

    Article  CAS  PubMed  Google Scholar 

  • Chen GQ, Jiang XR (2017) Engineering bacteria for enhanced polyhydroxyalkanoates (PHA) biosynthesis. Synth Syst Biotechnol 2(3):192–197

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen GQ, Patel MK (2012) Plastics derived from biological sources: present and future: a technical and environmental review. Chem Rev 112(4):2082–2099

    Article  CAS  PubMed  Google Scholar 

  • Chen GQ, Wu Q (2005) The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials 26(33):6565–6578

    Article  CAS  PubMed  Google Scholar 

  • Chen XS, Li S, Liao LJ et al (2011) Production of epsilon-poy-l-lysine using a novel two-stage pH control strategy by Streptomyces sp. M-Z18 from glycerol. Bioprocess Biosyst Eng 34(5):561–567

    Article  CAS  PubMed  Google Scholar 

  • Chen XS, Tang L, Li S et al (2012a) Optimization of medium for enhancement of epsilon-poly-L-lysine production by Streptomyces sp M-Z18 with glycerol as carbon source. Bioprocess Biosyst Eng 35:469–475

    Article  CAS  PubMed  Google Scholar 

  • Chen XS, Ren XD, Dong N et al (2012b) Culture medium containing glucose and glycerol as a mixed carbon source improve epsilon-poly-l-lysine production by Streptomyces sp M-Z18. Bioprocess Biosyst Eng 35:469–475

    Article  CAS  PubMed  Google Scholar 

  • Chen GQ, Hajnal I, Wu H et al (2015) Engineering biosynthesis mechanisms for diversifying polyhydroxyalkanoates. Trends Biotechnol 33(10):565–574

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Dingyu L, Baowei W et al (2019) Progress in the study of acetyl CoA metabolism regulation and its application in Escherichia coli. Chem Industry Progr 38(9):4218–4226

    Google Scholar 

  • Chen S, Huang S, Li Y et al (2021) Recent advances in epsilon-poly-L-lysine and L-lysine-based dendrimer synthesis, modification, and biomedical applications. Front Chem 9:169

    Article  Google Scholar 

  • Cheung RC, Ng TB, Wong JH et al (2015) Chitosan: an update on potential biomedical and pharmaceutical applications. Mar Drugs 13(8):5156–5186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chheda AH, Vernekar MR (2015) A natural preservative ε-poly-L-lysine: fermentative production and applications in food industry. Int Food Res J 22(1):23–30

    CAS  Google Scholar 

  • Choi SY, Rhie MN, Kim HT et al (2020) Metabolic engineering for the synthesis of polyesters: a 100-year journey from polyhydroxyalkanoates to non-natural microbial polyesters. Metab Eng 58:47–81

    Article  CAS  PubMed  Google Scholar 

  • Chung AL, Jin HL, Huang LJ et al (2011) Biosynthesis and characterization of poly(3-hydroxydodecanoate) by β-oxidation inhibited mutant of Pseudomonas entomophila L48. Biomacromolecules 12(10):3559–3566

    Article  CAS  PubMed  Google Scholar 

  • Cromwick AM, Birrer GA, Gross RA (1996) Effects of pH and aeration on γ-poly (glutamic acid) formation by Bacillus licheniformis in controlled batch fermentor cultures. Biotechnol Bioeng 50(2):222–227

    Article  CAS  PubMed  Google Scholar 

  • da Silva FRG, Campos ACA, Souza IS et al (2020) Production of poly-γ-glutamic acid (γ-PGA) by clinical isolates of Staphylococcus Epidermidis. Open Microbiol J 14(1):30–37

    Article  Google Scholar 

  • Dandan L, Yipeng Z, Li W et al (2021) Establishment of a rapid screening method for ARTP-induced high-yield γ-polyglutamic acid strains. J Anhui Univ Technol 36(1):7

    Google Scholar 

  • Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. PNAS 97(12):6640–6645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Datta S, Costantino N, Court DL (2006) A set of recombineering plasmids for gram-negative bacteria. Gene 379:109–115

    Article  CAS  PubMed  Google Scholar 

  • Dharmadi Y, Murarka A, Gonzalez R (2006) Anaerobic fermentation of glycerol by Escherichia coli: a new platform for metabolic engineering. Biotechnol Bioeng 94:821–829

    Article  CAS  PubMed  Google Scholar 

  • Diegelmann RF, Dunn JD, Lindblad WJ et al (1996) Analysis of the effects of chitosan on inflammation, angiogenesis, fibroplasia, and collagen deposition in polyvinyl alcohol sponge implants in rat wounds. Wound Repair Regen 4(1):48–52

    Article  CAS  PubMed  Google Scholar 

  • Dietrich K, Oliveira-Filho ER, Dumont M-J et al (2020) Increasing PHB production with an industrially scalable hardwood hydrolysate as a carbon source. Ind Crop Prod 154:112703

    Article  CAS  Google Scholar 

  • Do TH, Suzuki Y, Abe N et al (2011) Mutations suppressing the loss of DegQ function in Bacillus subtilis (natto) poly-γ-glutamate synthesis. Appl Environ Microbiol 77(23):8249–8258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doi Y, Segawa A, Kunioka M (1989) Biodegradable poly(3-hydroxybutyrate- co -4-hydroxybutyrate) produced from γ-butyrolactone and butyric acid by Alcaligenes eutrophus. Polym Commun 30(6):169–171

    CAS  Google Scholar 

  • El Hadrami A, Adam LR, El Hadrami I et al (2010) Chitosan in plant protection. Mar Drugs 8(4):968–987

    Article  PubMed  PubMed Central  Google Scholar 

  • Elieh Ali Komi D, Sharma L, Dela Cruz CS (2018) Chitin and its effects on inflammatory and immune responses. Clin Rev Allergy Immunol 54(2):213–223

    Article  CAS  PubMed  Google Scholar 

  • El-Mansi M (2019) Contrasting effects of isocitrate dehydrogenase deletion on fluxes through enzymes of central metabolism in Escherichia coli. FEMS Microbiol Lett 366(15):187

    Article  Google Scholar 

  • Ewering C, Heuser F, Benölken JK et al (2006) Metabolic engineering of strains of Ralstonia eutropha and Pseudomonas putida for biotechnological production of 2-methylcitric acid. Metab Eng 8(6):587–602

    Article  CAS  PubMed  Google Scholar 

  • Fan X, Huixian W, Jiawei H et al (2018) Research progress on gene editing methods—taking the gene knockout method of E. coli as an example. J Nanjing Normal Univ (Natural Sci Ed) 41(3):102–108

    Google Scholar 

  • Flores-Albino B, Arias L, Gómez J et al (2012) Chitin and L(+)-lactic acid production from crab (Callinectes bellicosus) wastes by fermentation of Lactobacillus sp. B2 using sugar cane molasses as carbon source. Bioprocess Biosyst Eng 35(7):1193–1200

    Article  CAS  PubMed  Google Scholar 

  • Fowler ZL, Gikandi WW, Koffas MAG (2009) Increased malonyl coenzyme A biosynthesis by tuning the Escherichia coli metabolic network and its application to flavanone production. Appl Environ Microbiol 75(18):5831–5839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friedman M, Juneja VK (2010) Review of antimicrobial and antioxidative activities of chitosans in food. J Food Prot 73(9):1737–1761

    Article  CAS  PubMed  Google Scholar 

  • Fujita M, Khazenzon NM, Ljubimov AV et al (2006) Inhibition of laminin-8 in vivo using a novel poly(malic acid)-based carrier reduces glioma angiogenesis. Angiogenesis 9(4):183–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujita M, Lee BS, Khazenzon NM et al (2007) Brain tumor tandem targeting using a combination of monoclonal antibodies attached to biopoly(β-L-malic acid). J Control Release 122(3):356–363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujita KI, Tomiyama T, Inoi T et al (2021) Effect of pgsE expression on the molecular weight of poly (γ-glutamic acid) in fermentative production. Polym J 53(2):409–414

    Article  CAS  Google Scholar 

  • Fukui T, Kichise T, Iwata T et al (2001) Characterization of 13 kDa granule-associated protein in Aeromonas caviae and biosynthesis of polyhydroxyalkanoates with altered molar composition by recombinant bacteria. Biomacromolecules 2:148–153

    Article  CAS  PubMed  Google Scholar 

  • Gao W, He Y, Zhang F et al (2019) Metabolic engineering of Bacillus amyloliquefaciens LL 3 for enhanced poly-γ-glutamic acid synthesis. Microbial Biotechnol 12(5):932–945

    Article  CAS  Google Scholar 

  • Geng W, Yang C, Gu Y et al (2014) Cloning of ε-poly-L-lysine (ε-PL) synthetase gene from a newly isolated ε-PL-producing Streptomyces albulus NK 660 and its heterologous expression in Streptomyces lividans. Microb Biotechnol 7(2):155–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghorbel-Bellaaj O, Hmidet N, Jellouli K et al (2011) Shrimp waste fermentation with Pseudomonas aeruginosa A2: optimization of chitin extraction conditions through Plackett-Burman and response surface methodology approaches. Int J Biol Macromol 48(4):596–602

