Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

Microbes mediated plant stress tolerance in saline agricultural ecosystem

  • Review Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background

The accumulation of salts leads to assimilation of dissolved salts in the soil which results in soil salinity. Salinity affects the crop yield by reducing the levels of minerals availability, inducing ions mediated toxicity, osmotic stress, growth regulators level and reactive oxygen species production which ultimately lead to the inhibition of seed germination, seedling growth, onset of flowering, and fruit set.

Scope

The beneficial microorganisms are attractive candidate to increase the agricultural productivity in saline ecosystem. The plant beneficial microbiome offers significant prospective to magnify the plant resilience and crop yields in saline agriculture systems either by modulating the uptake of ions, regulation of plant growth regulators and by the production of exopolysaccharides and alleviate the salinity stress.

Conclusions

Salt tolerance is a complex manifestation of different physiological and biochemical events. The microbes mediated mechanisms underlying regulation of salinity responses involved in ion transport and homeostasis, osmolytes regulation, hormonal balance, antioxidant machinery and other stress signaling are critical in developing plant adaptation strategies to salinity stress. Therefore, plant beneficial microbes are attractive choice in alleviating plant stresses saline soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abeles FB, Morgan PW, Saltveit ME Jr (1992) Ethylene in plant biology, vol 1992, 2nd edn. Academic Press, New York

    Google Scholar 

  • Acuña JJ, Campos M, De M, Mora L, Jaisi DP, Jorquera MA (2019) ACCD-producing rhizobacteria from an Andean Altiplano native plant (Parastrephia quadrangularis) and their potential to alleviate salt stress in wheat seedlings. Appl Soil Ecol 136:184–190

    Article  Google Scholar 

  • Afzal A, Bano A (2008) Rhizobium and phosphate solubilizing bacteria improve the yield and phosphorus uptake in wheat (Triticum aestivum). Int J Agric Biol 10:85–88

    CAS  Google Scholar 

  • Agarwal S, Grover A (2006) Molecular biology, biotechnology and genomics of flooding-associated low O2 stress response in plants. Crit Rev Plant Sci 25:1–21

    Article  CAS  Google Scholar 

  • Aliasgharzad N, Neyshabouri MR, Salimi G (2006) Effects of arbuscular mycorrhizal fungi and Bradyrhizobium japonicum on drought stress of soybean. Biologia 19:324–328

  • Al-Karaki GN, Ammad R, Rusan M (2001) Response of two tomato cultivars differing in salt tolerance to inoculation with mycorrhizal fungi under salt stress. Mycorrhiza 11:43–47

    Article  CAS  Google Scholar 

  • Amato M, Ladd JN (1994) Application of the ninhydrin-reactive N assay for microbial biomass in acid soils. Soilless Biol Biochem 26:1109–1115

    Article  CAS  Google Scholar 

  • Anderson JPE, Domsch KH (1980) Quantities of plant nutrients in the microbial biomass of selected soils. Soilless Science 130:211–216

    Article  CAS  Google Scholar 

  • Arias S, Ferrer MR, del Moral A, Quesada E, Bejar V (2003) Mauran, an exopolysaccharyde produced by the halophilic bacterium Halomonas maura, with a novel composition and interesting properties for biotechnology. Extremophiles 7:319–324

    Article  CAS  PubMed  Google Scholar 

  • Aroca R, Vernieri P, Ruiz-Lozano JM (2008) Mycorrhizal and non- mycorrhizal Lactuca sativa plants exhibit contrasting responses to exogenous ABA during drought stress and recovery. J Exp Bot 59(8):2029–2041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arora M, Kaushik A, Rani N, Kaushik CP (2010) Effect of cyanobacterial exopolysaccharides on salt stress alleviation and seed germination. J Environ Biol 31(5):701–704

    CAS  PubMed  Google Scholar 

  • Arora NK, Balestrini R, Mehnaz S (2016) Bioformulations: For sustainable agriculture. For Sustainable Agriculture, Bioformulations, pp 1–299

    Google Scholar 

  • Arshad M, Saleem M (2007) Hussain S. Perspectives of bacterial ACC deaminase in phytoremediation Trends Biotechnol 8:356–362

    Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59(2):206–216

    Article  CAS  Google Scholar 

  • Ashraf M, Hasnain S, Berge O, Mahmood T (2004) Inoculating wheat seedlings with exopolysaccharide-producing bacteria restricts sodium uptake and stimulates plant growth under salt stress. Biol Fertil Soils 40:157–162

    CAS  Google Scholar 

  • Aubert S, Assard N, Boutin JP, Frenot Y, Dorne AJ (1999) Carbon metabolism in the subantarctic Kerguelen cabbage Pringlea antiscorbutica R. Br.: environmental controls over carbohydrates and proline contents and relation to phenology. Plant Cell Environ 22:243–254

    Article  CAS  Google Scholar 

  • Bailey-Serres J, Voesenek LA (2008) Flooding stress: acclimations and genetic diversity. Annu Rev Plant Biol 59:313–339

    Article  CAS  PubMed  Google Scholar 

  • Baltruschat H, Fodor J, Harrach BD, Niemczyk E, Barna B, Gullner G, Janeczko A, Kogel KH, Schäfer P, Schwarczinger I, Zuccaro A (2008) Salt tolerance of barley induced by the root endophyte Piriformospora indica is associated with a strong increase in antioxidants. New Phytol 180:501–510

    Article  CAS  PubMed  Google Scholar 

  • Bano A, Fatima M (2009) Salt tolerance in Zea mays (L.) following inoculation with Rhizobium and Pseudomonas. Biol Fert Soils 45:405–413

    Article  Google Scholar 

  • Barassi CA, Ayrault G, Creus CM, Sueldo RJ, Sobero MT (2006) Seed inoulation with Azospirillum mitigates NaCl effects on lettuce. Sci Hortic (Amsterdam) 109:8–14

    Article  CAS  Google Scholar 

  • Barra P, Inostroza N, Acuña J, Mora ML, Crowley DE, Jorquera MA (2016) Formulation of bacterial consortia from avocado (Persea americana Mill.) and their effect on growth, biomass and superoxide dismutase activity of wheat seedlings under salt stress. Appl Soil Ecol 102:80–91

    Article  Google Scholar 

  • Bashan Y, Moreno M, Troyo E (2000) Growth promotion of the seawater-irrigated oilseed halophyte Salicornia bigelovii inoculated with mangrove rhizosphere bacteria and halotolerant Azospirillum spp. Biol Fertil Soils 32:265–272

    Article  CAS  Google Scholar 

  • Belimov AA, Dodd IC, Safronova VI, Dumova VA, Shaposhnikov AI, Ladatko AG et al (2014) Abscisic acid metabolizing rhizobacteria decrease ABA concentrations in planta and alter plant growth. Plant Physiol Biochem 74:84–91

    Article  CAS  PubMed  Google Scholar 

  • Ben Khaled L, Gomez AM, Ourraqi EM, Oihabi A (2003) Physio- logical and biochemical responses to salt stress of mycorrhized and/or nodulated clover seedlings (Trifolium alexandrinum L.). Agronomie 23:571–580

    Article  CAS  Google Scholar 

  • Bennett JA, Maherali H, Reinhart KO, Lekberg Y, Hart MM, Klironomos J (2007) Plant-soil feedbacksand mycorrhizal type influence temperate forest population dynamics. Science 355:181–184

    Article  CAS  Google Scholar 

  • Beyrle H (1995) The role of phytohormones in the function and biology of mycorrhizas. In: Varma A, Hock B (eds) Mycorhiza: structure, function, molecular biology and biotechnology. Springer, Berlin, pp 365–391

  • Bhardwaj D, Ansari MW, Sahoo RK, Tuteja N (2014) Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microb Cell Fact 13(1):1–10

