Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content

MicroRNAs Regulating Autophagy in Neurodegeneration

  • Chapter
  • First Online:
Autophagy: Biology and Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1208))

Abstract

Social and economic impacts of neurodegenerative diseases (NDs) become more prominent in our constantly aging population. Currently, due to the lack of knowledge about the aetiology of most NDs, only symptomatic treatment is available for patients. Hence, researchers and clinicians are in need of solid studies on pathological mechanisms of NDs. Autophagy promotes degradation of pathogenic proteins in NDs, while microRNAs post-transcriptionally regulate multiple signalling networks including autophagy. This chapter will critically discuss current research advancements in the area of microRNAs regulating autophagy in NDs. Moreover, we will introduce basic strategies and techniques used in microRNA research. Delineation of the mechanisms contributing to NDs will result in development of better approaches for their early diagnosis and effective treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 143.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aboud AA, et al. PARK2 patient neuroprogenitors show increased mitochondrial sensitivity to copper. Neurobiol Dis. 2015;73:204–12.

    Article  CAS  PubMed  Google Scholar 

  • Abram CL, et al. Comparative analysis of the efficiency and specificity of myeloid-Cre deleting strains using ROSA-EYFP reporter mice. J Immunol Methods. 2014;408:89–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adams D, et al. Trial design and rationale for APOLLO, a Phase 3, placebo-controlled study of patisiran in patients with hereditary ATTR amyloidosis with polyneuropathy. BMC Neurol. 2017;17(1):181.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Adams D, et al. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N Engl J Med. 2018;379(1):11–21.

    Article  CAS  PubMed  Google Scholar 

  • Addo-Quaye C, Miller W, Axtell MJ. CleaveLand: a pipeline for using degradome data to find cleaved small RNA targets. Bioinformatics. 2008;25(1):130–1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Altmann K-H, et al. Second generation of antisense oligonucleotides: from nuclease resistance to biological efficacy in animals. CHIMIA Int J Chem. 1996;50(4):168–76.

    Article  CAS  Google Scholar 

  • Alvarez-Erviti L, et al. Chaperone-mediated autophagy markers in Parkinson disease brains. Arch Neurol. 2010;67(12):1464–72.

    Article  PubMed  Google Scholar 

  • Alvarez-Erviti L, Seow Y, Schapira AHV, Rodriguez-Oroz MC, Obeso JA, Cooper JM. Influence of microRNA deregulation on chaperone-mediated autophagy and α-synuclein pathology in Parkinson’s disease. Cell Death Dis. 2013;4(3):e545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amar L, et al. Control of small inhibitory RNA levels and RNA interference by doxycycline induced activation of a minimal RNA polymerase III promoter. Nucleic Acids Res. 2006;34(5):e37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Amarzguioui M, et al. Tolerance for mutations and chemical modifications in a siRNA. Nucleic Acids Res. 2003;31(2):589–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ambros V, et al. A uniform system for microRNA annotation. RNA. 2003;9(3):277–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atambayeva S, et al. The binding sites of miR-619-5p in the mRNAs of human and orthologous genes. BMC Genomics. 2017;18(1):428.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Babiarz JE, et al. Mouse ES cells express endogenous shRNAs, siRNAs, and other Microprocessor-independent, Dicer-dependent small RNAs. Genes Dev. 2008;22(20):2773–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bak RO, Hollensen AK, Primo MN, Sørensen CD, Mikkelsen JG. Potent microRNA suppression by RNA Pol II-transcribed ‘Tough Decoy’ inhibitors. RNA. 2013;19(2):280–93.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ban JJ, et al. MicroRNA-27a reduces mutant huntingtin aggregation in an in vitro model of Huntington’s disease. Biochem Biophys Res Commun. 2017;488(2):316–21.

    Article  CAS  PubMed  Google Scholar 

  • Banerjee R, Beal MF, Thomas B. Autophagy in neurodegenerative disorders: pathogenic roles and therapeutic implications. Trends Neurosci. 2010;33(12):541–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bang J, Spina S, Miller BL. Frontotemporal dementia. Lancet. 2015;386(10004):1672–82.

    Article  PubMed  PubMed Central  Google Scholar 

  • Baras AS, et al. miRge—a multiplexed method of processing small RNA-Seq data to determine microRNA entropy. PLoS One. 2015;10(11):e0143066.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barmada SJ, et al. Autophagy induction enhances TDP43 turnover and survival in neuronal ALS models. Nat Chem Biol. 2014;10(8):677–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136(2):215–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basler K, Struhl G. Compartment boundaries and the control of Drosopfiffa limb pattern by hedgehog protein. Nature. 1994;368(6468):208–14.