    Article  CAS  PubMed  Google Scholar 

  • González-García Y, Grieve J, Meza-Contreras JC et al (2019) Tequila agave bagasse hydrolysate for the production of polyhydroxybutyrate by Burkholderia sacchari. Bioengineering (Basel, Switzerland) 6(4):115–127

    PubMed  Google Scholar 

  • Green PR, Kemper J, Schechtman L et al (2002) Formation of short chain length/medium chain length polyhydroxyalkanoate copolymers by fatty acid β-oxidation inhibited Ralstonia eutropha. Biomacromolecules 3(1):208–213

    Article  CAS  PubMed  Google Scholar 

  • Gui L, Sunnarborg A, Pan B et al (1996) Autoregulation of iclR, the gene encoding the repressor of the glyoxylate bypass operon. J Bacteriol 178(1):321–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hadicke O, Klamt S (2017) EColiCore2: a reference network model of the central metabolism of Escherichia coli and relationships to its genome scale parent model. Sci Rep 7:39647

    Article  PubMed  PubMed Central  Google Scholar 

  • Haitao Z, Yan L, Jie O et al (2007) Induced breeding of ε-polylysine-producing bacterial mutants. Food Sci 28(9):398–401

    Google Scholar 

  • Haiyan W, Ming L, Huajun W et al (2006) Microbial metabolic engineering in lactic acid production. J Process Eng 3:178–182

    Google Scholar 

  • Halmschlag B, Steurer X, Putri SP et al (2019) Tailor-made poly-γ-glutamic acid production. Metab eng 55:239–248

    Article  CAS  PubMed  Google Scholar 

  • Halmschlag B, Putri SP, Fukusaki E et al (2020) Poly-γ-glutamic acid production by Bacillus subtilis 168 using glucose as the sole carbon source: a metabolomic analysis. J Biosci Bioeng 130(3):272–282

    Article  CAS  PubMed  Google Scholar 

  • Hamano Y, Nicchu I, Shimizu T et al (2007) epsilon-Poly-L-lysine producer, Streptomyces albulus, has feedback-inhibition resistant aspartokinase. Appl Microbiol Biotechnol 76(4):873–882

    Article  CAS  PubMed  Google Scholar 

  • Han MJ, Yoon SS, Lee SY (2001) Proteome analysis of metabolically engineered Escherichia coli producing poly(3-hydroxybutyrate). J Bacteriol 183(1):301–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han J, Hou J, Zhang F et al (2013) Multiple propionyl coenzyme A-supplying pathways for production of the bioplastic poly(3-hydroxybutyrate- co -3-hydroxyvalerate) in Haloferax mediterranei. Appl Environ Microbiol 79(9):2922–2931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hao W, Yifeng Z, Yuanai C et al (2010) Extraction of polymalic acid from fermentation broth by ion exchange method. Ion Exchange Adsorp 27(3):257–263

    Google Scholar 

  • Haywood GW, Anderson AJ, Williams DR et al (1991) Accumulation of a poly(hydroxyalkanoate) copolymer containing primarily 3-hydroxyvalerate from simple carbohydrate substrates by Rhodococcus sp. NCIMB 40126. Int J Biol Macromol 13:83–88

    Article  CAS  PubMed  Google Scholar 

  • He Y, Weiguang L, Juanqin Z et al (2020) Research progress on γ-polyglutamic acid. Anhui Agric Sci 48(18):18–22

    CAS  Google Scholar 

  • Hiraki J, Masakazu H, Hiroshi M et al (1998) Improved ε-Poly-L-Lysine production of an S-(2-Aminoethyl)-L-cysteine resistant mutant of Streptomyces albulus. Seibutsu Kogakkaishi 76:487–493

    CAS  Google Scholar 

  • Hiraki J, Ichikawa T, Ninomiya S et al (2003) Use of ADME studies to confirm the safety of epsilon-polylysine as a preservative in food. Regul Toxicol Pharmacol 37(2):328–340

    Article  CAS  PubMed  Google Scholar 

  • Hsueh YH, Huang KY, Kunene SC et al (2017) Poly-γ-glutamic acid synthesis, gene regulation, phylogenetic relationships, and role in fermentation. Int J Mol Sci 18(12):2644

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu D, Chung AL, Wu LP et al (2011) Biosynthesis and characterization of polyhydroxyalkanoate block copolymer P3HB- b -P4HB. Biomacromolecules 12:3166–3173

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Mei C, Li J et al (2016) Establishing an efficient gene-targeting system in an itaconic-acid producing Aspergillus terreus strain. Biotechnol Lett 38(9):1603–1610

    Article  CAS  PubMed  Google Scholar 

  • Hui J (2012) Expression of vitreoscilla hemoglobin in γ-PGA synthesis bacterium B.amyloliquefaciens LL3. Nankai University

    Google Scholar 

  • Inoue S, Ding H, Portilla-Arias J et al (2011) Polymalic acid-based nanobiopolymer provides efficient systemic breast cancer treatment by inhibiting both HER2/neu receptor synthesis and activity. Cancer Res 71(4):1454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inoue S, Pati R, Portilla-Arias J et al (2012) Nanobiopolymer for direct targeting and inhibition of EGFR expression in triple negative breast cancer. PLoS ONE 7(2):e31070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Israni N, Venkatachalam P, Gajaraj B et al (2020) Whey valorization for sustainable polyhydroxyalkanoate production by Bacillus megaterium: production, characterization and in vitro biocompatibility evaluation. J Environ Manag 255:109884

    Article  CAS  Google Scholar 

  • Jianfeng W, Zhilong X, Haijun L et al (2001) Research on the microaerobic fermentation of 1,3-propanediol by Klebsiella pneumoniae. Modern Chem Industry 5:28–31

    Google Scholar 

  • Jiang W, Bikard D, Cox D et al (2013) RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol 31(3):233–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang Y, Qian F, Yang J et al (2017) CRISPR-Cpf1 assisted genome editing of Corynebacterium glutamicum. Nat Commun 8:15179

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiayang Q, Aixia W, Yubin X et al (2019) A genetically engineered strain of Streptomyces albus and its application in the production of ε-polylysine. China, 201911198884.5

    Google Scholar 

  • Jimtaisong A, Saewan N (2014) Utilization of carboxymethyl chitosan in cosmetics. Int J Cosmet Sci 36(1):12–21

    Article  CAS  PubMed  Google Scholar 

  • Jin H, Ning C (2005) Properties and production methods of γ-polyglutamic acid. Amino Acids Biol Resour 26(3):4–8

    Google Scholar 

  • Juanjuan Y, Xiaoyu M, Xiaorui W et al (2020) Research progress in gene editing of Corynebacterium glutamicum. J Biol Eng 5:820–828

    Google Scholar 

  • Jun C, Yang C, Ding-Qi W et al (2021) The effect of enhancing the carboxylation pathway of glutamic acid rod-shaped bacteria on the yield of organic acids. J Wuhan Univ Sci Technol 44(2):112–118

    Google Scholar 

  • Jung YM, Lee JN, Shin HD et al (2004) Role of tktA gene in pentose phosphate pathway on odd-ball biosynthesis of poly-β-hydroxybutyrate in transformant Escherichia coli harboring phbCAB operon. J Biosci Bioeng 98(3):224–227

    Article  CAS  PubMed  Google Scholar 

  • Jung YK, Kim TY, Park SJ et al (2010) Metabolic engineering of Escherichia coli for the production of polylactic acid and its copolymers. Biotechnol Bioeng 105(1):161–171

    Article  CAS  PubMed  Google Scholar 

  • Junnan F, Juan L, Lishan X et al (2018) Progress in microbial fermentation production of γ-polyglutamic acid. J Appl Environ Biol 24(5):1041–1049

    Google Scholar 

  • Junwei L, Ye L, Wang Y et al (2020) Condition optimization of base editing in Corynebacterium glutamicum. J Biol Eng 36(1):143–151

    Google Scholar 

  • Kahar P, Iwata T, Hiraki J et al (2001) Enhancement of ε-polyysine production by Streptomyces albulus strain 410 using pH control. J Biosci Bioeng 91(2):190–194

    Article  CAS  PubMed  Google Scholar 

  • Kahar P, Kobayashi K, Iwata T et al (2002) Production of epsilon-polylysine in an airlift bioreactor (ABR). J Biosci Bioeng 93(3):274–280

    Article  CAS  PubMed  Google Scholar 

  • Kanamasa S, Dwiarti L, Okabe M et al (2008) Cloning and functional characterization of the cis-aconitic acid decarboxylase (CAD) gene from Aspergillus terreus. Appl Microbiol Biotechnol 80(2):223–229

    Article  CAS  PubMed  Google Scholar 

  • Karmann S, Panke S, Zinn M (2019) Fed-batch cultivations of Rhodospirillum rubrum under multiple nutrient-limited growth conditions on syngas as a novel option to produce poly(3-hydroxybutyrate) (PHB). Front Bioeng Biotechnol 7:59–69

    Article  PubMed  PubMed Central  Google Scholar 

  • Kejia W, Shuyi Q (2020) Research progress on the application of genome rearrangement technology in microbial strain breeding. Food Industry Sci Technol 41(3):6