    Article  Google Scholar 

  • Bianco C, Defez R (2009) Medicago truncatula improves salt tolerance when nodulated by an indole-3-acetic acid-overproducing Sinorhizobium meliloti strain. J Exp Bot 60:3097–3107

    Article  PubMed  Google Scholar 

  • Blaha D, Prigent-Combaret C, Mirza MS, Moënne-Loccoz Y (2006) Phylogeny of the 1-aminocyclopropane-1-carboxylic acid deaminase- encoding gene acdS in phytobeneficial and pathogenic Proteobacteria and relation with strain biogeography. FEMS Microbiol Ecol 56:455–470

    Article  CAS  PubMed  Google Scholar 

  • Bogeat-Triboulot MB, Brosche M, Renaut J, Jouve L, Le Thiec D, Fayyaz P, Vinocur B, Witters E, Laukens K, Teichmann T, Altman A, Hausman JF, Polle A, Kanga - Sjarvi J, Dreyer E (2007) Gradual soil water depletion results in reversible changes of gene expression, protein profiles, ecophysiology, and growth performance in Populus euphratica, a poplar growing in arid regions. Plant Physiol 143:876–892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Böhm H, Albert I, Fan L, Reinhard A, Nürnberger T (2014) Immune receptor complexes at the plant cell surface. Curr Opin Plant Biol 20:47–54

    Article  CAS  PubMed  Google Scholar 

  • Bomfeti CA et al (2011) Exopolysaccharides produced by the symbiotic nitrogen-fixing bacteria of leguminosae. Rev Bras Ciênc Solo 35(3):657–671

    Article  CAS  Google Scholar 

  • Bouchotroch S, Quesada E, del Moral A, Llamas I, Bejar V (2001) Halomonas maura sp. nov. a novel moderately halophilic, exopolysaccharide-producing bacterium. Int J Syst Evol Microbiol 51:1625–1632

    Article  CAS  PubMed  Google Scholar 

  • Brady NC, Weil RR (2002) The nature and properties of soils. Prentice Hall, New Jersey

    Google Scholar 

  • Brewer PB, Koltai H, Beveridge CA (2013) Diverse roles of strigolactones in plant development. Mol Plant 6:18–28

  • Bu Q, Lv T, Shen H et al (2014) Regulation of drought tolerance by the F-box protein MAX2 in Arabidopsis. Plant Physiol 164(1):424–439

  • Bulgarelli D (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838

    Article  CAS  PubMed  Google Scholar 

  • Busby PE, Soman C, Wagner MR, Friesen ML, Kremer J et al (2017) Research priorities for harnessing plant microbiomes in sustainable agriculture. PLoS Biol 15(3):1–14

    Article  CAS  Google Scholar 

  • Casanovas EM, Barassi CA, Sueldo RJ (2002) Azospirillum inoculation mitigates water stress effects in maize seedlings. Cereal Res Commun 30:343–350

    Google Scholar 

  • Chaparro JM, Badri DV, Bakker MG, Sugiyama A, Manter DK, Vivanco JM (2013) Root exudation of phytochemicals in Arabidopsis follows specific patterns that are developmentally programmed and correlate with soil microbial functions. PLOS ONE 8(2):1–10

    Article  CAS  Google Scholar 

  • Chatterjee P, Kanagendran A, Samaddar S et al (2019) Inoculation of Brevibacterium linens RS16 in Oryza sativa genotypes enhanced salinity resistance: Impacts on photosynthetic traits and foliar volatile emissions. Sci Total Environ 645:721–732

    Article  CAS  Google Scholar 

  • Chaves MM, Oliveira MM (2004) Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. J Exp Bot 55:2365–2384

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Li J, Wang S, Huttermann A, Altman A (2001) Salt, nutrient uptake and transport, and ABA of Populus euphratica; a hybrid in response to increasing soil NaCl. Trees 15:186–194

    Article  CAS  Google Scholar 

  • Chen L, Liu Y, Wu G, Njeri KV, Shen Q, Zhang N, Zhang R (2016) Induced maize salt tolerance by rhizosphere inoculation of Bacillus amyloliquefaciens SQR9. Physiol Plant 158(1):34–44

    Article  CAS  PubMed  Google Scholar 

  • Cheng X, Carolien R, Harro B (2013) The interaction between strigolactones and other plant hormones in the regulation of plant development. Front Plant Sci 4(June):1–16

    Google Scholar 

  • Chhabra R (1996) Soil salinity and water quality. In: CRC Press Rotterdam. Balkema, The Netherlands

    Google Scholar 

  • Chinnusamy V, Jagendorf A, Zhu JK (2005) Understanding and improving salt tolerance in plants. Crop Sci 45:437–448

    Article  CAS  Google Scholar 

  • Cho K, Toler H, Lee J, Ownley B, Stutz JC, Moore JL, Auge RM (2006) Mycorrhizal symbiosis and response of sorghum plants to combined drought and salinity stresses. J Plant Physiol 163:517–528

    Article  CAS  PubMed  Google Scholar 

  • Corradi N, Bonfante P (2012) The arbuscular mycorrhizal symbiosis: origin and evolution of a beneficial plant infection. PLoS Pathog 8:e1002600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cramer GR, Urano K, Delrot S, Pezzotti M, Shinozaki K (2011) Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol 11:163

    Article  PubMed  PubMed Central  Google Scholar 

  • Creus CM, Graziano M, Casanovas EM, Pereyra MA, Simontacchi M, Puntarulo S, Barassi CA, Lamattina L (2005) Nitric oxide is involved in the Azospirillum brasilense-induced lateral root formation in tomato. Planta 221:297–303

    Article  CAS  PubMed  Google Scholar 

  • Csonka LN (1989) Physiological and genetic responses of bacteria to osmotic stress. Microbiol Rev 53:121–147

  • Cui L et al (2018) The Drnf1 gene from the drought-adapted cyanobacterium Nostoc Flagelliforme improved salt tolerance in transgenic Synechocystis and Arabidopsis. Plant Genes 9(9)

  • Danhorn T, Fuqua C (2007) Biofilm formation by plant-associated bacteria. Annu Rev Microbiol 61:401–422

    Article  CAS  PubMed  Google Scholar 

  • de Lourdes Oliveira Otoch M, Sobreira ACM, de Aragão MEF, Orellano EG, da Guia Silva Lima M, de Melo DF (2001) Salt modulation of vacuolar H+-ATPase and H+-Pyrophosphatase activities in Vigna unguiculata. J Plant Physiol 158(5):545–551

    Article  Google Scholar 

  • Dixit R, Agrawal L, Gupta S, Kumar M, Yadav S (2016) Southern blight disease of tomato control by 1-aminocyclopropane-1-carboxylate (ACC) deaminase producing Paenibacillus lentimorbus, 2324. Plant Signal Behav 11(2):e1113363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dodd IC, Pérez-Alfocea F (2012) Microbial amelioration of crop salinity stress. J Exp Bot 636:3415–3428

    Article  CAS  Google Scholar 

  • Dombrowski JE (2003) Salt stress activation of wound-related genes in tomato plants. Plant Physiol 132:2098–2107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Downie JA (2010) The roles of extracellular proteins, polysaccharides and signals in the interactions of rhizobia with legume roots. FEMS Microbiol Rev 34(2):150–170

    Article  CAS  PubMed  Google Scholar 

  • Duan J, Müller KM, Charles TC, Vesely S, Glick BR (2009) 1-aminocyclopropane-1-carboxylate (ACC) deaminase genes in Rhizobia from Southern Saskatchewan 423–436. Microb Ecol 57(3):423–436

    Article  CAS  PubMed  Google Scholar 

  • Egamberdieva D (2013) The role of phytohormone producing bacteria in alleviating salt stress in crop plants. In: Miransari, M. (Ed.), biotechnological techniques of stress tolerance in plants. Stadium Press LLC, USA, pp. 21–39.