    Article  CAS  PubMed  Google Scholar 

  • Bates GP. History of genetic disease: the molecular genetics of Huntington disease—a history. Nat Rev Genet. 2005;6(10):766–73.

    Article  CAS  PubMed  Google Scholar 

  • Beard C, et al. Efficient method to generate single-copy transgenic mice by site-specific integration in embryonic stem cells. Genesis. 2006;44(1):23–8.

    Article  CAS  PubMed  Google Scholar 

  • Berezikov E, et al. Mammalian mirtron genes. Mol Cell. 2007;28(2):328–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berger Z, et al. Rapamycin alleviates toxicity of different aggregate-prone proteins. Hum Mol Genet. 2005;15(3):433–42.

    Article  PubMed  CAS  Google Scholar 

  • Berrens RV, et al. An endosiRNA-based repression mechanism counteracts transposon activation during global DNA demethylation in embryonic stem cells. Cell Stem Cell. 2017;21(5):694–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berulava T, et al. N6-adenosine methylation in MiRNAs. PLoS One. 2015;10(2):e0118438.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bitetti A, et al. MicroRNA degradation by a conserved target RNA regulates animal behavior. Nat Struct Mol Biol. 2018;25(3):244–51.

    Article  CAS  PubMed  Google Scholar 

  • Blennow K, de Leon MJ, Zetterberg H. Alzheimer’s disease. Lancet. 2006;368(9533):387–403.

    Article  CAS  PubMed  Google Scholar 

  • Boele J, et al. PAPD5-mediated 3’ adenylation and subsequent degradation of miR-21 is disrupted in proliferative disease. Proc Natl Acad Sci. 2014;111(31):11467–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boland B, et al. Autophagy induction and autophagosome clearance in neurons: relationship to autophagic pathology in Alzheimer’s disease. J Neurosci. 2008;28(27):6926–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boon RA, Iekushi K, Lechner S, Seeger T, Fischer A, Heydt S, Kaluza D, Tréguer K, Carmona G, Bonauer A, Horrevoets AJG, Didier N, Girmatsion Z, Biliczki P, Ehrlich JR, Katus HA, Müller OJ, Potente M, Zeiher AM, Hermeking H, Dimmeler S. MicroRNA-34a regulates cardiac ageing and function. Nature. 2013;495(7439):107–10.

    Article  CAS  PubMed  Google Scholar 

  • Borchert GM, Lanier W, Davidson BL. RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol. 2006;13(12):1097–101.

    Article  CAS  PubMed  Google Scholar 

  • Braasch DA, et al. Biodistribution of phosphodiester and phosphorothioate siRNA. Bioorg Med Chem Lett. 2004;14(5):1139–43.

    Article  CAS  PubMed  Google Scholar 

  • Bramsen JB, et al. A large-scale chemical modification screen identifies design rules to generate siRNAs with high activity, high stability and low toxicity. Nucleic Acids Res. 2009;37(9):2867–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breakfield NW, et al. High-resolution experimental and computational profiling of tissue-specific known and novel miRNAs in Arabidopsis. Genome Res. 2012;22(1):163–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bridge AJ, et al. Induction of an interferon response by RNAi vectors in mammalian cells. Nat Genet. 2003;34(3):263–4.

    Article  CAS  PubMed  Google Scholar 

  • Bruick RK. Expression of the gene encoding the proapoptotic Nip3 protein is induced by hypoxia. Proc Natl Acad Sci U S A. 2000;97(16):9082–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brummelkamp TR, Bernards R, Agami R. A system for stable expression of short interfering RNAs in mammalian cells. Science. 2002;296(5567):550–3.

    Article  CAS  PubMed  Google Scholar 

  • Burnette WN. “Western Blotting”: electrophoretic transfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem. 1981;112(2):195–203.

    Article  CAS  PubMed  Google Scholar 

  • Burns JC, et al. Vesicular stomatitis virus G glycoprotein pseudotyped retroviral vectors: concentration to very high titer and efficient gene transfer into mammalian and nonmammalian cells. Proc Natl Acad Sci. 1993;90(17):8033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burroughs AM, Ando Y, de Hoon MJL, Tomaru Y, Nishibu T, Ukekawa R, Funakoshi T, Kurokawa T, Suzuki H, Hayashizaki Y, Daub CO. A comprehensive survey of 3’ animal miRNA modification events and a possible role for 3’ adenylation in modulating miRNA targeting effectiveness. Genome Res. 2010;20(10):1398–410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calderon-Garcidueñas AL, Duyckaerts C. Alzheimer disease. Handb Clin Neurol. 2017;145:325–37.