    Google Scholar 

  • Kichise T, Taguchi S, Doi Y (2002) Enhanced accumulation and changed monomer composition in Polyhydroxyalkanoate(PHA) Ccopolyester by in vitro evolution of Aeromonas caviae PHA synthase. Appl Environ Microbiol 68:2411–2419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim YM, Cho HS, Jung GY et al (2011) Engineering the pentose phosphate pathway to improve hydrogen yield in recombinant Escherichia coli. Biotechnol Bioeng 108(12):2941–2946

    Article  CAS  PubMed  Google Scholar 

  • Kimura K, Tran LSP, Do TH et al (2009) Expression of the pgsB encoding the poly-gamma-DL-glutamate synthetase of Bacillus subtilis (natto). Biosci Biotechnol Biochem 73(5):1149–1155

    Article  CAS  PubMed  Google Scholar 

  • Kimura K, Tran LSP, Funane K (2011) Loss of poly-γ-glutamic acid synthesis of bacillus subtilis (natto) due to IS4Bsu1 translocation to swrA gene. Food Sci Technol Res 17(5):447–451

    Article  CAS  Google Scholar 

  • Kobayashi K, Nishikawa M (2007) Promotion of ε-poly-l-lysine roduction by iron in Kitasatosporakifunense. World J Microbiol Biotechnol 23(7):1033–1036

    Article  CAS  Google Scholar 

  • Kobayashi G, Shiotani T, Shima Y et al (1994) Biosynthesis and characterization of poly(3-hydroxybutyrate- co -3-hydroxyhexanoate) from oils and fats by Aeromonas sp. OL-338 and Aeromonas sp. FA-440. Biodegrad Plastics Polym 12:410–416

    Article  CAS  Google Scholar 

  • Kroumova AB, Wagner GJ, Davies HM (2002) Biochemical observations on medium-chain-length polyhydroxyalkanoate biosynthesis and accumulation in Pseudomonas mendocina. Arch Biochem Biophys 405(1):95–103

    Article  CAS  PubMed  Google Scholar 

  • Kucera D, Pernicová I, Kovalcik A et al (2018) Characterization of the promising poly(3-hydroxybutyrate) producing halophilic bacterium Halomonas halophila. Bioresour Technol 256:552–556

    Article  CAS  PubMed  Google Scholar 

  • Kurata H, Sugimoto Y (2018) Improved kinetic model of Escherichia coli central carbon metabolism in batch and continuous cultures. J Biosci Bioeng 125(2):251–257

    Article  CAS  PubMed  Google Scholar 

  • Lee BS, Fujita M, Khazenzon NM et al (2006) Polycefin, a new prototype of a multifunctional nanoconjugate based on poly(β-L-malic acid) for drug delivery. Bioconjug Chem 17(2)

    Google Scholar 

  • Lee HC, Kim JS, Jang W et al (2010) High NADPH/NADP+ ratio improves thymidine production by a metabolically engineered Escherichia coli strain. J Biotechnol 149(1-2):24–32

    Article  CAS  PubMed  Google Scholar 

  • Lee SH, Kang K, Kim EY et al (2013) Metabolic engineering of Escherichia coli for enhanced biosynthesis of poly(3-hydroxybutyrate) based on proteome analysis. Biotechnol Lett 35(10):1631–1637

    Article  CAS  PubMed  Google Scholar 

  • Lei J, Xia M (2011) Improvement of extraction methods for γ-polyglutamic acid. Modern Chem Industry S1:267–270

    Google Scholar 

  • Leilei L, Danfeng Z, Linjie C et al (2020) Screening and identification of high-yield polymalic acid bacteria. Food Industry Science and Technology

    Google Scholar 

  • Lemoigne M (1926a) Products of dehydration and polymerization of beta-oxybutyric acid. Finanz-Rundschau Ertragsteuerrecht 91(1):449–454

    Google Scholar 

  • Lemoigne M (1926b) Products of dehydration and of polymerization of β-hydroxybutyric acid. Bull Soc Chem Biol 8:770–782

    CAS  Google Scholar 

  • Le-Ping G, Yu-Min D, Hua-Tang Y (2002) Study on the decolorization conditions and molecular weight of hydrogen peroxide chitosan. J Wuhan Univ Sci Ed 48(4):4

    Google Scholar 

  • Li H (2017) High-throughput screening and fermentation characteristics of polymalic acid-producing bacteria. Southwest University, Chongqing

    Google Scholar 

  • Li SP, Yan YH, Zhang QS et al (2009) Biodegradable conductive biomedical polymer materials. ZL200810197694.7

    Google Scholar 

  • Li ZJ, Shi ZY, Jian J et al (2010) Production of poly(3-hydroxybutyrate- co -4-hydroxybutyrate) from unrelated carbon sources by metabolically engineered Escherichia coli. Metab Eng 12(4):352–359

    Article  CAS  PubMed  Google Scholar 

  • Li S, Chen X, Dong C et al (2013) Combining genome shuffling and interspecific hybridization among Streptomyces improved ε-poly-L-lysine production. Appl Biochem Biotechnol 169(1):338–350

    Article  CAS  PubMed  Google Scholar 

  • Li S, Cai L, Wu L et al (2014a) Microbial synthesis of functional homo-, random, and block polyhydroxyalkanoates by β-oxidation deleted Pseudomonas entomophila. Biomacromolecules 15(6):2310–2319

    Article  CAS  PubMed  Google Scholar 

  • Li T, Chen XB, Chen JC et al (2014b) Open and continuous fermentation: products, conditions and bioprocess economy. Biotechnol J:1503–1511

    Google Scholar 

  • Li M, Chen X, Che X et al (2018) Engineering Pseudomonas entomophila for synthesis of copolymers with defined fractions of 3-hydroxybutyrate and medium-chain-length 3-hydroxyalkanoates. Metab Eng 52:253–262

    Article  PubMed  Google Scholar 

  • Li M, Chen J, Wang Y et al (2020) Efficient multiplex gene repression by CRISPR-dCpf1 in Corynebacterium glutamicum. Front Bioeng Biotechnol 8:357

    Article  PubMed  PubMed Central  Google Scholar 

  • Liebergesell M, Hustede E, Timm A et al (1991) Formation of poly(3-hydroxyalkanoates) by phototrophic and chemolithotrophic bacteria. Arch Microbiol 155(5):415–421

    Article  CAS  Google Scholar 

  • Lìfei C (2015) Strain improvement of high-yield 1,3-propanediol Klebsiella pneumoniae. Master’s thesis, Qilu University of Technology

    Google Scholar 

  • Lijuan L, Fulin Z, Xusheng C et al (2011) The effect of amino acids on the biosynthesis of ε-polylysine by Streptomyces griseus. Industrial Microbiol 04:43–49

    Google Scholar 

  • Lim SJ, Jung YM, Shin HD et al (2002) Amplification of the NADPH-related genes zwf and gnd for the oddball biosynthesis of PHB in an E. coli transformant harboring a cloned phbCAB operon. J Biosci Bioeng 93(6):543–549

    Article  CAS  PubMed  Google Scholar 

  • Lin Y, Lin Z, Huang C et al (2015) Metabolic engineering of Escherichia coli using CRISPR-Cas9 meditated genome editing. Metab Eng

    Google Scholar 

  • Ling M, Wu Y, Tian R et al (2022) Combinatorial pathway engineering of Bacillus subtilis for production of structurally defined and homogeneous chitooligosaccharides. Metab Eng 70:55–66

    Article  CAS  PubMed  Google Scholar 

  • Lingtian W, Yunlan Z, Mengrong C et al (2020) A strain of Bacillus velezensis and its application in the co-production of microbial polysaccharides and γ-polyglutamic acid. CN202010649356.3

    Google Scholar 

  • Linhui W, Xu L, Jiaojiao L et al (2018) A method for producing polyglutamic acid by fermenting glutamic acid fermentation waste mycelium, CN108841882A

    Google Scholar 

  • Liu H, Lu T (2015) Autonomous production of 1,4-butanediol via a de novo biosynthesis pathway in engineered Escherichia coli. Metab Eng 29:135–141

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Luo G, Zhou XR et al (2010) Biosynthesis of poly(3-hydroxydecanoate) and 3-hydroxydodecanoate dominating polyhydroxyalkanoates by β-oxidation pathway inhibited Pseudomonas putida. Metab Eng 13(1):11–17

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Jing H, Liu X et al (2011a) Development of pyrF -based gene knockout systems for genome-wide manipulation of the archaea Haloferax mediterranei and Haloarcula hispanica. J Genet Genomics 38(6):261–269

    Article  CAS  PubMed  Google Scholar 

  • Liu SR, Wu QP, Zhang JM et al (2011b) Production of epsilon-poly-L-lysine by Streptomyces sp using resin-based, in situ product removal. Biotechnol Lett 33(8):1581–1585

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Wang Y, Lu Y et al (2017a) Development of a CRISPR/Cas9 genome editing toolbox for Corynebacterium glutamicum. Microb Cell Factories 16(1):205

    Article  Google Scholar 

  • Liu M, Ding Y, Chen H et al (2017b) Improving the production of acetylCoA-derived chemicals in Escherichia coli BL21(DE3) through iclR and arcA deletion. BMC Microbiol 17(1):2–9

