Abstract
The current agricultural practices demonstrate a high dependence on agrochemicals to cope up biotic and abiotic stress, which in turn results in a negative impact on environment and increases the economic burden on farmers. Plant growth-promoting microbes (PGPMs) have emerged as an eco-friendly and economic approach to combat the multiple stress faced by plants. Aboveground and belowground interactions and colonization of PGPMs can contribute to increased plant growth as well as a heathy ecosystem. Plant growth-promoting bacteria, viz. Pseudomonas sp., Bacillus sp., Aneurinibacillu sp., plant growth-promoting fungi, viz. Trichoderma sp., and plant growth-promoting actinomycetes are the most studied PGPMs in the literature used for sustainable agriculture. The main mechanisms employed by PGPMs that can be exploited for mitigating stress in plants are plant growth promotion, availability of nutrients, production of secondary metabolites, enzymes and hormones, and modulation of plant oxidative stress and plant defense. Uses of a single PGPM or the consortia of microbes have widely been reported in the literature for ameliorating plants’ biotic and abiotic stress in greenhouse conditions. Despite the potential of PGPMs in sustainable agriculture, there are many hurdles that still need to be overcome. Research in sustainable release of microbes or their metabolites in the field condition, increasing shelf-life of the microbial inoculum, scaling up of fermentation, and supporting governmental policies can help the PGPMs complete their journey from lab to land and provide an eco-friendly and economic approach for sustainable agriculture.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abhilash PC, Dubey RK, Tripathi V, Gupta VK, Singh HB (2016) Plant growth-promoting microorganisms for environmental sustainability. Trends Biotechnol 34:847–850. https://doi.org/10.1016/J.TIBTECH.2016.05.005
Afzal M, Khan S, Iqbal S, Mirza MS, Khan QM (2013) Inoculation method affects colonization and activity of Burkholderia phytofirmans PsJN during phytoremediation of diesel-contaminated soil. Int Biodeterior Biodegradation 85:331–336. https://doi.org/10.1016/J.IBIOD.2013.08.022
Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ Sci 26:1–20. https://doi.org/10.1016/J.JKSUS.2013.05.001
Ajijah N, Fiodor A, Pandey AK, Rana A, Pranaw K (2023) Plant growth-promoting bacteria (PGPB) with biofilm-forming ability: a multifaceted agent for sustainable agriculture. Diversity 15:112. https://doi.org/10.3390/D15010112
Al-Khayri JM, Rashmi R, Toppo V, Chole PB, Banadka A, Sudheer WN, Nagella P, Shehata WF, Al-Mssallem MQ, Alessa FM, Almaghasla MI (2023) Plant secondary metabolites: the weapons for biotic stress management. Meta 13:716. https://doi.org/10.3390/METABO13060716
Ammor MS, Michaelidis C, Nychas GJE (2008) Insights into the role of quorum sensing in food spoilage. J Food Prot 71:1510–1525. https://doi.org/10.4315/0362-028X-71.7.1510
Armengol J, Berbegal M, Giménez-Jaime A, Romero S, Beltrán R, Vicent A, Ortega A, García-Jiménez J (2005) Incidence of Verticillium wilt of artichoke in Eastern Spain and role of inoculum sources on crop infection. Phytoparasitica 33:397–405. https://doi.org/10.1007/BF02981308
Asghari B, Khademian R, Sedaghati B (2020) Plant growth promoting rhizobacteria (PGPR) confer drought resistance and stimulate biosynthesis of secondary metabolites in pennyroyal (Mentha pulegium L.) under water shortage condition. Sci Hortic 263:109132. https://doi.org/10.1016/J.SCIENTA.2019.109132