  • Egamberdieva D, Kucharova Z (2009) Selection for root colonizing bacteria stimulating wheat growth in saline soils. Biol Fert Soil 45:563–571

    Article  Google Scholar 

  • Egamberdieva, Dilfuza, Ben Lugtenberg (2014) Use of Plant growth-promoting rhizobacteria to alleviate salinity stress in plants. Use ofMicrobes for the Alleviation of Soil Stresses, Publisher: Springer New York, Editors: Mohammad Miransari, pp.73-96

  • Egamberdieva D, Berg G, Lindström K, Räsänen LA (2013a) Alleviation of salt stress of symbiotic Galega officinalis L. (Goat’s Rue) by co-inoculation of rhizobium with root colonising Pseudomonas. Plant Soil 369(1–2):453–465

    Article  CAS  Google Scholar 

  • Egamberdieva D, Jabborova D, Mamadalieva N (2013b) Salt tolerant Pseudomonas extremoriental is able to stimulate growth of Silybum marianum under salt stress condition. Med Aromat Plant Sci Biotechnol 7(1):7–10

    Google Scholar 

  • Egamberdieva, D & Lugtenberg, B. (2014) Use of Plant Growth-Promoting Rhizobacteria to Alleviate Salin

  • Egamberdiyeva D, Gafurova L, Islam KR (2007) Salinity effects on irrigated soil chemical and biological properties in the Syr Darya basin of Uzbekistan. In: Lal R, Sulaimanov M, Stewart B, Hansen D, Doraiswamy P (eds) Climate change and terrestrial C sequestration in central Asia. Taylor-Francis, New York, pp 147–162

    Chapter  Google Scholar 

  • Escalante-Perez M, Lautner S, Nehls U, Selle A, Teuber M, Schnitzler JP, Teichmann T, Fayyaz P, Hartung W, Polle A, Fromm J, Hedrich R, Ache P (2009) Salt stress affects xylem differentiation of grey poplar (Populus x canescens). Planta 229:299–309

    Article  CAS  PubMed  Google Scholar 

  • Fallik E, Sarig S, Okon Y (1994) Morphology and physiology of plant roots associated with Azospirillum. In: Okon Y (ed) Azospirillum/plant associations. CRC Press, Boca Raton, pp 77–85

    Google Scholar 

  • Feng G, Zhang FS, Li XL, Tian CY, Tang C, Renegal Z (2002) Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of leaf P-concentration of soluble sugars in roots. Mycorrhiza 12:185–190

    Article  CAS  PubMed  Google Scholar 

  • Finkel OM, Castrillo G, Herrera Paredes S, Salas González I, Dangl JL (2017) Understanding and exploiting plant beneficial microbes. Curr Opin Plant Biol 38:155–163

    Article  PubMed  PubMed Central  Google Scholar 

  • Flemming HC, Wingender J (2001) Relevance of microbial extracellular polymeric substances (EPSs)-Part I: structural and ecological aspects. Water Sci Technol 43:1–8

    Article  CAS  PubMed  Google Scholar 

  • Flowers TJ, Galal HK, Bromham L (2010) Evolution of halophytes: multiple origins of salt tolerance in land plants. Funct Plant Biol 37:604–612

    Article  Google Scholar 

  • Friesen ML, Porter SS, Stark SC, von Wettberg EJ, Sachs JL, Martinez-Romero E (2011) Microbially mediated plant functional traits. Annu Rev Ecol Evol Syst 42:23–46

    Article  Google Scholar 

  • Gamalero E, Glick B (2015) Bacterial Modulation Of Plant Ethylene. Levels Plant Physiol 169:13–22

    Article  CAS  PubMed  Google Scholar 

  • Gamalero E, Glick BR (2012) Ethylene and abiotic stress tolerance in plants. In: Ahmad P, Prasad MNV (eds) Environmental adaptations and stress tolerance of plants in the era of climate change. Springer-Verlag, Berlin, pp 395–412

    Chapter  Google Scholar 

  • Gamalero E, Berta G, Massa N, Glick BR, Lingua G (2008) Synergistic interactions between the ACC deaminase-producing bacterium Pseudomonas putida UW4 and the AM fungus Gigaspora rosea positively affect cucumber plant growth. FEMS Microbiol Ecol 64:459–467

    Article  CAS  PubMed  Google Scholar 

  • Gamalero E, Berta G, Glick BR (2009) The use of microorganisms to facilitate the growth of plants in saline soils. In: Khan MS, Zaidi A, Musarrat J (eds) Microbial Strategies for Crop Improvement. Springer- Verlag, Berlin, pp 1–22

    Google Scholar 

  • German MA, Burdman S, Okon Y, Kigel J (2000) Effects of Azospirillum brasilense on root morphology of common bean (Phaseolus vulgaris L.) under different water regimes. Biol Fertil Soil 32:259–264

    Article  Google Scholar 

  • Geurts R, Lillo A, Bisseling T (2012) Exploiting an ancient signalling machinery to enjoy a nitrogen fixing symbiosis. Curr Opin Plant Biol 15:438–443

    Article  PubMed  Google Scholar 

  • Giri B, Mukerji KG (2004) Mycorrhizal inoculant alleviate salt stress in Sesbania aegyptiaca and Sesbania grandiflora under field conditions: evidence for reduced sodium and improved magnesium uptake. Mycorrhiza 14:307–312

    Article  PubMed  Google Scholar 

  • Glick BR (2013) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microb Res 169:30–39

    Article  CAS  Google Scholar 

  • Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169:30–39

    Article  CAS  PubMed  Google Scholar 

  • Glick BR, Jacobson CB, Schwarze MMK, Pasternak JJ (1994a) Does the enzyme 1-aminocyclopropane-1-carboxy- late deaminase play a role in plant growth promotion by Pseudomonas putida GR12–2? In: Ryder MH, Stephens PM, Bowen GD (eds) Improving plant productivity with rhizosphere bacteria. CSIRO, Adelaide, pp 150–152

    Google Scholar 

  • Glick BR, Jacobson CB, Schwarze MMK, Pasternak JJ (1994b) 1-Aminocyclopropane-1-carboxylic acid deaminase mutants of the plant growth promoting rhizobacterium Pseudomonas putida GR12–2 do not stimulate canola root elongation. Can J Microbiol 40:911–915

    Article  CAS  Google Scholar 

  • Glick BR, Karaturovı’c DM, Newell PC (1995) A novel procedure for rapid isolation of plant growth-promoting pseudomonads. Can J Microbiol 41:533–536

    Article  CAS  Google Scholar 

  • Glick BR, Liu C, Ghosh S, Dumbrof EB (1997) Early development of canola seedlings in the presence of plant growth promoting rhzobacterium Pseudomonas putida GR 12–2. Soil Biol Biochem 29:1233–1239

    Article  CAS  Google Scholar 

  • Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theoret Biol 190:63–68

  • Glick BR, Todorovic B, Czarny J, Cheng Z, Duan J, McConkey B (2007) Promotion of plant growth by bacterial ACC deaminase. Crit Rev. Plant Sci 26:227–242

    Article  CAS  Google Scholar 

  • Golldack D, Li C, Mohan H, Probst N (2013) Gibberellins and abscisic acid signal crosstalk: living and developing under unfavorable conditions. Plant Cell Rep 32(7):1007–1016

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez JE, York GM, Walker GC (1996) Rhizobium meliloti exopolysaccharides: synthesis and symbiotic function. Gene 179:141–146

    Article  CAS  PubMed  Google Scholar 

  • Goodlass G, Smith KA (1979) Effect of ethylene on root extension and nodulation of pea (Pisum sativum L.) and white clover (Trifolium repens L.). Plant Soil 51:387–395

    Article  CAS  Google Scholar 

  • Goswamia D, Dhandhukiab P, Patela P, Thakker JN (2014) Screening of PGPR from saline desert of Kutch: growth promotion in Arachis hypogea by Bacillus licheniformis A2. Microbiol Res 169:66–75