    Article  Google Scholar 

  • Liu YJ, Chen XS, Zhao JJ et al (2017c) Development of microtiter plate culture method for rapid screening of ε-poly-L-lysine-producing strains. Appl Biochem Biotechnol 183(4):1209–1223

    Article  CAS  PubMed  Google Scholar 

  • Liu SR, Yang XJ, Sun DF (2021) Enhanced production of ε-poly-L-lysine by immobilized Streptomyces ahygroscopicus through repeated-batch or fed-batch fermentation with in situ product removal. Bioprocess Biosyst Eng:1–12

    Google Scholar 

  • Ljubimova JY, Fujita M, Khazenzon NM et al (2008a) Nanoconjugate based on polymalic acid for tumor targeting. Chem Biol Interact 171(2):195–203

    Article  CAS  PubMed  Google Scholar 

  • Ljubimova JY, Fujita M, Ljubimov AV et al (2008b) Poly(malic acid) nanoconjugates containing various antibodies and oligonucleotides for multi-targeting drug delivery. Nanomedicine 3(2):247–265

    Article  CAS  PubMed  Google Scholar 

  • Lockwood LB, Raper KB, Moyer AJ et al (1945) The production and characterization of ultravioletnduced mutations in Aspergillus terreus. III. Biochemical characteristics of the mutations. Am J Bot 32(4):214–217

    CAS  Google Scholar 

  • Lopes C, Antelo LT, Franco-Uría A et al (2017) Chitin production from crustacean biomass: Sustainability assessment of chemical and enzymatic processes. J Clean Prod 172(PT.4):4140–4151

    Google Scholar 

  • Lu L (2019) Research on CRISPR/Cpf1 system in genome editing of Corynebacterium glutamicum ATCC 14067. Master’s thesis, South China University of Technology

    Google Scholar 

  • Lu X, Zhang J, Wu Q et al (2010) Enhanced production of poly(3-hydroxybutyrate- co -3-hydroxyhexanoate) via manipulating the fatty acid β-oxidation pathway in E. coli. FEMS Microbiol Lett 221(1):97–101

    Article  Google Scholar 

  • Lv L, Ren YL, Chen JC et al (2015) Application of CRISPRi for prokaryotic metabolic engineering involving multiple genes, a case study: controllable P(3HB- co -4HB) biosynthesis. Metab Eng 29:160–168

    Article  CAS  PubMed  Google Scholar 

  • Macrae RM, Wilkinson JF (1958) Poly-beta-hydroxybutyrate metabolism in washed suspensions of Bacillus cereus and Bacillus megaterium. J Microbiol 19(1):210–222

    CAS  Google Scholar 

  • Mader U, Antelmann H, Buder T (2002) Bacillus subtilis functional genomics: genome-wide analysis of the DegS-DegU regulon by transcriptomics and proteomics. Mol Gen Genomics 268(4):455–467

    Article  CAS  Google Scholar 

  • Madi N, McNeil B, Harvey L (1997) Effect of exogenous calcium on morphological development and biopolymer synthesis in the fungus Aureobasidium pullulans. Enzyme Microb Technol 21(2):102–107

    Article  CAS  Google Scholar 

  • Madi N, McNeil B, Harvey L (2015) Influence of culture pH and aeration on ethanol production and pullulan molecular weight by Aureobasidium pullulans. J Chem Technol Biotechnol 65(4):343–350

    Article  Google Scholar 

  • Magocha TA, Zabed H, Yang M et al (2018) Improvement of industrially important microbial strains by genome shuffling: current status and future prospects. Bioresour Technol 6:1–14

    Google Scholar 

  • Malerba M, Cerana R (2019) Recent applications of chitin- and chitosan-based polymers in plants. Polymers (Basel) 11(5)

    Google Scholar 

  • Manni L, Ghorbel-bellaaj O, Jellouli K et al (2010) Extraction and characterization of chitin, chitosan, and protein hydrolysates prepared from shrimp waste by treatment with crude protease from Bacillus cereus SV1. Appl Biochem Biotechnol 162(2):345–357

    Article  CAS  PubMed  Google Scholar 

  • Martínez I, Zhu J, Lin H et al (2008) Replacing Escherichia coli NAD-dependent glyceraldehyde 3-phosphate dehydrogenase (GAPDH) with a NADP-dependent enzyme from Clostridium acetobutylicum facilitates NADPH dependent pathways. Metab Eng 10(6):352–359

    Article  PubMed  Google Scholar 

  • Martins AF, Facchi SP, Follmann HD et al (2014) Antimicrobial activity of chitosan derivatives containing N-quaternized moieties in its backbone: a review. Int J Mol Sci 15(11):20800–20832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsumoto K, Aoki E, Takase K et al (2006) In vivo and in vitro characterization of Ser477X mutations in polyhydroxyalkanoate (PHA) synthase 1 from Pseudomonas sp. 61-3: effects of beneficial mutations on enzymatic activity, substrate specificity, and molecular weight of PHA. Biomacromolecules 7:2436–2442

    Article  CAS  PubMed  Google Scholar 

  • Mcconville TH, Giddins MJ, Uhlemann AC (2021) An efficient and versatile CRISPR-Cas9 system for genetic manipulation of multi-drug resistant Klebsiella pneumoniae. STAR Protocols 2(1):100373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng DC, Wang Y, Wu LP et al (2015) Production of poly(3-hydroxypropionate) and poly(3-hydroxybutyrate- co -3-hydroxypropionate) from glucose by engineering Escherichia coli. Metab Eng 29:189–195

    Article  CAS  PubMed  Google Scholar 

  • Mengdi W (2021) Synthesis methods of polyglutamic acid and its applications in agriculture. China Salt Industry 395(20):48–50

    Google Scholar 

  • Mengying Z, Yahui L, Yuanlong Z et al (2019) Research progress on the biosynthesis of polyhydroxyalkanoates (PHAs) by halophilic bacteria. Biotechnol Bull 35(6):172–177

    Google Scholar 

  • Menzel K, Zeng A, Deckwer W (1997) High concentration and productivity of 1,3-propanediol from continuous fermentation of glycerol by Klebsiella pneumoniae. Enzym Microb Technol 20(2):82–86

    Article  CAS  Google Scholar 

  • Mey M, Maeseneire S, Soetaert W et al (2007) Minimizing acetate formation in E. coli fermentations. J Ind Microbiol Biotechnol 34(11):689–700

    Article  PubMed  Google Scholar 

  • Milin Z, Baojun K, Hui Z et al (2019) Comparison of CRISPR-Cpf1 and Cre/loxP gene knockout technologies in Corynebacterium glutamicum. Microbiol Bull 46(2):65–78

    Google Scholar 

  • Min P, Yingqing Z, Ting W et al (2021) Research progress on the functional impact of polyglutamic acid on food. China Food Addit 7:138–142

    Google Scholar 

  • Mingfeng C, Yinghong J, Hui X et al (2011) Microbial synthesis of γ-polyglutamic acid, related genes and application prospects. Microbiol Bull 38(3):388–395

    Google Scholar 

  • Moussian B (2019) Chitin: structure, chemistry and biology. Adv Exp Med Biol 1142:5–18

    Article  CAS  PubMed  Google Scholar 

  • Murphy KC (1998) Use of bacteriophage λ recombination functions to promote gene replacement in Escherichia coli. J Bacteriol 180(8):2063–2071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Myoung PJ, Yu-Sin J, Yong KT et al (2010) Development of a gene knockout system for Ralstonia eutropha H16 based on the broad-host-range vector expressing a mobile group II intron. Fems Metab Eng 2:193–200

    Google Scholar 

  • Nagai T, Phan Tran LS, Inatsu Y et al (2000) A new IS 4 family insertion sequence, IS 4Bsu 1, responsible for genetic instability of poly-γ-glutamic acid production in Bacillus subtilis. J Bacteriol 182(9):2387–2392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nan L (2006) Screening and optimization of γ-PGA producing strain S004-50-01. Food Ferment Industries 6(31):1–6

    Google Scholar 

  • Ngo DH, Kim SK (2014) Antioxidant effects of chitin, chitosan, and their derivatives. Adv Food Nutr Res 73:15–31

    Article  CAS  PubMed  Google Scholar 

  • Nielsen DR, Yoon SH, Yuan CJ et al (2010) Engineering Acetoin and meso-2,3-butanediol biosynthesis in E. coli. Biotechnol J 5(3):274–284

    Article  CAS  PubMed  Google Scholar 

  • Nishikawa AM, Ogawa K (2002) Distribution of microbes producing antimicrobial epsilon-poly-L-lysine polymers in soil microflora determined by a novel method. Appl Environ Microbiol 68(7):3575–3581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogawa Y, Hosoyama H, Hamano M et al (1991) Purification and properties of γ-Glutamyltranspeptidase from Bacillus subtilis (natta). Agric Biol Chem 55(12):2971–2977

    CAS  PubMed  Google Scholar 

  • Ogunleye A, Bhat A, Irorere VU et al (2015) Poly-γ-glutamic acid: production, properties and applications. Microbiology 161(1):1–17

    Article  CAS  PubMed  Google Scholar 

  • Ohsawa T, Tsukahara K, Ogura M (2009) Bacillus subtilis response regulator DegU is a direct activator of pgsB transcription involved in γ-poly-glutamic acid synthesis. Biosci Biotechnol Biochem 73(9):2096–2102