Backer R, Rokem JS, Ilangumaran G, Lamont J, Praslickova D, Ricci E, Subramanian S, Smith DL (2018) Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Front Plant Sci 871:402666. https://doi.org/10.3389/FPLS.2018.01473/BIBTEX
Bailey-Serres J, Parker JE, Ainsworth EA, Oldroyd GED, Schroeder JI (2019) Genetic strategies for improving crop yields. Nature 575:109. https://doi.org/10.1038/S41586-019-1679-0
Bartwal A, Mall R, Lohani P, Guru SK, Arora S (2013) Role of secondary metabolites and Brassinosteroids in plant defense against environmental stresses. J Plant Growth Regul 32:216–232. https://doi.org/10.1007/S00344-012-9272-X
Bashan N (2016) Inoculant formulations are essential for successful inoculation with plant growth-promoting bacteria and business opportunities. Indian Phytopathol 69:739–743
Bashan Y, De -Bashan LE, Prabhu SR, Hernandez JP (2014) Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998-2013). Plant Soil 378:1–33. https://doi.org/10.1007/S11104-013-1956-X
Bhandari R, Sanz-Saez A, Leisner CP, Potnis N (2023) Xanthomonas infection and ozone stress distinctly influence the microbial community structure and interactions in the pepper phyllosphere. ISME Commun 3:24. https://doi.org/10.1038/s43705-023-00232-w
Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91:179–194. https://doi.org/10.1093/AOB/MCF118
Buswell W, Schwarzenbacher RE, Luna E, Sellwood M, Chen B, Flors V, Pétriacq P, Ton J (2018) Chemical priming of immunity without costs to plant growth. New Phytol 218:1205–1216. https://doi.org/10.1111/nph.15062
Cappelli SL, Domeignoz-Horta LA, Loaiza V, Laine AL (2022) Plant biodiversity promotes sustainable agriculture directly and via belowground effects. Trends Plant Sci 27:674–687. https://doi.org/10.1016/j.tplants.2022.02.003
Chaudhry V, Runge P, Sengupta P, Doehlemann G, Parker JE, Kemen E (2021) Shaping the leaf microbiota: plant–microbe–microbe interactions. J Exp Bot 72:36–56. https://doi.org/10.1093/jxb/eraa417
Chen Y, Fu D, Wang W, Gleason ML, Zhang R, Liang X, Sun G (2022) Diversity of Colletotrichum species causing apple bitter rot and Glomerella leaf spot in China. J Fungi 8:740. https://doi.org/10.3390/jof8070740
Costa-Gutierrez SB, Lami MJ, Santo MC, Zenoff AM, Vincent PA, Molina-Henares MA, Espinosa-Urgel M, de Cristóbal RE (2020) Plant growth promotion by Pseudomonas putida KT2440 under saline stress: role of ept A. Appl Microbiol Biotechnol 104:4577–4592. https://doi.org/10.1007/S00253-020-10516-Z
Cotton TA, Pétriacq P, Cameron DD, Meselmani MA, Schwarzenbacher R, Rolfe SA, Ton J (2019) Metabolic regulation of the maize Rhizobiome by benzoxazinoids. ISME J 13:1647–1658. https://doi.org/10.1038/s41396-019-0375-2
de Moraes ACP, Ribeiro LDS, de Camargo ER, Lacava PT (2021) The potential of nanomaterials associated with plant growth-promoting bacteria in agriculture. 3 Biotech 11:318. https://doi.org/10.1007/S13205-021-02870-0
Fahad S, Hussain S, Bano A, Saud S, Hassan S, Shan D, Khan FA, Khan F, Chen Y, Wu C, Tabassum MA, Chun MX, Afzal M, Jan A, Jan MT, Huang J (2015) Potential role of phytohormones and plant growth-promoting rhizobacteria in abiotic stresses: consequences for changing environment. Environ Sci Pollut Res 22:4907–4921. https://doi.org/10.1007/S11356-014-3754-2