    Article  PubMed  Google Scholar 

  • Calixto A, et al. Enhanced neuronal RNAi in C. elegans using SID-1. Nat Methods. 2010;7(7):554–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao F, Liu Z, Sun G. Diagnostic value of miR-193a-3p in Alzheimer’s disease and miR-193a-3p attenuates amyloid-β induced neurotoxicity by targeting PTEN. Exp Gerontol. 2020;130:110814.

    Article  CAS  PubMed  Google Scholar 

  • Capece V, et al. Oasis: online analysis of small RNA deep sequencing data. Bioinformatics. 2015;31(13):2205–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carè A, Catalucci D, Felicetti F, Bonci D, Addario A, Gallo P, Bang M-L, Segnalini P, Gu Y, Dalton ND, Elia L, Latronico MVG, Høydal M, Autore C, Russo MA, Dorn GW 2nd, Ellingsen O, Ruiz-Lozano P, Peterson KL, Croce CM, Peschle C, Condorelli G. MicroRNA-133 controls cardiac hypertrophy. Nat Med. 2007;13(5):613–8.

    Article  PubMed  CAS  Google Scholar 

  • Casola S. Mouse models for miRNA expression: the ROSA26 locus. In: Monticelli S, editor. MicroRNAs and the immune system: methods and protocols. Totowa: Humana Press; 2010. p. 145–63.

    Chapter  Google Scholar 

  • Castoldi M, Schmidt S, Benes V, Noerholm M, Kulozik AE, Hentze MW, Muckenthaler MU. A sensitive array for microRNA expression profiling (miChip) based on locked nucleic acids (LNA). RNA. 2006;12(5):913–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caygill EE, Johnston LA. Temporal regulation of metamorphic processes in Drosophila by the let-7 and miR-125 heterochronic microRNAs. Curr Biol. 2008;18(13):943–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chae H, et al. BioVLAB-MMIA-NGS: microRNA–mRNA integrated analysis using high-throughput sequencing data. Bioinformatics. 2014;31(2):265–7.

    Article  PubMed  CAS  Google Scholar 

  • Chang H, et al. CRISPR/cas9, a novel genomic tool to knock down microRNA in vitro and in vivo. Sci Rep. 2016;6(1):1–12.

    CAS  Google Scholar 

  • Chaubey A, et al. MicroRNAs and deletion of the derivative chromosome 9 in chronic myeloid leukemia. Leukemia. 2009;23(1):186–8.

    Article  CAS  PubMed  Google Scholar 

  • Chavez A, et al. Highly efficient Cas9-mediated transcriptional programming. Nat Methods. 2015;12(4):326–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Che X, et al. MicroRNA-1 regulates the development of osteoarthritis in a Col2a1-Cre-ERT2/GFPfl/fl-RFP-miR-1 mouse model of osteoarthritis through the downregulation of Indian hedgehog expression. Int J Mol Med. 2020;46(1):360–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheloufi S, et al. A dicer-independent miRNA biogenesis pathway that requires Ago catalysis. Nature. 2010;465(7298):584–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Wang X. miRDB: an online database for prediction of functional microRNA targets. Nucleic Acids Res. 2019;48(D1):D127–31.

    Article  PubMed Central  CAS  Google Scholar 

  • Chen J-K, et al. Synthesis of oligodeoxyribonucleotide N3’ → P5’ phosphoramidates. Nucleic Acids Res. 1995;23(14):2661–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen C, et al. Real-time quantification of microRNAs by stem–loop RT–PCR. Nucleic Acids Res. 2005;33(20):e179.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen C-J, et al. ncPRO-seq: a tool for annotation and profiling of ncRNAs in sRNA-seq data. Bioinformatics. 2012;28(23):3147–9.

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, et al. Aberration of miRNAs expression in leukocytes from sporadic amyotrophic lateral sclerosis. Front Mol Neurosci. 2016;9:69.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen Y, et al. MicroRNA-133 overexpression promotes the therapeutic efficacy of mesenchymal stem cells on acute myocardial infarction. Stem Cell Res Ther. 2017;8(1):1–11.