    Article  CAS  PubMed  Google Scholar 

  • Ouyang P, Wang H, Hajnal I et al (2017) Increasing oxygen availability for improving poly(3-hydroxybutyrate) production by Halomonas. Metab Eng 45:20–31

    Article  PubMed  Google Scholar 

  • Pan L, Chen X, Wang K et al (2019) Understanding high ε-poly-l-lysine production by Streptomyces albulus using pH shock strategy in the level of transcriptomics. J Ind Microbiol Biotechnol 46(12):1781–1792

    Article  CAS  PubMed  Google Scholar 

  • Park SJ, Lee SY (2003) Identification and characterization of a new enoyl coenzyme a hydratase involved in biosynthesis of medium-chain-length polyhydroxyalkanoates in recombinant Escherichia coli. J Bacteriol 185:5391–5397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park SJ, Lee SY, Kim TW et al (2012) Biosynthesis of lactate-containing polyesters by metabolically engineered bacteria. Biotechnol J 7(2):199–212

    Article  CAS  PubMed  Google Scholar 

  • Park SJ, Jang YA, Lee H et al (2013) Metabolic engineering of Ralstonia eutropha for the biosynthesis of 2-hydroxyacid-containing polyhydroxyalkanoates. Metab Eng 20:20–28

    Article  CAS  PubMed  Google Scholar 

  • Patil NA, Kandasubramanian B (2021) Functionalized polylysine biomaterialls for advanced medical applications: a review. Eur Polym J 146:110248

    Article  CAS  Google Scholar 

  • Pederson EN, McChalicher CWJ, Srienc F (2006) Bacterial synthesis of PHA block copolymers. Biomacromolecules 7:1904–1911

    Article  CAS  PubMed  Google Scholar 

  • Peng F, Wang X, Sun Y et al (2017) Efficient gene editing in Corynebacterium glutamicum using the CRISPR/Cas9 system. Microb Cell Factories 16(1):201

    Article  Google Scholar 

  • Peng G, Kun W, Yahui C et al (2019) Synthesis and application of γ-polyglutamic acid. J Xuchang Univ 38(5):92–95

    Google Scholar 

  • Peng D, Jinlu Z, Bingrong L et al (2020) Chemical modification and application of chitin and chitosan. Polym Bull 7:17

    Google Scholar 

  • Pernicova I, Kucera D, Nebesarova J et al (2019) Production of polyhydroxyalkanoates on waste frying oil employing selected Halomonas strains. Bioresour Technol 292:122028

    Article  CAS  PubMed  Google Scholar 

  • Pfeiffer D, Wahl A, Jendrossek D (2011) Identification of a multifunctional protein, PhaM, that determines number, surface to volume ratio, subcellular localization and distribution to daughter cells of poly(3-hydroxybutyrate), PHB, granules in Ralstonia eutropha H16. Mol Microbiol 81:936–951

    Article  Google Scholar 

  • Poblete-Castro I, Binger D, Rodrigues A et al (2013) In-silico-driven metabolic engineering of Pseudomonas putida for enhanced production of poly-hydroxyalkanoates. Metab Eng 15:113–123

    Article  CAS  PubMed  Google Scholar 

  • Poo H, Park C, Kwak MS et al (2010) New biological functions and applications of high-molecular-mass poly-γ-glutamic acid. Chem Biodivers 7(6):1555–1562

    Article  CAS  PubMed  Google Scholar 

  • Portilla-Arias J, Pati R, Hu J et al (2010) Nanoconjugate platforms development based in poly(β-L-malic acid) methyl esters for tumor drug delivery. J Nanomater:825363

    Google Scholar 

  • Przystałowska H, Zeyland J, PowałOwska DS et al (2015) 1,3-Propanediol production by new recombinant Escherichia coli containing genes from pathogenic bacteria. Microbiol Res 171:1–7

    Article  PubMed  Google Scholar 

  • Qi QS, Steinbüchel A, Rehm BHA (1998) Metabolic routing towards polyhydroxyalkanoic acid synthesis in recombinant Escherichia coli ( fadR ): inhibition of fatty acid β-oxidation by acrylic acid. FEMS Microbiol Lett 167(1):89–94

    CAS  PubMed  Google Scholar 

  • Qianqian Y, Feiran L, Hao L et al (2017) Discovery of new strategies for microbial metabolic engineering modification from metabolic network analysis. Chem Industry Progr 36(12):4592–4600

    Google Scholar 

  • Qianqian T, Yaliang L, Shunchang W et al (2019) Research progress on microbial genome rearrangement technology. J Chifeng Univ (Natural Sci Ed) 35(10):18–19

    Google Scholar 

  • Qin Q, Ling C, Zhao Y et al (2018) CRISPR/Cas9 editing genome of extremophile Halomonas spp. Metab Eng 47:219–229

    Article  CAS  PubMed  Google Scholar 

  • Raza ZA, Abid S, Banat IM (2018) Polyhydroxyalkanoates: characteristics, production, recent developments and applications. Int Biodeterior Biodegradation 126:45–56

    Article  CAS  Google Scholar 

  • Ren XD, Chen XS, Zeng X et al (2015) Acidic pH shock induced overproduction of epsilon-poly-l-lysine in fed-batch fermentation by Streptomyces sp M-Z18 from agro-industrial by-products. Bioprocess Biosyst Eng 38(6):1113–1125

    Article  CAS  PubMed  Google Scholar 

  • Roberts RL, Bowers B, Slater ML et al (1983) Chitin synthesis and localization in cell division cycle mutants of Saccharomyces cerevisiae. Mol Cell Biol 3(5):922–930

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saeed KA, Eribo BE, Ayorin De FO et al (2019) Characterization of copolymer hydroxybutyrate/hydroxyvalerate from Saponified Vernonia, soybean, and “Spent” frying oils. J AOAC Int 4:4

    Google Scholar 

  • Salah R, Michaud P, Mati F et al (2013) Anticancer activity of chemically prepared shrimp low molecular weight chitin evaluation with the human monocyte leukaemia cell line, THP-1. Int J Biol Macromol 52:333–339

    Article  CAS  PubMed  Google Scholar 

  • Sánchez RJ, Schripsema J, Da Silva LF et al (2003) Medium-chain-length polyhydroxyalkanoic acids (PHA mcl) produced by Pseudomonas putida IPT046 from renewable sources. Eur Polym J 39(7):1385–1394

    Article  Google Scholar 

  • Sánchez AM, Bennett GN, San KY (2005) Novel pathway engineering design of the anaerobic central metabolic pathway in Escherichia coli to increase succinate yield and productivity. Metab Eng 7(3):229–239

    Article  PubMed  Google Scholar 

  • Sanda F, Fnjiyama T, Endo T (2001) Chemical synthesis of poly-γ-glutamic acid by condensation of γ -glutamic acid dimer: synthesis and reaction of poly-γ-glutamic acid methyester. Polym Sci 39(5):732–741

    Article  CAS  Google Scholar 

  • Satitsri S, Muanprasat C (2020) Chitin and chitosan derivatives as biomaterial resources for biological and biomedical applications. Molecules 25(24)

    Google Scholar 

  • Schubert P, Steinbüchel A, Schlegel HG (1988) Cloning of the Alcaligenes eutrophus genes for synthesis of poly-beta-hydroxybutyric acid (PHB) and synthesis of PHB in Escherichia coli. J Biotechnol 170:5837–5847

    CAS  Google Scholar 

  • Senlin W, Wen L, Yan W et al (2021) A strain of methylotrophic Bacillus, method for fermenting γ-polyglutamic acid and its application. CN202110869912.2

    Google Scholar 

  • Shahbaz U (2020) Chitin, characteristic, sources, and biomedical application. Curr Pharm Biotechnol 21(14):1433–1443

    Article  CAS  PubMed  Google Scholar 

  • Shan C, Yanling H, Le Z et al (2017) Determination study of polymalic acid production by microbial fermentation. Agric Products Process 5:51–53

    Google Scholar 

  • Shih IL, Shen MH (2006) Application of response surface methodology to optimize production of poly-epsilon-lysine by Streptomyces albulus IFO 1417. Enzym Microb Technol 39(1):15–21

    Article  CAS  Google Scholar 

  • Shih L, Van YT (2001) The production of poly-(γ-glutamic acid) from microorganisms and its various applications. Bioresour Technol 79(3):207–225

    Article  CAS  PubMed  Google Scholar 

  • Shiloach J, Kaufman J, Guillard AS et al (1996) Effect of glucose supply strategy on acetate accumulation, growth, and recombinant protein production by Escherichia coli BL21(λDE3) and Escherichia coli JM109. Biotechnol Bioeng 49:421–428

    Article  CAS  PubMed  Google Scholar 

  • Shima S, Sakai H (1977) Polylysin produced by Streptomyces. Agric Biol Chem 41(9):1807–1809

    CAS  Google Scholar 

  • Shima S, Sakai H (1981) Poly-L-lysine produced by Streptomyces. Part II. Taxonomy and fermentation studies. Agric Biol Chem 45:2497–2502