    Article  CAS  Google Scholar 

  • Gros R, Poly F, Monrozier LJ, Faivre P (2003) Plant and soil microbial community responses to solid waste leachates diffusion on grassland. Plant and Soilless 255:445–455

    Article  CAS  Google Scholar 

  • Guinel FC, Geil RD (2002) A model for the development of the rhizobial and arbuscular mycorrhizal symbioses in legumes and its use to understand the roles of ethylene in the establishment of these two symbioses. Can J Bot 80:695–720

    Article  CAS  Google Scholar 

  • Guinel FC, Sloetjes LL (2000) Ethylene is involved in the nodulation phenotype of Pisum sativum R50 (sym 16) a pleiotropic mutant that nodulated poorly and has pale green leaves. J Exp Bot 51:885–894

    CAS  PubMed  Google Scholar 

  • Gupta B, Huang B (2014) Mechanism of salinity tolerance in plants physiological, biochemical and molecular characterization. Inter J Genom. Article ID 701596:18

    Google Scholar 

  • Ha CV, Le DT, Nishiyama R, Watanabe Y, Sulieman S, Tran UT, Mochida K, Van Dong N, Yamaguchi-Shinozaki K, Shinozaki K, Tran L-SP (2014) The auxin response factor transcription fac- tor family in soybean: genome-wide identification and expression analyses during development and water stress. DNA Res 20:511–524

    Google Scholar 

  • Hall JA, Peirson D, Ghosh S, Glick BR (1996) Root elongation in various agronomic crops by the plant growth promoting rhizobacterium Pseudomonas putida GR12–2. Isr J Plant Sci 44:37–42

    Article  Google Scholar 

  • Han QQ, Lü XP, Bai JP, Qiao Y, Paré PW, Wang SM et al (2014) Beneficial soil bacterium Bacillus subtilis (GB03) augments salt tolerance of white clover. Front Plant Sci 5:525

    PubMed  PubMed Central  Google Scholar 

  • Harman GE, Howell CR, Viterbo A, Chel I, Lorito M (2004) Trichoderma species-opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56

    Article  CAS  PubMed  Google Scholar 

  • Hartung W, Witt J (1968) On the influence of soil moisture on the auxin content of Anastatica hierochuntica and Helianthus anuus. Flora 157:603–614

    Google Scholar 

  • Herrera-Medina MJ, Steinkellner S, Vierheilig H, Ocampo Bote JA, Garcia Garrido JM (2007) Abscisic acid determines arbuscule development and functionality in the tomato arbuscular mycorrhiza. New Phyt 175:554–564

    Article  CAS  Google Scholar 

  • Heydarian Z et al (2016) Inoculation of soil with plant growth promoting bacteria producing deaminase or expression of the corresponding AcdS gene in transgenic plants increases salinity tolerance in Camelina Sativa. Front Microbiol 7:1966

    Article  PubMed  PubMed Central  Google Scholar 

  • Hirel B, Le Gouis J, Ney B, Gallais A (2007) The challenge of improving nitrogenuse efficiency in crop plants: towards a more central role for genetic variability andquantitative genetics within integrated approaches. J Exp Bot 58:2369–2387

    Article  CAS  PubMed  Google Scholar 

  • Hirt H (2009) Plant Stress Biology: From Genomics to Systems Biology. Wiley, West Sussex

    Book  Google Scholar 

  • Hong Y, Glick BR, Pasternak JJ (1991) Plant-microbial interaction under gnotobiotic conditions: A scanning electron microscope study. Curr Microbiol 23:111–114

    Article  Google Scholar 

  • Honma M (1985) Chemically reactive sulfhydryl groups of 1-aminocyclopropane-1- carboxylate deaminase. Agric Biol Chem 49:567–571

    CAS  Google Scholar 

  • Honma M, Shimomura T (1978) Metabolism of 1-aminocyclopropane-1- carboxylic acid. Agric Biol Chem 42:1825–1831

    CAS  Google Scholar 

  • Hontzeas N et al (2004) Expression and characterization of 1- aminocyclopropane-1-carboxylate deaminase from the rhizobacterium Pseudomonas putida UW4: a key enzyme in bacterial plant growth promotion. Biochim Biophys Acta 1703:11–19

    Article  CAS  PubMed  Google Scholar 

  • Jacobson CB et al (1994) Partial purification and characterization of 1-aminocyclopropane-1-carboxylate deaminase from the plant growth promoting rhizobacterium Pseudomonas putida GR12–2. Can J Microbiol 40:1019–1025

    Article  CAS  Google Scholar 

  • Jain M, Khurana J (2009) Transcript profiling reveals diverse roles of auxin-responsive genes during reproductive development and abiotic stress in rice. FEBS J 276:3148–3162

    Article  PubMed  Google Scholar 

  • Janczarek M, Skorupska A (2011) Modulation of Rosr expression and exopolysaccharide production in Rhizobium leguminosarum bv. trifolii by phosphate and clover root exudates. Int J Mol Sci 12(6):4132–4155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jha B, Gontia I, Hartmann A (2012) The roots of the halophyte Salicornia brachiata are a source of new halotolerant diazotrophic bacteria with plant growth-promoting potential. Plant Soil 356:265–277

    Article  CAS  Google Scholar 

  • Jia YJ et al (1999) Synthesis and degradation of 1-aminocyclopropane-1-carboxylic acid by Penicillium citrinum. Biosci Biotechnol Biochem 63:542–549

    Article  CAS  PubMed  Google Scholar 

  • Jiang F, Chen L, Belimov AA, Shaposhnikov AI, Gong F, Meng X et al (2012) Multiple impacts of the plant growth-promoting rhizobacterium Variovorax paradoxus 5C-2 on nutrient and ABA relations of Pisum sativum. J Exp Bot 63:6421–6430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jindal V, Atwal A, Sekhon BS, Rattan S, Singh R (1993) Effect of vesicular-arbuscular mycorrhiza on metabolism of moong plants under salinity. Plant Physiol Biochem 31:475–481

    CAS  Google Scholar 

  • Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  CAS  PubMed  Google Scholar 

  • Jones DL, Nguyen C (2009) Carbon flow in the rhizosphere: carbon trading at the soil- root surface Plant Soil.

  • Junghans U, Polle A, Duchting P, Weiler E, Kuhlman B, Gruber F, Teichmann T (2006) Effects of salt stress on the anatomy and auxin physiology of poplar xylem. Plant Cell Environ 29:1519–1531

    Article  CAS  PubMed  Google Scholar 

  • Kaldewey H, Ginkel U, Wawczyniak G (1974) Auxin transport and water stress in pea (Pisum sativum L.). Berichte der Deutschen Botanischen Gesellschaft 87:563–576

    CAS  Google Scholar 

  • Kang SM, Khana AL, Waqas M, You YH, Kimd JH, Kimc JG, Hamayune M, Lee IJ (2014) Plant growth-promoting rhizobacteria reduce adverse effects of salinity and osmotic stress by regulating phytohormones and antioxidants in Cucumiss ativus. J Plant Interact 9(1):673–682

    Article  CAS  Google Scholar 

  • Kasim WA, Gaafar RM, Abou-Ali RM, Omar MN, Hewait HM (2016) Effect of biofilm forming plant growth promoting rhizobacteria on salinity tolerance in barley. Ann Agric Sci 61(2):217–227

    Article  Google Scholar 

  • Kasotia A, Varma A, Tuteja N, Choudhary DK (2016) Amelioration of soybean plant from saline-induced condition by exopolysaccharide producing Pseudomonas -mediated expression of high affinity K+ − transporter (HKT1) gene. Curr Sci 111(12):1961–1967

    Article  CAS  Google Scholar 

  • Kende H (1993) Ethylene biosynthesis. Ann Rev Plant Physiol Plant Mol Biol 44:283–307

    Article  CAS  Google Scholar 

  • Killham K (1994) Soil ecology (pp. 152–154)UK: Cambridge University Press152–154.