Fernandez O, Theocharis A, Bordiec S, Feil R, Jacquens L, Clément C, Fontaine F, Barka EA (2012) Burkholderia phytofirmans PsJN acclimates grapevine to cold by modulating carbohydrate metabolism. Mol Plant-Microbe Interact 25:496–504. https://doi.org/10.1094/MPMI-09-11-0245
Gamalero E, Bona E, Glick BR (2022) Current techniques to study beneficial plant-microbe interactions. Microorganisms 10:1380. https://doi.org/10.3390/microorganisms10071380
Geetha N, Sunilkumar CR, Bhavya G, Nandini B, Abhijith P, Satapute P, Shetty HS, Govarthanan M, Jogaiah S (2023) Warhorses in soil bioremediation: seed biopriming with PGPF secretome to phytostimulate crop health under heavy metal stress. Environ Res 216:114498. https://doi.org/10.1016/j.envres.2022.114498
Glick WH, Miller CC, Cardinal LB (2007) Making a life in the field of organization science. J Organ Behav 28:817–835. https://doi.org/10.1002/JOB.455
Głodowska M, Husk B, Schwinghamer T, Smith D (2016) Biochar is a growth-promoting alternative to peat moss for the inoculation of corn with a pseudomonad. Agron Sustain Dev 36:1–10. https://doi.org/10.1007/S13593-016-0356-Z
Gouda S, Kerry RG, Das G, Paramithiotis S, Shin HS, Patra JK (2018) Revitalization of plant growth promoting Rhizobacteria for sustainable development in agriculture. Microbiol Res 206:131–140. https://doi.org/10.1016/J.MICRES.2017.08.016
Grene R (2002) Oxidative stress and acclimation mechanisms in plants. Arabidopsis Book 1:e0036. https://doi.org/10.1199/TAB.0036.1
Gu S, Wei Z, Shao Z, Friman VP, Cao K, Yang T, Kramer J, Wang X, Li M, Mei X, Xu Y (2020) Competition for iron drives phytopathogen control by natural rhizosphere microbiomes. Nat Microbiol 5:1002–1010. https://doi.org/10.1038/s41564-020-0719-8
Gupta N, Pradhan S, Jain A, Patel N (2021) Sustainable agriculture in India 2021. CEEW report. 122. https://www.ceew.in/sites/default/files/CEEWFOLU-Sustainable-Agriculture-in-India-2021-20Apr21.Pdf
Gupta S, Pandey S, Sharma S (2022) Decoding the plant growth promotion and antagonistic potential of bacterial endophytes from Ocimum sanctum Linn. Against root rot pathogen Fusarium oxysporum in Pisum sativum. Front. Plant Sci 13:813686. https://doi.org/10.3389/fpls.2022.813686
Hashem A, Tabassum B, Abd Allah EF (2019) Bacillus subtilis: a plant-growth promoting rhizobacterium that also impacts biotic stress. Saudi J Biol Sci 26:1291–1297. https://doi.org/10.1016/j.sjbs.2019.05.004
Hernández D, García-Pérez O, Perera S, González-Carracedo MA, Rodríguez-Pérez A, Siverio F (2023) Fungal pathogens associated with aerial symptoms of Avocado (Persea americana Mill.) in Tenerife (Canary Islands, Spain) focused on species of the family Botryosphaeriaceae. Microorganisms 11:585. https://doi.org/10.3390/microorganisms11030585
Hernández-Montiel LG, Chiquito Contreras CJ, Murillo Amador B, Vidal Hernández L, Quiñones Aguilar EE, Chiquito Contreras RG (2017) Efficiency of two inoculation methods of pseudomonas putida on growth and yield of tomato plants. J Soil Sci Plant Nutr 17:1003–1012. https://doi.org/10.4067/S0718-95162017000400012
Hussain A, Shah M, Hamayun M, Iqbal A, Qadir M, Alataway A, Dewidar AZ, Elansary HO, Lee IJ (2023) Phytohormones producing rhizobacteria alleviate heavy metals stress in soybean through multilayered response. Microbiol Res 266:127237. https://doi.org/10.1016/j.micres.2022.127237
Inbaraj MP (2021) Plant-microbe interactions in alleviating abiotic stress—a mini review. Front Agron 3:667903. https://doi.org/10.3389/fagro.2021.667903