    CAS  Google Scholar 

  • Shozui F, Ken’ichiro M, Motohashi R et al (2011) Biosynthesis of a lactate (LA)-based polyester with a 96 mol% LA fraction and its application to stereocomplex formation. Polym Degrad Stab 96(4):499–504

    Article  CAS  Google Scholar 

  • Shuangxi C, Erchao Z, Lele Z, Qihao X (2015) Atmospheric pressure room temperature plasma mutation breeding of γ-polyglutamic acid producing strains. Chin J Pharm Industry 46(9):960–964

    Google Scholar 

  • Shuiyang Z, Dan Z (2012) Method for producing γ-polyglutamic acid by adding NaCl during fermentation, CN102533885A

    Google Scholar 

  • Siedler S, Bringer S, Bott M (2011) Increased NADPH availability in Escherichia coli : improvement of the product per glucose ratio in reductive whole-cell biotransformation. Appl Microbiol Biotechnol 92(5):929

    Article  CAS  PubMed  Google Scholar 

  • Sim SJ, Snell KD, Hogan SA et al (1997) PHA synthase activity controls the molecular weight and polydispersity of polyhydroxybutyrate in vivo. Nat Biotechnol 15:63–67

    Article  CAS  PubMed  Google Scholar 

  • Solaiman D, Foglia A (2002) Synthesis of poly(hydroxyalkanoates) by Escherichia coli expressing mutated and chimeric PHA synthase genes. Biotechnol Lett 24:1011–1016

    Article  CAS  Google Scholar 

  • Song BG, Kim TK, Jung YM et al (2006) Modulation of talA gene in pentose phosphate pathway for overproduction of poly- β -hydroxybutyrate in transformant Escherichia coli harboring phbCAB operon. J Biosci Bioeng 102(3):237–240

    Article  CAS  PubMed  Google Scholar 

  • Song Y, Matsumoto K, Yamada M et al (2012) Corynebacterium glutamicum as an endotoxin-free platform strain for lactate-based polyester production. Appl Microbiol Biotechnol 93(5):1917–1925

    Article  CAS  PubMed  Google Scholar 

  • Stark D, von Stockar U (2003) In situ product removal (ISPR) in whole cell biotechnology during the last twenty years. Adv Biochem Eng Biotechnol 80:149–175

    CAS  PubMed  Google Scholar 

  • Stavila E, Loos K (2013) Synthesis of lactams using enzyme-catalyzed aminolysis. Tetrahedron Lett 54(5):370–372

    Article  CAS  Google Scholar 

  • Steinbüchel A, Füchtenbusch B (1998) Bacterial and other biological systems for polyester production. Trends Biotechnol 16(10):419–427

    Article  PubMed  Google Scholar 

  • Steinbüchel A, Valentin HE (1995) Diversity of bacterial polyhydroxyalkanoic acids. FEMS Microbiol Lett 128(3):219–228

    Article  Google Scholar 

  • Stephan B, Solvej S, Jan M et al (2013) Recombineering in Corynebacterium glutamicum combined with optical nanosensors: a general strategy for fast producer strain generation. Nucleic Acids Res 41(12):6360–6369

    Article  Google Scholar 

  • Su Y, Li X, Liu Q et al (2010) Improved poly-γ-glutamic acid production by chromosomal integration of the Vitreoscilla hemoglobin gene (vgb) in Bacillus subtilis. Bioresour Technol 101(12):4733–4736

    Article  CAS  PubMed  Google Scholar 

  • Sun Q, Wang Y, Shen L et al (2019) Application of CRISPR/Cas9-based genome editing in studying the mechanism of pandrug resistance in Klebsiella pneumoniae. Antimicrob Agents Ch 63(7):e00113–e00119

    Article  CAS  Google Scholar 

  • Taguchi S, Yamada M, Matsumoto K et al (2008) A microbial factory for lactate-based polyesters using a lactate-polymerizing enzyme. PNAS 105(45):17323–17327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taibo H, Kai Y, Weiqiang Z et al (2020) Research on the preparation of poly(malic acid) by fermentation of budding short stalk mold. Biochem Eng 6:134–139

    Google Scholar 

  • Tajima K, Han X, Satoh Y et al (2012) In vitro synthesis of polyhydroxyalkanoate (PHA) incorporating lactate (LA) with a block sequence by using a newly engineered thermostable PHA synthase from Pseudomonas sp. SG4502 with acquired LA-polymerizing activity. Appl Microbiol Biotechnol 94(2):365–376

    Article  CAS  PubMed  Google Scholar 

  • Tan D, Xue YS, Aibaidula G et al (2011) Unsterile and continuous production of polyhydroxybutyrate by Halomonas TD01. Bioresour Technol 102(17):8130–8136

    Article  CAS  PubMed  Google Scholar 

  • Tan Y, Xu D, Ye L et al (2012) Construction of a novel sacB-based system for marker-free gene deletion in Corynebacterium glutamicum. Plasmid 67(1):44–52

    Article  CAS  PubMed  Google Scholar 

  • Tan D, Wu Q, Chen JC et al (2014) Engineering Halomonas TD01 for the low-cost production of polyhydroxyalkanoates. Metab Eng 26:34–47

    Article  CAS  PubMed  Google Scholar 

  • Tao Y, Hongsheng X (2015) Progress in the study of microbial synthesis of γ-polyglutamic acid, related genes, synthesis mechanism and fermentation. Biotechnol Bull 31(3):25–34

    Google Scholar 

  • Tao W, Lv L, Chen GQ (2017) Engineering Halomonas species TD01 for enhanced polyhydroxyalkanoates synthesis via CRISPRi. Microb Cell Factories 16(1):48

    Article  Google Scholar 

  • Tappel RC, Kucharski JM, Mastroianni JM et al (2012) Biosynthesis of Poly[(R)-3-hydroxyalkanoate] copolymers with controlled repeating unit compositions and physical properties. Biomacromolecules 13(9):2964–2972

    Article  CAS  PubMed  Google Scholar 

  • Terpe K (2006) Overview of bacterial expression systems for heterologous protein production: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol 72(2):211–222

    Article  CAS  PubMed  Google Scholar 

  • Tripathi L, Wu LP, Chen JC et al (2012) Synthesis of diblock copolymer poly-3-hydroxybutyrate-block-poly-3-hydroxyhexanoate [PHB- b -PHHx] by a β-oxidation weakened Pseudomonas putida KT2442. Microb Cell Factories 11(1):44–54

    Article  CAS  Google Scholar 

  • Tripathi L, Wu LP, Dechuan M et al (2013) Pseudomonas putida KT2442 as a platform for the biosynthesis of polyhydroxyalkanoates with adjustable monomer contents and compositions. Bioresour Technol 142:225–231

    Article  CAS  PubMed  Google Scholar 

  • Troy FA (1973) Chemistry and biosynthesis of the poly (γ-d-glutamyl) capsule in Bacillus licheniformis: I. Properties of the membrane-mediated biosynthetic reaction. J Biol Chem 248(1):305–315

    Article  CAS  PubMed  Google Scholar 

  • Tsuge T, Watanabe S, Shimada D et al (2007) Combination of N149S and D171G mutations in Aeromonas caviae polyhydroxyalkanoate synthase and impact on polyhydroxyalkanoate biosynthesis. FEMS Microbiol Lett 277:217–222

    Article  CAS  PubMed  Google Scholar 

  • Tuersuntuoheti T, Wang Z, Wang Z et al (2019) Review of the application of ε-poly-L-lysine in improving food quality and preservation. J Food Preserv 42(10):e14153

    Google Scholar 

  • Utsunomia C, Matsumoto K, Taguchi S (2017) Microbial secretion of D-lactate-based oligomers. ACS Sustain Chem Eng 5(3):2360–2367

    Article  CAS  Google Scholar 

  • Valdez-Pena AU, Espinoza-perez JD, Sandoval-fabian GC et al (2010) Screening of industrial enzymes for deproteinization of shrimp head for chitin recovery. Food Sci Biotechnol 19(2):553–557

    Article  CAS  Google Scholar 

  • Valentin HE, Dennis D (1997) Production of poly(3-hydroxybutyrate- co -4-hydroxybutyrate) in recombinant Escherichia coli grown on glucose. J Biotechnol 58(1):33–38

    Article  CAS  PubMed  Google Scholar 

  • Valentin HE, Schönebaum A, Steinbüchel A (1991) Identification of 5-hydroxyhexanoic acid, 4-hydroxyheptanoic acid and 4-hydroxyoctanoic acid as new constituents of bacterial polyhydroxyalkanoic acids. Appl Bacteria Arch Microbiol 155(5):415–421

    Google Scholar 

  • Valentino F, Moretto G, Lorini L et al (2019) Pilot-scale polyhydroxyalkanoate production from combined treatment of organic fraction of municipal solid waste and sewage sludge. Ind Eng Chem Res 58(27):12149–12158

    Article  CAS  Google Scholar 

  • Van Thuoc D, My DN, Loan TT et al (2019) Utilization of waste fish oil and glycerol as carbon sources for polyhydroxyalkanoate production by Salinivibrio sp. M318. Int J Biol Macromol 141:885–892