  • Kimmel SA, Roberts RF (1998) Development of a growth medium suitable for exopolysaccharide production by Lactobacillus delbrueckii ssp. bulgaricus RR. Int J Food Microbiol 40:87–92

    Article  CAS  PubMed  Google Scholar 

  • Koltai H (2013) Strigolactones activate different hormonal pathways for regulation of root development in response to phosphate growth conditions. Ann Bot 14:409–415

  • Koltai H (2015) Cellular events of strigolactone signalling and their crosstalk with auxin in roots. J Exp Bot 66:4855–4861

  • Kong CC, Gang C, Run R, Li Z, Hong Z, Ji X, Wang P (2017) Hydrogen peroxide and strigolactones signaling are involved in alleviation of salt stress induced by arbuscular mycorrhizal fungus in Sesbania cannabina seedlings. J Plant Growth Regul 36:734

    Article  CAS  Google Scholar 

  • Kumar MA, Anandapandian KT, Parthiban K (2011) Production and characterization of exopolysaccharides (EPS) from biofilm forming marine bacterium. Braz Arch Biol Technol 54:259–265

    Article  CAS  Google Scholar 

  • Kumari S, Anukool V, Shekhar Jain VA, Choudhary DK (2015) Bacterial-mediated induction of systemic tolerance to salinity with expression of stress alleviating enzymes in soybean. J Plant Growth Regul 34:558–573

    Article  CAS  Google Scholar 

  • Lakshmanan V, Ray P, Craven KD (2017) Plant Stress Tolerance:1631

  • Lastochkina O, Pusenkova L, Yuldashev R, Babaev M, Garipova S, Blagova D, Khairullin R, Aliniaeifard S (2017) Effects of Bacillus subtilis on some physiological and biochemical parameters of Triticum aestivum L. (wheat) under salinity. Plant Physiol Biochem 121:80–88

    Article  CAS  PubMed  Google Scholar 

  • Lata R, Chowdhury S, Gond SK, White JF Jr (2018) Induction of abiotic stress tolerance in plants by endophytic microbes. Lett Appl Microbiol 66(4):268–276

  • Lee KH, LaRue TA (1992) Exogenous ethylene inhibits nodulation of Pisum sativum L. cv Sparkle. Plant Physiol 100:1759–1763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, McConkey BJ, Cheng Z, Guo S (2013) Glick BR (2013) identification of plant growth-promoting bacteria-responsive proteins in cucumber roots under hypoxic stress using a proteomic approach. J Proteome 84:119–131

  • Li Q, Saleh-Lakha S, Glick BR (2005) The effect of native and ACC deaminase-containing Azospirillum brasilense Cd1843 on the rooting of carnation cuttings. Can J Microbiol 51:511–514

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Tang L, Gao H, Zhang M, Guo C (2019) Enhancement of alfalfa yield and quality by plant growth-promoting rhizobacteria under saline-alkali conditions. J Sci Food Agric 99(1):281–289

    Article  CAS  PubMed  Google Scholar 

  • Llamas I, Manuel J, Quesada E, Moral A, Martı F (2005) The moderately halophilic bacterium Halomonas maura is a free-living diazotroph. EMS Microbiol Lett 244:69–74

    Article  CAS  Google Scholar 

  • López-ráez JA, Shirasu K, Foo E (2017) Strigolactones in plant interactions with bene fi cial and detrimental organisms : the yin and Yang. Trends Plant Sci 22(6):527–537

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  CAS  PubMed  Google Scholar 

  • Lynch J (1990) The rhizosphere. Wiley, London, p 458

  • Ma W, Sebestianova SB, Sebestian J, Burd GI, Guinel FC, Glick BR (2003) Prevalence of 1-aminocyclopropane-1-carboxylate deaminase in Rhizobium spp. Antonie Van Leeuwenhoek 83:285–291

    Article  CAS  PubMed  Google Scholar 

  • Manchanda G, Garg N (2008) Salinity and its effects on the functional biology of legumes. Acta Physiol Plant 30:595–618

    Article  CAS  Google Scholar 

  • Mantri N, Patade V, Penna S, Ford R, Pang E (2012) Abiotic stress responses in plants: present and future. In: Ahmad P, Prasad MNV (eds) Abiotic stress responses in plants: metabolism, productivity and sustainability. Springer, New York, pp 1–19

    Google Scholar 

  • Marquez-Garcia B, Njo M, Beeckman T, Goormachtig S, Foyer CH (2014) A new role for glutathione in the regulation of root architecture linked to strigolactones. Plant Cell Environ 37(2):488–498

    Article  CAS  PubMed  Google Scholar 

  • Martınez-Canovas MJ, Quesada E, Martınez-Checa F, Bejar V (2004) A taxonomic study to establish the relationship between exopolysaccharide-producing bacterial strains living in diverse hypersaline habitats. Curr Microbiol 48:35–348

    Article  CAS  Google Scholar 

  • Matysik J, Ali BB, Mohanty P (2002) Molecular mechanism of quenching of reactive oxygen species by proline under water stress in plants. Curr Sci 82:525–532

    CAS  Google Scholar 

  • Mauch-Mani B, Mauch F (2005) The role of abscisic acid in plant–pathogen interactions. Curr Opin Cell Biol 8:409–414

    Article  CAS  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (1999) Effect of wild-type and mutant plant growth promoting rhizobacteria on the rooting of mung bean cuttings. J Plant Growth Regul 18:49–53

    Article  CAS  PubMed  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42:565–572

    Article  CAS  PubMed  Google Scholar 

  • McNeil SD, Nuccio ML, Hanson AD (1999) Betaines and related osmoprotectants. Targets for metabolic engineering of stress resistance. Plant Physiol 120:945–949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendel R, Polle A, Teichmann T (2010) The role of abscisic acid and auxin in the response of poplar to abiotic stress. Plant Biology 12:242–258

    Article  CAS  PubMed  Google Scholar 

  • Mendes R, Garbeva P, Raaijmakers J (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37:634–663

    Article  CAS  PubMed  Google Scholar 

  • Minami R, Uchiyama K, Murakami T, Kawai J, Mikami K, Yamada T, Yokoi D, Ito H, Matsui H, Honma M (1998) Properties, sequence, and synthesis in Escherichia coli of 1-aminocyclopropane-1-carboxylate deaminase from Hansenula saturnus. J Biochem 123:1112–1118

    Article  CAS  PubMed  Google Scholar 

  • Mishra J, Singh R, Arora NK (2017) Alleviation of heavy metal stress in plants and remediation of soil by rhizosphere microorganisms. Front Microbiol 8:1706

    Article  PubMed  PubMed Central  Google Scholar 

  • Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11(1):16–19

    Article  CAS  Google Scholar 

  • Montero-Calasanz MC, Santamaría C, Albareda M, Daza A, Duan J, Glick BR et al (2013) Rooting induction of semi-hardwood olive cuttings by several auxin-producing bacteria. Span J Agric Res 11:146–154

    Article  Google Scholar 

  • Mueller UG, Sachs JL (2015) Engineering microbiomes to improve plant and animal health. Trends Microbiol 23:606–617

    Article  CAS  PubMed  Google Scholar 

  • Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Ann Rev Plant Biol 59:651–681

    Article  CAS  Google Scholar 

  • Murti GSR, Upreti KK (2007) Plant growth regulators in water stress tolerance. J Hort Sci 2(2):73–93

    Google Scholar 

  • Nadeem SM, Ahmad M, Zahir ZA, Javaid A, Ashraf M (2014) The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol Adv 32:429–448

    Article  PubMed  Google Scholar 

  • Nakashima K, Yamaguchi-Shinozaki K (2006) Regulons involved in osmotic stress-responsive and cold stress-responsive gene expression in plants. Physiol Plant 126:62–71