Inostroza NG, Barra PJ, Wick LY, Mora ML, Jorquera MA (2017) Effect of rhizobacterial consortia from undisturbed arid-and agro-ecosystems on wheat growth under different conditions. Lett Appl Microbiol 64:158–163. https://doi.org/10.1111/LAM.12697
Jiao J, Ma Y, Chen S, Liu C, Song Y, Qin Y, Yuan C, Liu Y (2016) Melatonin-producing endophytic bacteria from grapevine roots promote the abiotic stress-induced production of endogenous melatonin in their hosts. Front Plant Sci 7:1387. https://doi.org/10.3389/fpls.2016.01387
Jofre MF, Mammana SB, Appiolaza ML, Silva MF, Gomez FJ, Cohen AC (2023) Melatonin production by rhizobacteria native strains: towards sustainable plant growth promotion strategies. Physiol Plant 175:e13852. https://doi.org/10.1111/PPL.13852
Kapadia C, Sayyed RZ, El Enshasy HA, Vaidya H, Sharma D, Patel N, Malek RA, Syed A, Elgorban AM, Ahmad K, Zuan ATK (2021) Halotolerant microbial consortia for sustainable mitigation of salinity stress, growth promotion, and mineral uptake in tomato plants and soil nutrient enrichment. Sustain For 13:8369. https://doi.org/10.3390/su13158369
Karimi E, Aliasgharzad N, Esfandiari E, Hassanpouraghdam MB, Neu TR, Buscot F, Reitz T, Breitkreuz C, Tarkka MT (2022) Biofilm forming rhizobacteria affect the physiological and biochemical responses of wheat to drought. AMB Express 12:93. https://doi.org/10.1186/S13568-022-01432-8
Khan N, Bano A, Rahman MA, Guo J, Kang Z, Babar MA (2019) Comparative physiological and metabolic analysis reveals a complex mechanism involved in drought tolerance in chickpea (Cicer arietinum L.) induced by PGPR and PGRs. Sci Rep 9:1–19. https://doi.org/10.1038/s41598-019-38702-8
Khan N, Bano A, Ali S, Babar MA (2020) Crosstalk amongst phytohormones from planta and PGPR under biotic and abiotic stresses. Plant Growth Regul 90:189–203. https://doi.org/10.1007/S10725-020-00571-X
Kizheva Y, Georgiev G, Donchev D, Dimitrova M, Pandova M, Rasheva I, Hristova P (2022) Cross-over pathogenic bacteria detected in infected tomatoes (Solanum lycopersicum L.) and peppers (Capsicum annuum L.) in Bulgaria. Pathogens 11:1507. https://doi.org/10.3390/pathogens11121507
Kumar A, Munder A, Aravind R, Eapen SJ, Tümmler B, Raaijmakers JM (2013) Friend or foe: genetic and functional characterization of plant endophytic Pseudomonas aeruginosa. Environ Microbiol 15:764–779. https://doi.org/10.1111/1462-2920.12031
Lee S, Chakma N, Joung S, Lee JM, Lee J (2022) QTL mapping for resistance to bacterial wilt caused by two isolates of Ralstonia solanacearum in chili pepper (Capsicum annuum l.). Plan Theory 11:1551. https://doi.org/10.3390/plants11121551
Li Q, Hou Z, Zhou D, Jia M, Lu S, Yu J (2022a) Antifungal activity and possible mechanism of Bacillus amyloliquefaciens FX2 against the postharvest apple ring rot pathogen. Phytopathology 112:2486–2494. https://doi.org/10.1094/PHYTO-02-22-0047-R
Li D, Zhao C, Li P, Liu C, Gong D, Liu S, Yuan Z, Chen Y (2022b) Macro-and micro-physical characteristics of different parts of mixed convective-stratiform clouds and differences in their responses to seeding. Adv Atmos Sci 39:2040–2055. https://doi.org/10.1007/S00376-022-2003-8
Lopes MJ, Dias-Filho MB, Castro TH, Silva GB (2018) Light and plant growth-promoting rhizobacteria effects on Brachiaria brizantha growth and phenotypic plasticity to shade. Grass Forage Sci 73:493–499. https://doi.org/10.1111/GFS.12336
Lopes MJS, Dias-Filho MB, Gurgel ESC (2021) Successful plant growth-promoting microbes: inoculation methods and abiotic factors. Front Sustain Food Sys 5:606454. https://doi.org/10.3389/FSUFS.2021.606454/BIBTEX