    Article  CAS  Google Scholar 

  • Chen L, et al. Identification of aberrant circulating miRNAs in Parkinson’s disease plasma samples. Brain Behav. 2018;8(4):e00941.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng M, et al. MicroRNA-181a suppresses parkin-mediated mitophagy and sensitizes neuroblastoma cells to mitochondrial uncoupler-induced apoptosis. Oncotarget. 2016;7(27):42274–87.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chi SW, Hannon GJ, Darnell RB. An alternative mode of microRNA target recognition. Nat Struct Mol Biol. 2012;19(3):321–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Child DD, et al. Cardiac mTORC1 dysregulation impacts stress adaptation and survival in Huntington’s disease. Cell Rep. 2018;23(4):1020–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiu YL, Rana TM. siRNA function in RNAi: a chemical modification analysis. RNA. 2003;9(9):1034–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chmielarz P, et al. Dicer and microRNAs protect adult dopamine neurons. Cell Death Dis. 2017;8(5):e2813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho S, et al. miRGator v3.0: a microRNA portal for deep sequencing, expression profiling and mRNA targeting. Nucleic Acids Res. 2012;41(D1):D252–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Choi W-Y, Giraldez AJ, Schier AF. Target protectors reveal dampening and balancing of Nodal agonist and antagonist by miR-430. Science. 2007;318(5848):271–4.

    Article  CAS  PubMed  Google Scholar 

  • Choi JG, et al. Lentivirus pre-packed with Cas9 protein for safer gene editing. Gene Ther. 2016;23(7):627–33.

    Article  CAS  PubMed  Google Scholar 

  • Chou C-H, et al. A computational approach for identifying microRNA-target interactions using high-throughput CLIP and PAR-CLIP sequencing. BMC Genomics. 2013;14(1):S2.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chugh P, Dittmer DP. Potential pitfalls in microRNA profiling. Wiley Interdiscip Rev RNA. 2012;3(5):601–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung KM, et al. Alzheimer’s disease and the autophagic-lysosomal system. Neurosci Lett. 2019;697:49–58.

    Article  CAS  PubMed  Google Scholar 

  • Cifuentes D, Xue H, Taylor DW, Patnode H, Mishima Y, Cheloufi S, Ma E, Mane S, Hannon GJ, Lawson ND, Wolfe SA, Giraldez AJ. A novel miRNA processing pathway independent of Dicer requires Argonaute2 catalytic activity. Science. 2010;328(5986):1694–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cook GA-O, et al. Structural variation and its potential impact on genome instability: novel discoveries in the EGFR landscape by long-read sequencing. PLoS One. 2020;15(1):e0226340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corbin R, Olsson-Carter K, Slack F. The role of microRNAs in synaptic development and function. BMB Rep. 2009;42(3):131–5.

    Article  CAS  PubMed  Google Scholar 

  • Couto LB, High KA. Viral vector-mediated RNA interference. Curr Opin Pharmacol. 2010;10(5):534–42.

    Article  CAS  PubMed  Google Scholar 

  • Crippa V, Sau D, Rusmini P, Boncoraglio A, Onesto E, Bolzoni E, Galbiati M, Fontana E, Marino M, Carra S, Bendotti C, De Biasi S, Poletti A. The small heat shock protein B8 (HspB8) promotes autophagic removal of misfolded proteins involved in amyotrophic lateral sclerosis (ALS). Hum Mol Genet. 2010;19(17):3440–56.

    Article  CAS  PubMed  Google Scholar 

  • Cuervo AM, et al. Impaired degradation of mutant α-synuclein by chaperone-mediated autophagy. Science. 2004;305(5688):1292–5.

    Article  CAS  PubMed  Google Scholar 

  • Cullere X, et al. Neutrophil-selective CD18 silencing using RNA interference in vivo. Blood. 2008;111(7):3591–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Czauderna F, et al. Structural variations and stabilising modifications of synthetic siRNAs in mammalian cells. Nucleic Acids Res. 2003;31(11):2705–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Ambrogio A, et al. Specific miRNA stabilization by Gld2-catalyzed monoadenylation. Cell Rep. 2012;2(6):1537–45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Das AT, Tenenbaum L, Berkhout B. Tet-On systems for doxycycline-inducible gene expression. Curr Gene Ther. 2016;16(3):156–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deas E, Wood NW, Plun-Favreau H. Mitophagy and Parkinson’s disease: the PINK1–parkin link. Biochim Biophys Acta. 2011;1813(4):623–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dehay B, Ramirez A, Martinez-Vicente M, Perier C, Canron M-H, Doudnikoff E, Vital A, Vila M, Klein C, Bezard E. Loss of P-type ATPase ATP13A2/PARK9 function induces general lysosomal deficiency and leads to Parkinson disease neurodegeneration. Proc Natl Acad Sci U S A. 2012;109(24):9611–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deleavey GF, Watts JK, Damha MJ. Chemical modification of siRNA. Curr Protoc Nucleic Acids Chem. 2009;39(1):16.31–16.322.