    Article  PubMed  Google Scholar 

  • Wang HH, Li XT, Chen GQ (2009) Production and characterization of homopolymer polyhydroxyheptanoate (P3HHp) by a fadBA knockout mutant Pseudomonas putida KTOY06 derived from P. Putida KT2442. Process Biochem 44(1):106–111

    Article  Google Scholar 

  • Wang G, Jia S, Wang T et al (2011) Effect of ferrous ion on epsilon-poly-L-lysine biosynthesis by Streptomyces diastatochromogenes CGMCC3145. Curr Microbiol 62(3):1062–1067

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Chen R, Cai JY et al (2013a) Biosynthesis and thermal properties of PHBV produced from Levulinic acid by Ralstonia eutropha. PLoS One 8(4)

    Google Scholar 

  • Wang Y, San KY, Bennett GN (2013b) Improvement of NADPH bioavailability in Escherichia coli by replacing NAD(+)-dependent glyceraldehyde-3-phosphate dehydrogenase GapA with NADP (+)-dependent GapB from Bacillus subtilis and addition of NAD kinase. J Ind Microbiol Biotechnol 40(12):1449–1460

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, San KY, Bennett GN (2013c) Improvement of NADPH bioavailability in Escherichia coli through the use of phosphofructokinase deficient strains. Appl Microbiol Biotechnol 97(15):6883–6893

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Yang P, Xian M et al (2013d) Biosynthesis of poly(3-hydroxypropionate- co -3-hydroxybutyrate) with fully controllable structures from glycerol. Bioresour Technol 142:741–744

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Liu XL, Qi QS (2014a) Biosynthesis of poly(3-hydroxybutyrate- co -3-hydroxyvalerate) from glucose with elevated 3-hydroxyvalerate fraction via combined citramalate and threonine pathway in Escherichia coli. Appl Microbiol Biotechnol 98(9):3923–3931

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Quan Y, Song C (2014b) Progress in microbial synthesis and application of polymalic acid. Chin J Biotechnol 30(9):1331–1340

    Google Scholar 

  • Wang L, Chen X, Wu G et al (2016) Genome shuffling and gentamicin-resistance to improve ε-poly-l-lysine productivity of Streptomyces albulus W-156. Appl Biochem Biotechnol 180(8):1601–1617

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Zhang G, Zhao X et al (2017) Genome shuffling improved the nucleosides production in Cordyceps kyushuensis. J Biotechnol 260(1):42

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Li S, Zhao J et al (2019) Efficiently activated ε-poly-l-lysine production by multiple antibiotic-resistance mutations and acidic pH shock optimization in Streptomyces albulus. MicrobiologyOpen 8(5):e00728

    Article  PubMed  Google Scholar 

  • Ward PG, O’Connor KE (2005) Bacterial synthesis of polyhydroxyalkanoates containing aromatic and aliphatic monomers by Pseudomonas putida CA-3. Int J Biol Macromol 35(3/4):127–133

    Article  CAS  PubMed  Google Scholar 

  • Wei X, Ji Z, Chen S (2010) Isolation of halotolerant Bacillus licheniformis WX-02 and regulatory effects of sodium chloride on yield and molecular sizes of poly-γ-glutamic acid. Appl Biochem Biotechnol 160(5):1332–1340

    Article  CAS  PubMed  Google Scholar 

  • Weiwei C, Hongyang Z, Hong X (2007a) Breeding of mass-producing ε-polylysine mutant and its batch fermentation. Industrial Microbiol 37(2):28–30

    Google Scholar 

  • Weiwei C, Hongyang Z, Hong X (2007b) Research on the selection and batch fermentation of high-yield ε-polylysine strains. Industrial Microbiol 37(2):28–30

    Google Scholar 

  • Wenjing H, Yingchao L, Guanghao Z et al (2019) Study on the conditions for fermentation production of polyglutamic acid using monosodium glutamate and by-products. Food Ferment Technol 55(3):39–42

    Google Scholar 

  • Wenjuan Y, Wenjun F, Xiaole X et al (2012) Bioinformatics analysis of the structure of PgsBCA, the γ-polyglutamic acid synthase system. J Nantong Univ (Natural Sci Ed) 11(2):41–46

    Google Scholar 

  • Wu F, Cai D, Li L et al (2019) Modular metabolic engineering of lysine supply for enhanced production of bacitracin in Bacillus licheniformis. Appl Microbiol Biotechnol 103(21–22):8799–8812

    Article  CAS  PubMed  Google Scholar 

  • Xiang-Yu S, Qi-Feng W, Xiu-Lian R (2018) Progress in the extraction process and application of chitosan/chitin from shrimp and crab shells. Food Res Dev 39(22):6

    Google Scholar 

  • Xiao J, Xu ZX, Xu H et al (2014) Economical production of poly(epsilon-L-lysine) and poly(L-diaminopropionic acid) using cane molasses and hydrolysate of streptomyces cells by Sreptomyces albulus PD-1. Bioresour Technol 164:241–247

    Article  Google Scholar 

  • Xiaoli Y, Zhiqiang F, Xiaohong H et al (2012) Synthesis of a new γ-polyglutamic acid water-absorbing resin. Synthetic Chemistry

    Google Scholar 

  • Xiaolong S, Yongqian F (2019) Morphological mutant strain of Rhizopus with high yield of L-lactic acid screened by compound mutation and carbon metabolic flux analysis. Jiangsu Agric Sci 47(01):294–299

    Google Scholar 

  • Xiaoming S, Xiaoya W, Zhen W et al (2008) Research progress on the fermentation production of lactic acid by immobilized Rhizopus. Chem Industry Progr 2:206–208

    Google Scholar 

  • Xiaoxing Z (2017) pH regulation and variable temperature fermentation of Bacillus amyloliquefaciens YP-2 for γ-polyglutamic acid production. Henan Agricultural University, Zhengzhou

    Google Scholar 

  • Xinwei X, Changqing S, Jialong W et al (2004) Biosynthesis of γ-polyglutamic acid and its related genes. Chin J Biotechnol 24(8):38–41, 47

    Google Scholar 

  • Xu P, Ranganathan S, Fowler ZL et al (2011) Genome-scale metabolic network modeling results in minimal interventions that cooperatively force carbon flux towards malonyl-CoA. Metab Eng 13(5):578–587

    Article  CAS  PubMed  Google Scholar 

  • Xu ZX, Cao CH, Sun ZZ et al (2015a) Construction of a genetic system for Streptomyces albulus PD-1 and improving poly(epsilon-L-lysine) production through expression of vitreoscilla hemoglobin. J Microbiol Biotechnol 25(11):1819

    Article  CAS  PubMed  Google Scholar 

  • Xu Z, Feng X, Sun Z et al (2015b) Economic process to co-produce poly(ε-l-lysine) and poly (l-diaminopropionic acid) by a pH and dissolved oxygen control strategy. Bioresour Technol 187:70–76

    Article  CAS  PubMed  Google Scholar 

  • Xu Z, Bo F, Xia J et al (2015c) Effects of oxygen-vectors on the synthesis of epsilon-poly-lysine and the metabolic characterization of Streptomyces albulus PD-1. Biochem Eng J 94:58–64

    Article  CAS  Google Scholar 

  • Xu D, Yao H, Cao C et al (2018) Enhancement of epsilon-poly-L-lysine production by overexpressing the ammonium transporter gene in Streptomyces albulus PD-1. Bioprocess Biosyst Eng 41(9):1337–1345

    Article  CAS  PubMed  Google Scholar 

  • Xu G, Wang J, Gu L et al (2021) Functional characterization of CapBCA in controlling poly-γ-glutamic acid synthesis in corynebacterium glutamicum

    Google Scholar 

  • Xueliang Z (2018) Regulation of γ-polyglutamic acid molecular weight and its adsorption of heavy metal ions. Henan University, Kaifeng

    Google Scholar 

  • Xueliang Z, Wenya L, Guang L et al (2022) Adsorption properties of γ-polyglutamic acid hydrogel for Cd^2+,Pb^2+. 13

    Google Scholar 

  • Xueming Z, Tao C, Zhiwen W (2015) Metabolic engineering. Higher Education Press, Beijing

    Google Scholar 

  • Xuenian H, Shen T, Xuefeng L (2020) Progress and prospects in the synthetic biology research of the industrial filamentous fungus Aspergillus terreus. Synth Biol 2:187–211

    Google Scholar 

  • Xuexiao C, Qixing J, Yanshun X et al (2014) Study on the decolorization technology of chitin from Antarctic krill shell. J Zhengzhou Univ Light Ind 29(3):2095-476X(2014)03-0021-04

    Google Scholar 

  • Yahui C, Qing W, Wenyu W et al (2021) Optimization of fermentation medium for γ-polyglutamic acid production by Bacillus siamensis LW-1. Food Industry Sci Technol 42(16):163–170

    Google Scholar 

  • Yamada M, Matsumoto K, Nakai T et al (2009) Microbial production of lactate-enriched poly[(R)-lactate-co-(R)-3-hydroxybutyrate]. Biomacromolecules 10(4):677–681

    Article  CAS  PubMed  Google Scholar 

  • Yamada M, Matsumoto, Ken’ichiro et al (2010) Adjustable mutations in lactate (LA)-polymerizing enzyme for the microbial production of LA-based polyesters with tailor-made monomer composition. Biomacromolecules 11(3):815–819