Ma Y, Rajkumar M, Zhang C, Freitas H (2016) Beneficial role of bacterial endophytes in heavy metal phytoremediation. J Environ Manag 174:14–25. https://doi.org/10.1016/J.JENVMAN.2016.02.047
MacLaren C, Mead A, van Balen D, Claessens L, Etana A, de Haan J, Haagsma W, Jäck O, Keller T, Labuschagne J, Myrbeck A (2022) Long-term evidence for ecological intensification as a pathway to sustainable agriculture. Nat Sustain 5:770–779. https://doi.org/10.1038/s41893-022-00911-x
Mageshwaran V, Gupta R, Singh S, Sahu PK, Singh UB, Chakdar H, Bagul SY, Paul S, Singh HV (2022) Endophytic Bacillus subtilis antagonize soil-borne fungal pathogens and suppress wilt complex disease in chickpea plants (Cicer arietinum L.). Front Microbiol 13:994847. https://doi.org/10.3389/fmicb.2022.994847
Malgioglio G, Rizzo GF, Nigro S, Lefebvre du Prey V, Herforth-Rahmé J, Catara V, Branca F (2022) Plant-microbe interaction in sustainable agriculture: the factors that may influence the efficacy of PGPM application. Sustain For 14:2253. https://doi.org/10.3390/su14042253
Masmoudi F, Tounsi S, Dunlap CA, Trigui M (2021) Halotolerant Bacillus spizizenii FMH45 promoting growth, physiological, and antioxidant parameters of tomato plants exposed to salt stress. Plant Cell Rep 40:1199–1213. https://doi.org/10.1007/s00299-021-02702-8
Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42:565–572. https://doi.org/10.1016/J.PLAPHY.2004.05.009
Mirghasempour SA, Studholme DJ, Chen W, Zhu W, Mao B (2022) Molecular and pathogenic characterization of Fusarium species associated with corm rot disease in saffron from China. J Fungi 8:515. https://doi.org/10.3390/jof8050515
Mitter B, Pfaffenbichler N, Flavell R, Compant S, Antonielli L, Petric A, Berninger T, Naveed M, Sheibani-Tezerji R, von Maltzahn G, Sessitsch A (2017) A new approach to modify plant microbiomes and traits by introducing beneficial bacteria at flowering into progeny seeds. Front Microbiol 8:230405. https://doi.org/10.3389/FMICB.2017.00011/BIBTEX
Monaghan J, Zipfel C (2012) Plant pattern recognition receptor complexes at the plasma membrane. Curr Opin Plant Biol 15:349–357. https://doi.org/10.1016/J.PBI.2012.05.006
Moore FC, Baldos U, Hertel T, Diaz D (2017) New science of climate change impacts on agriculture implies higher social cost of carbon. Nat Commun 8:1607. https://doi.org/10.1038/S41467-017-01792-X
Mullineaux P, Ball L, Escobar C, Karpinska B, Creissen G, Karpinski S (2000) Are diverse signalling pathways integrated in the regulation of Arabidopsis antioxidant defence gene expression in response to excess excitation energy? Philos Trans R Soc B Biol 355:1531–1540. https://doi.org/10.1098/RSTB.2000.0713
Munir N, Hanif M, Abideen Z, Sohail M, El-Keblawy A, Radicetti E, Mancinelli R, Haider G (2022) Mechanisms and strategies of plant microbiome interactions to mitigate abiotic stresses. Agronomy 12:2069. https://doi.org/10.3390/agronomy12092069
Muthuraja R, Muthukumar T (2022) Co-inoculation of halotolerant potassium solubilizing Bacillus licheniformis and Aspergillus violaceofuscus improves tomato growth and potassium uptake in different soil types under salinity. Chemosphere 294:133718. https://doi.org/10.1016/j.chemosphere.2022.133718
Nadarajah K, Abdul Rahman NSN (2021) Plant–microbe interaction: aboveground to belowground, from the good to the bad. Int J Mol Sci 22:10388. https://doi.org/10.3390/ijms221910388