    Article  CAS  Google Scholar 

  • Nanjo T, Futamura N, Nishiguchi M, Igasaki T, Shinozaki K, Shinohara K (2004) Characterization of full-length enriched expressed sequence tags of stress-treated poplar leaves. Plant Cell Physiol 45:1738–1748

    Article  PubMed  Google Scholar 

  • Naqvi SM (1972) Auxin transport under saline conditions. Experientia 28:1246

    Article  CAS  Google Scholar 

  • Naqvi SM, Ansari R (1973) Estimation of diffusible auxin under saline growth conditions. Experientia 30:350

    Article  Google Scholar 

  • Naseem H, Ahsan M, Shahid MA, Khan N (2018) Exopolysaccharides producing rhizobacteria and their role in plant growth and drought tolerance. J Basic Microbiol 58(12):1009–1022

    Article  CAS  PubMed  Google Scholar 

  • Nautiyal CS, Srivastava S, Chauhan PS, Seem K, Mishra A, Sopory SK (2013) Plant growth-promoting bacteria Bacillus amyloliquefaciens NBRISN13 modulates gene expression profile of leaf and rhizosphere community in rice during salt stress. Plant Physiol Biochem 66:1–9

    Article  CAS  PubMed  Google Scholar 

  • Ngoufack FZ, El-Noda AN, Tchouanguep FM, El-Soda M (2004) Effect of ropy and capsular exopolysaccharides producing strain of Lactobacillus plantarum 162RM on characteristics and functionality of fermented milk and soft Kareish type cheese. Afr J Biotechnol 3:512–518

    Article  Google Scholar 

  • Nicolaus B, Kambourova M (2010) Oner ET (2010) Exopolyssacharides from extremophiles: from fundamentals to biotechnology. Environ Technol 31(1):1145–1158

    Article  CAS  PubMed  Google Scholar 

  • Oren A (1999) Bioenergetic aspects of halophilism. Microbiol Mol Biol Rev 63:334–340

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oren A (2001) The bioenergetic basis for the decrease in metabolic diversity at increasing salt concentrations: implications for the functioning of saltlake ecosystems. Hydrobiologia 466:61–72

    Article  CAS  Google Scholar 

  • Pandey A, Sharma M, Pandey GK (2016) Emerging roles of strigolactones in plant responses to stress and development. Front Plant Sci 7(April):1–17

    CAS  Google Scholar 

  • Pankhurst CE, Yu S, Hawke BG, Harch BD (2001) Capacity of fatty acid profiles and substrate utilization patterns to describe differences in soil microbial communities associated with increased salinity or alkalinity at three locations in South Australia. Biol Ferti Soils 33:204–217

    Article  CAS  Google Scholar 

  • Patel S, Jinal HN, Amaresan N (2017) Biocatalysis and agricultural biotechnology isolation and characterization of drought resistance bacteria for plant growth promoting properties and their e ff ect on chilli ( Capsicum annuum ) seedling under salt stress. Biocatalysis and Agricultural Biotechnology 12:85–89

  • Patten CL, Glick BR (1996) Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol 42:207–220

    Article  CAS  PubMed  Google Scholar 

  • Peng J, Wu D, Liang Y, Li L, Guo Y (2019) Disruption of acdS gene reduces plant growth promotion activity and maize saline stress resistance by Rahnella aquatilis HX2. J Basic Microbiol 59(4):402–411

    Article  CAS  PubMed  Google Scholar 

  • Penrose DM, Glick BR (2003) Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiol Plant 118:10–15

    Article  CAS  PubMed  Google Scholar 

  • Peters NK, Crist-Estes DK (1989) Nodule formation is stimulated by the ethylene inhibitor aminoethoxyvinylglycine. Plant Physiol 91:690–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfeiffer CM, Bloss HE (1987) Growth and nutrition of guayule (Parthenium argentatum) in a saline soil as influenced by vesicular-arbuscular mycorrhiza and phosphorous fertilization. New Phytol 108:315–343

    Article  Google Scholar 

  • Porcel R, Zamarreño ÁM, García-Mina JM, Aroca R (2014) Involvement of plant endogenous ABA in Bacillus megaterium PGPR activity in tomato plants. BMC Plant Biol 14:36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin Y, Druzhinina IS, Pan X, Yuan Z (2016) Microbially mediated plant salt tolerance and microbiome-based solutions for saline agriculture. Biotechnol Adv 34(7):1245–1259

    Article  CAS  PubMed  Google Scholar 

  • Qurashi AW, Sabri AN (2012a) Bacterial exopolysaccharide and biofilm formation stimulate chickpea growth and soil aggregation under salt stress. Braz J Microbiol 11:83–91

    Google Scholar 

  • Qurashi AW, Sabri AN (2012b) Biofilm formation in moderately halophilic bacteria is influenced by varying salinity levels. J Basic Microbiol 52(5):566–572

    Article  CAS  PubMed  Google Scholar 

  • Reddy MP, Sanish S, Iyengar ERR (1992) Photosynthetic studies and compartmentation of ions in different tissues of Salicornia brachiata Roxb. under saline conditions. Photosynthetica 26:173–179 1992

    CAS  Google Scholar 

  • Redman RS, Kim YO, Woodward CJDA, Chris G, Espino L, Doty SL et al (2011) Increased fitness of rice plants to abiotic stress via habitat adapted symbiosis: a strategy for mitigating impacts of climate change. PLoS ONE 6:e14823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reed MLE, Glick BR (2005) Growth of canola (Brassica napus) in the presence of plant growth-promoting bacteria and either copper or polycyclic aromatic hydrocarbons. Can J Microbiol 51:1061–1069

    Article  CAS  PubMed  Google Scholar 

  • Reed MLE, Glick BR (2013) Applications of plant growth-promoting bac- teria for plant and soil systems. In: Gupta VK, Schmoll M, Maki M, Tuohy M, Mazutti MA (eds) Applications of Microbial Engineering. Taylor and Francis, Enfield, CT, pp 181–229

  • Riadh K, Wided M, Hans-Werner K, Chedly A (2010) Responses of halophytes to environmental stresses with special emphasis to salinity. Adv Bot Res 53:117–145

    Article  CAS  Google Scholar 

  • Roberson E, Firestone M (1992) Relationship between desiccation and exopolysaccharide production in soil Pseudomonas sp. Appl Environ Microbiol 58:1284–1291

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez AA, Stella AM, Storni MM, Zulpa G, Zaccaro MC (2006) Effect of cyanobacterial extracellular products and gibberellic acid on salinity tolerance in Oryza sativa L. Saline Sys 2:7

    Article  CAS  Google Scholar 

  • Rodriguez RJ, White JF, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330

    Article  CAS  PubMed  Google Scholar 

  • Rojas-Tapias D, Moreno-Galvan A, Pardo-Diaz S, Obando M, Rivera D, Bonilla R (2012) Effect of inoculation with plant growth-promoting bacteria (PGPB) on amelioration of saline stress in maize (Zea mays). Appl Soil Ecol 61:264–272

    Article  Google Scholar 

  • Rosenblueth M, Martínez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant-Microbe Interact 19:827–837

    Article  CAS  PubMed  Google Scholar 

  • Rosendahl CN, Rosendahl S (1991) Influence of vesicular-arbuscular mycorrhiza (Glomus sp.) on the response of cucumber (Cucumis sativis L.) to salt stress. Environ Exp Bot 31:313–318

    Article  Google Scholar 

  • Rouhier N, San Koh C, Gelhaye E, Corbier C, Favier F, Didierjean C, Jacquot JP (2008) Redox based anti-oxidant systems in plants: biochemical and structural analyses. Biochim Biophys Acta 1780:1249–1260