    Article  CAS  PubMed  Google Scholar 

  • Yamanaka K, Hamano Y, Oikawa T (2020) Enhancement of metabolic flux toward ε-poly-l-lysine biosynthesis by targeted inactivation of concomitant polyene macrolide biosynthesis in Streptomyces albulus. J Biosci Bioeng

    Google Scholar 

  • Yan Z (2007) Research on gene transformation technology of Klebsiella pneumoniae. Master’s thesis, Shanghai Jiaotong University

    Google Scholar 

  • Yan X (2019) Exploration of gene knockout and recombination engineering mediated point mutation methods in Corynebacterium glutamicum ATCC 13032. Master’s thesis, Nanjing Normal University

    Google Scholar 

  • Yang J, Shih II, Tzeng Y et al (2000) Production and purification of protease from a Bacillus subtilis that can deproteinize crustacean wastes. Enzym Microb Technol 26(5-6):406–413

    Article  CAS  Google Scholar 

  • Yang TH, Kim TW, Kang HO et al (2010) Biosynthesis of polylactic acid and its copolymers using evolved propionate CoA transferase and PHA synthase. Biotechnol Bioeng 105(1):150–160

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Yang Z, Liqiang F et al (2021) Study on the cold resistance of N-acetylglucosamine in rice. Southern Agric J 52(6):11

    Google Scholar 

  • Yanli Z (2018) Cultivation of Bacillus subtilis to produce γ-polyglutamic acid using monosodium glutamate wastewater and preliminary characterization. J Ecol Environ 27(10):1949–1957

    Google Scholar 

  • Yanyan L, Shanshan Z, Guodong R (2015) Progress in the extraction of chitin from crustaceans, insects, and fungi. Food Res Dev 36(7):5

    Google Scholar 

  • Yanyun F, Haijuan G, Hailiang L et al (2019) Research progress on the biological preservative polylysine. Agric Products Process 477(4):57–62

    Google Scholar 

  • Yeh CM, Wang JP, Lo SC et al (2010) Chromosomal integration of a synthetic expression control sequence achieves poly-γ-glutamate production in a Bacillus subtilis strain. Biotechnol Prog 26(4):1001–1007

    Article  CAS  PubMed  Google Scholar 

  • Yicheng B, Hongyan L, Hao W et al (2015) Two-step ultrafiltration method for separating and extracting polymalic acid from fermentation broth. Membr Sci Technol 35(1):97–102

    Google Scholar 

  • Yin J, Chen JC, Wu Q et al (2015a) Halophiles, coming stars for industrial biotechnology. Biotechnol Adv 33:1433–1442

    Article  CAS  PubMed  Google Scholar 

  • Yin J, Wang H, Fu XZ et al (2015b) Effects of chromosomal gene copy number and locations on polyhydroxyalkanoate synthesis by Escherichia coli and Halomonas sp. Appl Microbiol Biotechnol 99(13):5523–5534

    Article  CAS  PubMed  Google Scholar 

  • Yin H, Ma Y, Deng Y et al (2016) Genome shuffling of Saccharomyces cerevisiae for enhanced glutathione yield and relative gene expression analysis using fluorescent quantitation reverse transcription polymerase chain reaction. J Microbiol Methods 127:188–192

    Article  CAS  PubMed  Google Scholar 

  • Yongzhu C (2005) Mutation breeding of γ-polyglutamic acid producing bacteria and application research of heavy metal adsorption. Sichuan University

    Google Scholar 

  • Younes I, Rinaudo M (2015) Chitin and chitosan preparation from marine sources. Structure, properties and applications. Mar Drugs 13(3):1133–1174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Younes I, Ghorbel-bellaaj O, Nasri R et al (2012) Chitin and chitosan preparation from shrimp shells using optimized enzymatic deproteinization. Process Biochem 47(12):2032–2039

    Article  CAS  Google Scholar 

  • Yu Y, Zhu X, Xu H et al (2019) Construction of an energy-conserving glycerol utilization pathways for improving anaerobic succinate production in Escherichia coli. Metab Eng 56:181–189

    Article  CAS  PubMed  Google Scholar 

  • Yue HT, Ling C, Yang T et al (2014) A seawater-based open and continuous process for polyhydroxyalkanoates production by recombinant Halomonas campaniensis LS21 grown in mixed substrates. Biotechnol Biofuels 7:108–120

    Article  Google Scholar 

  • Yuhui W (2018) Study on the synthesis of ethylene glycol by E. coli transformation of xylose, Master’s thesis, Shandong University

    Google Scholar 

  • Zelić B, Gostović S, Vuorilehto K et al (2010) Process strategies to enhance pyruvate production with recombinant Escherichia coli: from repetitive fed-batch to in situ product recovery with fully integrated electrodialysis. Biotechnol Bioeng 85(6):638–646

    Article  Google Scholar 

  • Zeng AP, Menzel K, Deckwer WD (2015) Kinetic, dynamic, and pathway studies of glycerol metabolism by Klebsiella pneumoniae in anaerobic continuous culture: II. Analysis of metabolic rates and pathways under oscillation and steady-state conditions. Biotechnol Bioeng 52(5):561–571

    Article  Google Scholar 

  • Zeng X, Miao W, Wen B et al (2019) Transcriptional study of the enhanced ε-poly-L-lysine productivity in culture using glucose and glycerol as a mixed carbon source. Bioprocess Biosyst Eng 42(4):555–566

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Xiu Z (2010) Metabolic pathway analysis of glycerol metabolism in Klebsiella pneumoniae incorporating oxygen regulatory system. Biotechnol Prog 25(1):103–115

    Article  Google Scholar 

  • Zhang Y, Feng X, Xu H et al (2010) Epsilon-poly-L-lysine production by immobilized cells of Kitasatospora sp. MY 5-36 in repeated fed-batch cultures. Bioresour Technol 101(14):5523–5527

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Lin Z, Liu Q et al (2014) Engineering of Serine-Deamination pathway, Entner-Doudoroff pathway and pyruvate dehydrogenase complex to improve poly(3-hydroxybutyrate) production in Escherichia coli. Microb Cell Factories 13(1):172

    Article  Google Scholar 

  • Zhang C, Ren H, Zhong C (2021a) Preparation of γ-polyglutamic acid from enzymatic hydrolysate of poplar sawdust. Arab J Chem 14(4):103095

    Article  CAS  Google Scholar 

  • Zhang J, Chen D, Liang G, Xu W et al (2021b) Biosynthetic polymalic acid as a delivery nanoplatform for translational cancer medicine. Trends Biochem Sci 46(3):213–224

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Zhang C, Zhou M et al (2022) Enhanced bioproduction of chitin in engineered Pichia pastoris. Food Biosci:47

    Google Scholar 

  • Zheng Z, Li M, Xue XJ et al (2006) Mutation on N-terminus of polyhydroxybutyrate synthase of Ralstonia eutropha enhanced PHB accumulation. Appl Microbiol Biotechnol 72(5):896–905

    Article  CAS  PubMed  Google Scholar 

  • Zhong Z, Jianguang W, Lequan Q et al (2010) Research progress on microbial polyglutamic acid (γ-PGA) synthase and synthesis mechanism. Biotechnol Bull 6:52–56

    Google Scholar 

  • Zhou XY, Yuan XX, Shi ZY et al (2012) Hyperproduction of poly(4-hydroxybutyrate) from glucose by recombinant Escherichia coli. Microb Cell Factories 11:54–61

    Article  CAS  Google Scholar 

  • Zhou YP, Ren XD, Wang L et al (2015) Enhancement of ε-poly-lysine production in ε-poly-lysine-tolerant Streptomyces sp. by genome shuffling. Bioprocess Biosyst Eng 38(9):1705–1713

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Eiteman MA, Dewitt K et al (2007) Homolactate fermentation by metabolically engineered Escherichia coli strains. Appl Environ Microbiol 73(2):456–464

    Article  CAS  PubMed  Google Scholar 

  • Zhu LW, Li XH, Zhang L et al (2013) Activation of glyoxylate pathway without the activation of its related gene in succinate-producing engineered Escherichia coli. Metab Eng 20:9–19

    Article  CAS  PubMed  Google Scholar 

  • Zhuang Q, Wang Q, Liang Q et al (2014) Synthesis of polyhydroxyalkanoates from glucose that contain medium-chain-length monomers via the reversed fatty acid β-oxidation cycle in Escherichia coli. Metab Eng 24:78–86

    Article  CAS  PubMed  Google Scholar 

  • Zong H, Zhan Y, Li X et al (2012) A new mutation breeding method for Streptomyces albulus by an atmospheric and room temperature plasma. Afr J Microbiol Res 6:3154–3158

    CAS  Google Scholar 

  • Zou X, Li S, Wang P et al (2020) Sustainable production and biomedical application of polymalic acid from renewable biomass and food processing wastes. Crit Rev Biotechnol 41(2):216–228

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Corresponding author

Correspondence to Hui Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Luo, Y. et al. (2025). Biomanufacturing of Biobased Polymers. In: Zhao, L. (eds) Research and Applications of Bio-based Degradable Materials. Springer, Singapore. https://doi.org/10.1007/978-981-95-1188-4_3

Download citation

Publish with us

Policies and ethics