Nayana AR, Joseph BJ, Jose A, Radhakrishnan EK (2020) Nanotechnological advances with PGPR applications. Sustainable agriculture reviews 41: nanotechnology for plant growth and development. Springer, Cham, pp 163–180. https://doi.org/10.1007/978-3-030-33996-8_9
Nchu F, Macuphe N, Rhoda I, Niekerk LA, Basson G, Keyster M, Etsassala NG (2022) Endophytic Beauveria bassiana induces oxidative stress and enhances the growth of Fusarium oxysporum-infected tomato plants. Plan Theory 11:3182. https://doi.org/10.3390/plants11223182
Palmer CL, Skinner W (2002) Mycosphaerella graminicola: latent infection, crop devastation and genomics. Mol Plant Pathol 3:63–70. https://doi.org/10.1046/j.1464-6722.2002.00100.x
Pandey G (2018) Challenges and future prospects of Agri-nanotechnology for sustainable agriculture in India. Environ Technol Innov 11:299–307. https://doi.org/10.1016/j.eti.2018.06.012
Parray JA, Jan S, Kamili AN, Qadri RA, Egamberdieva D, Ahmad P (2016) Current perspectives on plant growth-promoting Rhizobacteria. J Plant Growth Regul 35:877–902. https://doi.org/10.1007/S00344-016-9583-4
Pii Y, Penn A, Terzano R, Crecchio C, Mimmo T, Cesco S (2015) Plant-microorganism-soil interactions influence the Fe availability in the rhizosphere of cucumber plants. Plant Physiol Biochem 87:45–52. https://doi.org/10.1016/J.PLAPHY.2014.12.014
Pollak S, Cordero OX (2020) Rhizobiome shields plants from infection. Nat Microbiol 5:978–979. https://doi.org/10.1038/s41564-020-0766-1
Radhakrishnan R, Hashem A, Abd Allah EF (2017) Bacillus: a biological tool for crop improvement through bio-molecular changes in adverse environments. Front Physiol 8:293128. https://doi.org/10.3389/FPHYS.2017.00667/BIBTEX
Ramakrishna A, Ravishankar GA (2011) Influence of abiotic o loop stress signals on secondary metabolites in plants. Plant Signal Behav 6:1720–1731. https://doi.org/10.4161/PSB.6.11.17613
Reddy AS, Ali GS, Celesnik H, Day IS (2011) Coping with stresses: roles of calcium-and calcium/calmodulin-regulated gene expression. Plant Cell 23:2010–2032. https://doi.org/10.1105/TPC.111.084988
Reinecke T, Kindl H (1994) Inducible enzymes of the 9, 10-dihydro-phenanthrene pathway. Sterile orchid plants responding to fungal infection. Mol Plant Microbe Interact 7:449–454. https://doi.org/10.1094/MPMI-7-0449
Ripa FA, Cao WD, Tong S, Sun JG (2019) Assessment of plant growth promoting and abiotic stress tolerance properties of wheat endophytic fungi. Bio Med Res Int 2019:6105865. https://doi.org/10.1155/2019/6105865
Romero FM, Marina M, Pieckenstain FL (2014) The communities of tomato (Solanum lycopersicum L.) leaf endophytic bacteria, analyzed by 16S-ribosomal RNA gene pyrosequencing. FEMS Microbiol Lett 351:187–194. https://doi.org/10.1111/1574-6968.12377
Saeed Q, Xiukang W, Haider FU, Kučerik J, Mumtaz MZ, Holatko J, Naseem M, Kintl A, Ejaz M, Naveed M, Brtnicky M (2021) Rhizosphere bacteria in plant growth promotion, biocontrol, and bioremediation of contaminated sites: a comprehensive review of effects and mechanisms. Int J Mol Sci 22:10529. https://doi.org/10.3390/IJMS221910529
Saha P, Majumder P, Dutta I, Ray T, Roy SC, Das S (2006) Transgenic rice expressing Allium sativum leaf lectin with enhanced resistance against sap-sucking insect pests. Planta 223:1329–1343. https://doi.org/10.1007/S00425-005-0182-Z
Salwan R, Sharma A, Sharma V (2019) Microbes mediated plant stress tolerance in saline agricultural ecosystem. Plant Soil 442:1–22. https://doi.org/10.1007/S11104-019-04202-X