    Article  CAS  PubMed  Google Scholar 

  • Ruan CJ, da Silva JAT, Mopper S, Qin P, Lutts S (2010) Halophyte improvement for a salinized world. Crit Rev Plant Sci 29:329–359

    Article  CAS  Google Scholar 

  • Sairam RK, Tyagi A (2004) Physiology and molecular biology of salinity stress tolerance in plants. Curr Sci 86:407–421

    CAS  Google Scholar 

  • Samaddar S, Chatterjee P, Choudhury AR, Ahmed S, Sa T (2019) Interactions between Pseudomonas spp. and their role in improving the red pepper plant growth under salinity stress. Microbiol Res 219:66–73

    Article  CAS  PubMed  Google Scholar 

  • Sandhya V, Ali SZ, Grover M, Reddy G, Venkateswarlu B (2009) Alleviation of drought stress effects in sunflower seedlings by exopolysaccharides producing Pseudomonas putida strain P45. Biol Fert Soil 46:17–26

    Article  CAS  Google Scholar 

  • Salwan R, Rialch N, and Sharma V. (2018a) Bioactive volatile secondary metabolites of Trichoderma: Scope in agriculture Chapter 5 Secondary Metabolites of plant growth promoting rhizomicroorganisms: Discovery & Applications Page 87–111. https://doi.org/10.1007/978-981-13-5862-3

  • Salwan R, Rialch N, and Sharma V. (2018b) Bioactive volatile secondary metabolites of Trichoderma: scope in agriculture chapter 5 secondary metabolites of plant growth promoting rhizomicroorganisms: Discovery ∓ Applications Page 87-111

  • Sapre S, Sharma A, Tiwari S (2016) Amelioration of drought tolerance in wheat by the interaction of plant growth-promoting rhizobacteria. Plant Biol 18:992–1000

    Article  CAS  PubMed  Google Scholar 

  • Saravanakumar D, Samiyappan R (2007) Effects of 1-aminocyclo- propane-1-carboxylic acid (ACC) deaminase from Pseudomonas fluorescence against saline stress under in vitro and field conditions in groundnut (Arachis hypogeal) plants. J Appl Microbiol 102:1283–1292

    Article  CAS  PubMed  Google Scholar 

  • Sardinha M, Muller T, Schmeisky H, Joergensen RG (2003) Microbial performance in soils along a salinity gradient under acidic conditions. Appl Soilless Ecol 23:237–244

    Article  Google Scholar 

  • Sarkar A, Ghosh PK, Pramanik K, Mitra S, Soren T, Pandey S, Mondal MH, Maiti TK (2018a) A halotolerant Enterobacter sp. displaying ACC deaminase activity promotes rice seedling growth under salt stress. Res Microbiol 169:20–32

    Article  CAS  PubMed  Google Scholar 

  • Sarkar A, Ghosh PK, Pramanik K, Mitra S, Soren T, Pandey S, Mondal MH, Maiti TK (2018b) A halotolerant Enterobacter sp. displaying ACC deaminase activity promotes rice seedling growth under salt stress. Res Microbiol 169:20–32

    Article  CAS  PubMed  Google Scholar 

  • Schachtman DP, Goodger JQ (2008) Chemical root to shoot signaling under drought. Trends Plant Sci 13:281–287

    Article  CAS  PubMed  Google Scholar 

  • Schmidt CS, Alavi M, Cardinale M, Müller H, Berg G (2012) Stenotrophomonas rhizophila DSM14405 T promotes plant growth probably by altering fungal communities in the rhizosphere. Biol Fertil Soils 48:947–960

  • Schneider A (1892) Observations on some American rhizobia. Bull Torr Bot Club 19:203–218

  • Sekmen AH, Türkan I, Takio S (2007) Differential responses of antioxidative enzymes and lipid peroxidation to salt stress in salt-tolerant Plantago maritima and salt-sensitive Plantago media. Physiol Plant 131(3):399–411

    Article  CAS  PubMed  Google Scholar 

  • Shah S, Li J, Moffat BA, Glick BR (1998) Isolation and characterization of ACC deaminase genes from two different plant growth promoting rhizobacteria. Can J Microbiol. 44:833–843

    Article  CAS  PubMed  Google Scholar 

  • Shah G, Jan M, Afreen M, Anees M, Rehman S, Daud MK, Malook I, Jamil M (2017) Halophilic bacteria mediated phytoremediation of salt-affected soils cultivated with rice. J Geochem Explor 174:59–65

    Article  CAS  Google Scholar 

  • Shahid M, Khan MS (2019) Fungicide tolerant Bradyrhizobium japonicum mitigate toxicity and enhance greengram production under hexaconazole stress. J Environl Sci (China) 78:92–108

    Article  Google Scholar 

  • Sharma V, Shanmugam V (2012) Purification and characterization of an extracellular 24 kDa chitobiosidase from the mycoparasitic fungus Trichoderma saturnisporum. J Basic Microbiol 52(3):324–331

  • Sharma V, Salwan R, Sharma PN (2016a) Differential response of extracellular proteases of Trichoderma Harzianum against fungal phytopathogens. Curr Microbiol 73(3):419–425

    Article  CAS  PubMed  Google Scholar 

  • Sharma V, Salwan R, Sharma PN, Kanwar SS (2016b) Molecular cloning and characterization of ech46 endochitinase from Trichoderma harzianum. Int J Biol Macromol 92:615–624

    Article  CAS  PubMed  Google Scholar 

  • Sharma V, Salwan R, Sharma PN (2017a) The comparative mechanistic aspects of Trichoderma and Probiotics: Scope for future research. Physiol Mol Plant Pathol 100:84–96

    Article  CAS  Google Scholar 

  • Sharma V, Salwan R, Sharma PN, Kanwar SS (2017b) Elucidation of biocontrol mechanisms of Trichoderma harzianum against different plant fungal pathogens: Universal yet host specific response. Int J Biol Macromol 95:72–79

    Article  CAS  PubMed  Google Scholar 

  • Sharma V, Salwan R, Shanmugam V (2018a) Molecular characterization of β-endoglucanase from antagonistic Trichoderma saturnisporum isolate GITX-Panog (C) induced under mycoparasitic conditions. Pest Biochem Physiol 149:73–80

    Article  CAS  Google Scholar 

  • Sharma V, Salwan R, Shanmugam V (2018b) Unraveling the multilevel aspects of least explored plant beneficial Trichoderma saturnisporum isolate GITX-Panog (C). Eur J Plant Pathol 152:169–183

    Article  CAS  Google Scholar 

  • Sheldrake AR (1979) Effect of osmotic stress on polar auxin transport in Avena mesocotyl sections. Planta 145:113–117

    Article  CAS  PubMed  Google Scholar 

  • Shi DC, Wang DL (2005) Effects of various salt-alkaline mixed stresses on Aneurolepidium chinense (Trin.) Kitag. Plant and Soilless 271:15–26

    Article  CAS  Google Scholar 

  • Singh RP, Jha PN (2016) A halotolerant bacterium Bacillus licheniformis HSW-16 augments induced systemic tolerance to salt stress in wheat plant (Triticum aestivum). Front Plant Sci 7:1890

    PubMed  PubMed Central  Google Scholar 

  • Singh LP, Gill SS, Tuteja N (2011) Unraveling the role of fungal symbionts in plant abiotic stress tolerance. Plant Signal Behav 6:175–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith PA (2014) Foliage friendships. Sci Am 311:24–25

    Article  PubMed  Google Scholar 

  • Song Y, Wang L, Xiong L (2009) Comprehensive expression profiling analysis of OsIAA gene family in developmental processes and in response to phytohormone and stress treatments. Planta 229:577–591

    Article  CAS  PubMed  Google Scholar 

  • Staudt A, Wolfe L, Shrout J (2012) Variations in exopolysaccharide production by Rhizobium tropici. Arch Microbiol 194(3):197–206