Santoyo G, Moreno-Hagelsieb G, del Carmen O-MM, Glick BR (2016) Plant growth-promoting bacterial endophytes. Microbiol Res 183:92–99. https://doi.org/10.1016/J.MICRES.2015.11.008
Saravanakumar D (2012) Rhizobacterial ACC deaminase in plant growth and stress amelioration. In: Bacteria in agrobiology: stress management. Springer, Cham, pp 187–204. https://doi.org/10.1007/978-3-642-23465-1_9
Schoebitz M, López M, Roldán A, López MD (2013) Bioencapsulation of microbial inoculants for better soil-plant fertilization. A review. Agron Sustain Dev 33:751–765. https://doi.org/10.1007/s13593-013-0142-0
Synek L, Rawat A, L'Haridon F, Weisskopf L, Saad MM, Hirt H (2021) Multiple strategies of plant colonization by beneficial endophytic Enterobacter sp. SA187. Environ Microbiol 23:6223–6240. https://doi.org/10.1111/1462-2920.15747
Ullah MA, Mahmood IA, Ali A, Nawaz Q, Sultan T (2017) Effect of inoculation methods of Biozote-max (plant growth promoting Rhizobacteria-Pgpr) on growth and yield of Rice under naturally salt-affected soil. Res Plant Biol 7:24–26. https://doi.org/10.25081/RIPB.2017.V7.3602
Van Oosten MJ, Pepe O, De Pascale S, Silletti S, Maggio A (2017) The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Chem Biol Technol Agric 4:1–12. https://doi.org/10.1186/S40538-017-0089-5
Vishwakarma K, Kumar N, Shandilya C, Mohapatra S, Bhayana S, Varma A (2020) Revisiting plant–microbe interactions and microbial consortia application for enhancing sustainable agriculture: a Review. Front Microbiol 11:560406. https://doi.org/10.3389/FMICB.2020.560406/BIBTEX
Wang L, Hu J, Li D, Reymick OO, Tan X, Tao N (2022) Isolation and control of Botrytis cinerea in postharvest green pepper fruit. Sci Hortic 302:111159. https://doi.org/10.1016/j.scienta.2022.111159
Worley JN, Russell AB, Wexler AG, Bronstein PA, Kvitko BH, Krasnoff SB, Munkvold KR, Swingle B, Gibson DM, Collmer A (2013) Pseudomonas syringae pv. Tomato DC3000 CmaL (PSPTO 4723), a DUF1330 family member, is needed to produce L-Allo-isoleucine, a precursor for the phytotoxin coronatine. J Bacteriol 195:287–296
Yuan Y, Brunel C, van Kleunen M, Li J, Jin Z (2019) Salinity-induced changes in the rhizosphere microbiome improve salt tolerance of hibiscus hamabo. Plant Soil 443:525–537. https://doi.org/10.1007/s11104-019-04258-9
Zhang H, Zhu J, Gong Z, Zhu JK (2022) Abiotic stress responses in plants. Nat Rev Genet 23:104–119. https://doi.org/10.1038/s41576-021-00413-0
Zhao Y, Mao W, Tang W, Soares MA, Li H (2023) Wild Rosa endophyte M7SB41-mediated host Plant’s powdery mildew resistance. J Fungi 9:620. https://doi.org/10.3390/jof9060620
Zhu Y, Zhu S, Zhang F, Zhao Z, Christensen MJ, Nan Z, Zhang X (2022) Transcriptomic analyses reveals molecular regulation of photosynthesis by Epichloe endophyte in Achnatherum inebrians under Blumeria graminis infection. J Fungi 8:1201. https://doi.org/10.3390/jof8111201
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this chapter
Cite this chapter
Kamat, S., Modi, S.K., Gaur, S., Kumari, M. (2024). Plant–Microbe Interaction: Stress Management for Sustainable Agriculture. In: Singh Chauhan, P., Tewari, S.K., Misra, S. (eds) Plant-Microbe Interaction and Stress Management. Rhizosphere Biology. Springer, Singapore. https://doi.org/10.1007/978-981-97-4239-4_1
Download citation
DOI: https://doi.org/10.1007/978-981-97-4239-4_1
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-97-4238-7
Online ISBN: 978-981-97-4239-4
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)