    Article  CAS  PubMed  Google Scholar 

  • Suresh Kumar A, Mody K, Jha B (2007) Bacterial exopolysaccharides – a perception. J Basic Microbiol 47(2):103–117

    Article  CAS  Google Scholar 

  • Sutherland IW (1972) Bacterial exopolysaccharides. Adv Microb Physiol 8:143–212

    Article  CAS  PubMed  Google Scholar 

  • Szymanskaa S, Płociniczak T, Piotrowska-Seget Z, Złocha M, Ruppel S, Hrynkiewicz K (2016) Metabolic potential and community structure of endophytic and rhizosphere bacteria associated with the roots of the halophyte Aster tripolium L. Microbiol Res 182:68–79

    Article  CAS  Google Scholar 

  • Tate RL (2000) Soil microbiology. John Wiley&Sons, New York

    Google Scholar 

  • Teste FP, Kardol P, Turner BL, Wardle DA, Zemunik G, Renton M, Laliberté E (2017) Plant-soil feedback and the maintenance of diversity in Mediterranean-climate shrublands. Science 355:73–176

    Article  CAS  Google Scholar 

  • Thakore Y (2006) The biopesticide market for global agricultural use. Ind Biotechnol (New Rochelle NY) 2:194–208

    Article  Google Scholar 

  • Tisdall JM, Oadea JM (1982) Organic matter and water stable aggregates in soils. J Soil Sci 33:141–163

    Article  CAS  Google Scholar 

  • Trenberth KE, Fasullo JT, Branstator G, Phillips AS (2014) Seasonal aspects of the recent pause in surface warming. Nat Clim Chang 4:911–916

    Article  Google Scholar 

  • Upadhyay SK, Singh DP (2015) Effect of salt-tolerant plant growth-promoting rhizobacteria on wheat plants and soil health in a saline environment. Plant Biol 17:288–293

    Article  CAS  PubMed  Google Scholar 

  • Upadhyaya H, Sahoo L, Kumar S (2013) Molecular physiology of osmotic stress in plants Springer 179–192.

  • Van Loon LC (2007) Plant responses to plant growth-promoting rhizobacteria. European J Plant Pathol 119:243–254

    Article  CAS  Google Scholar 

  • Ventosa A, Nieto JJ, Oren A (1998) Biology of moderately halophilic aerobic bacteria. Microbiol Mol Rev 62:504–544

    CAS  Google Scholar 

  • Vimal SR, Patel VK, Singh JS (2018) Plant growth promoting Curtobacterium albidum strain SRV4: An agriculturally important microbe to alleviate salinity stress in paddy plants. Ecological Indicators

  • Virto I et al (2015) Soil degradation and soil quality in Western Europe: Current situation and future perspectives. MDPI Sustainability 7:313–365

    Article  Google Scholar 

  • Viscardi S, Ventorino V, Duran P, Maggio A, De Pascale S, Mora ML, Pepe O (2016) Assessment of plant growth promoting activities and abiotic stress tolerance of Azotobacter chroococcum strains for a potential use in sustainable agriculture. J Soil Sci Plant Nutr 16:848–863

    CAS  Google Scholar 

  • Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M, Heier T, Huckelhoven R, Neumann C, Von Wettstein D, Franken P, Kogel KH (2005) The endophytic fungus Piriformis indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc Natl Acad Sci 102:13386–13391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang B, ULuttge RR (2001) Effects of salt treatment and osmotic stress on V-ATPase and V-PPase in leaves of the halophyte Suaeda salsa. J Exp Bot 52(365):2355–2365

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    Article  CAS  PubMed  Google Scholar 

  • Werner T, Köllmer I, Bartrina I, Holst K, Schmülling T (2006) New insights into the biology of cytokinin degradation. Plant Biol 8:371–381

    Article  CAS  PubMed  Google Scholar 

  • Whipps JM (1990) Carbon utilization. In: Lynch JM (ed) The Rhizosphere. Wiley Interscience, Chichester, pp 59–97

    Google Scholar 

  • Wichern J, Wichern F, Joergensen RG (2006) Impact of salinity on soil microbial communities and the decomposition of maize in acidic soils. Geoderma 137:100–108

    Article  CAS  Google Scholar 

  • Wingender J, Neu TR, Flemming HC (1999) What are bacterial extracellular polymeric substances? Microbial extracellular polymeric substances. Springer, Berlin, Heidelberg, pp 1–9

    Book  Google Scholar 

  • Xie H, PasternakJJ GBR (1996) Isolation and characterization of mutants of the plant growth-promoting rhizobacterium Pseudomonas putida GR12–2 that overproduce indoleacetic acid. Curr Microbiol 32:67–71

    Article  CAS  Google Scholar 

  • Yaish, Mahmoud W, Irin Antony, and Bernard R Glick (2015) Isolation and characterization of endophytic plant growth-promoting bacteria from date palm tree (Phoenix Dactylifera L.) and their potential role in salinity tolerance. Antonie van Leeuwenhoek 107(6): 1519–1532.

  • Yan N, Marschner P, Cao W, Zuo C, Qin W (2015) Influence of salinity and water content on soil microorganisms. Int Soil Water Cons Res 3(4):316–323

    Article  Google Scholar 

  • Yildirim E, Taylor AG (2005) Effect of biological treatments on growth of bean plans under salt stress. Ann Rep Bean Improv Coop 48:176–177

    Google Scholar 

  • Yoolong S, Kruasuwan W, Thanh Phạm HT, Jaemsaeng R, Jantasuriyarat C, Thamchaipenet A (2019) Modulation of salt tolerance in Thai jasmine rice (Oryza sativa L. cv. KDML105) by Streptomyces venezuelae ATCC 10712 expressing ACC deaminase. Sci Rep 9(1):1275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zamioudis C, Pieterse CMJ (2012) Modulation of host immunity by beneficial microbes. Mol Plant–Microbe Interact 25:139–150

    Article  CAS  PubMed  Google Scholar 

  • Zelicourt A, Al-Yousif M, Hirt H (2013) Rhizosphere microbes as essential partners for plant stress tolerance the role of rhizosphere microbes. Molecular Plant 6(2):242–245

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Davies WJ (1991) Anti transpirant activity in xylem sap of maize plants. J Exp Bot 42:317–321

    Article  CAS  Google Scholar 

  • Zhang J, Tardieu F (1996) Relative contribution of apices and mature tissues to ABA synthesis in droughted maize root systems. Plant Cell Physiol 37:598–605

    Article  CAS  Google Scholar 

  • Zhang H, Kim MS, Sun Y, Dowd SE, Shi H, Paré PW (2008) Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1. Mol Plant-Microbe Interact 21:737–744

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Gan Y, Xu B (2019) Mechanisms of the IAA and ACC-deaminase producing strain of Trichoderma longibrachiatum T6 in enhancing wheat seedling tolerance to NaCl stress. BMC Plant Biol 19(1):22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou C, Li F, Xie Y, Zhu L, Xiao X, Ma Z, Wang J (2017) Involvement of abscisic acid in microbe-induced saline-alkaline resistance in plants. Plant Signal Behav 12(10):1367465

    Article  CAS  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev. Plant Biol 53:247–273

    Article  CAS  Google Scholar 

  • Zhu J-K (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6(5):441–445

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Chandigarh University for providing necessary infrastructure and SEED Division, Department of Science and Technology, GOI for providing financial benefits (SP/YO/125/2017) and (SEED-TIASN-023-2018) during the completion of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivek Sharma.

Ethics declarations

Conflict of interests

The authors declared no conflict of interests.

Additional information

Responsible Editor: Janusz J. Zwiazek

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salwan, R., Sharma, A. & Sharma, V. Microbes mediated plant stress tolerance in saline agricultural ecosystem. Plant Soil 442, 1–22 (2019). https://doi.org/10.1007/s11104-019-04202-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s11104-019-04202-x

Keywords