    Google Scholar 

  • Dellinger DJ, et al. Solid-phase chemical synthesis of phosphonoacetate and thiophosphonoacetate oligodeoxynucleotides. J Am Chem Soc. 2003;125(4):940–50.

    Article  CAS  PubMed  Google Scholar 

  • Desvignes T, et al. miRNA analysis with Prost! reveals evolutionary conservation of organ-enriched expression and post-transcriptional modifications in three-spined stickleback and zebrafish. Sci Rep. 2019;9(1):3913.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dhanasekaran S, Doherty TM, Kenneth J. Comparison of different standards for real-time PCR-based absolute quantification. J Immunol Methods. 2010;354(1):34–9.

    Article  CAS  PubMed  Google Scholar 

  • Dickins RA, et al. Tissue-specific and reversible RNA interference in transgenic mice. Nat Genet. 2007;39(7):914–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DiFiglia M, et al. Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science. 1997;277(5334):1990–3.

    Article  CAS  PubMed  Google Scholar 

  • Dimmeler S, Nicotera P. MicroRNAs in age-related diseases. EMBO Mol Med. 2013;5(2):180–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dogan A. Amyloidosis: insights from proteomics. Annu Rev Pathol. 2017;12:277–304.

    Article  CAS  PubMed  Google Scholar 

  • Dong H, et al. MicroRNA: function, detection, and bioanalysis. Chem Rev. 2013;113(8):6207–33.

    Article  CAS  PubMed  Google Scholar 

  • Dong H, et al. A panel of four decreased serum microRNAs as a novel biomarker for early Parkinson’s disease. Biomarkers. 2016;21(2):129–37.

    Article  CAS  PubMed  Google Scholar 

  • Du X, et al. miR-124 downregulates BACE 1 and alters autophagy in APP/PS1 transgenic mice. Toxicol Lett. 2017;280:195–205.

    Article  CAS  PubMed  Google Scholar 

  • Duan D, et al. A new dual-vector approach to enhance recombinant adeno-associated virus-mediated gene expression through intermolecular cis activation. Nat Med. 2000;6(5):595–8.

    Article  CAS  PubMed  Google Scholar 

  • Dugger BN, Dickson DW. Pathology of neurodegenerative diseases. Cold Spring Harb Perspect Biol. 2017;9(7):a028035.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ebert MS, Sharp PA. MicroRNA sponges: progress and possibilities. RNA (New York, NY). 2010;16(11):2043–50.

    Article  CAS  Google Scholar 

  • Ebert MS, Neilson JR, Sharp PA. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods. 2007;4(9):721–6.

    Article  CAS  PubMed  Google Scholar 

  • Elbashir SM, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 2001;411(6836):494–698.

    Article  CAS  PubMed  Google Scholar 

  • Emde A, et al. Dysregulated miRNA biogenesis downstream of cellular stress and ALS-causing mutations: a new mechanism for ALS. EMBO J. 2015;34(21):2633–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erratum. Nucleic Acids Res. 1996;24(7):1389.

    Google Scholar 

  • Evers M, et al. miRA: adaptable novel miRNA identification in plants using small RNA sequencing data. BMC Bioinformatics. 2015;16(1):370.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fanciulli A, Wenning GK. Multiple-system atrophy. N Engl J Med. 2015;372(3):249–63.

    Article  PubMed  CAS  Google Scholar 

  • Fang Z, Rajewsky N. The impact of miRNA target sites in coding sequences and in 3′UTRs. PLoS One. 2011;6(3):e18067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang EF, et al. Mitophagy inhibits amyloid-β and tau pathology and reverses cognitive deficits in models of Alzheimer’s disease. Nat Neurosci. 2019;22(3):401–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fasold M, et al. DARIO: a ncRNA detection and analysis tool for next-generation sequencing experiments. Nucleic Acids Res. 2011;39(Suppl 2):W112–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng T, et al. Autophagy-mediated regulation of BACE1 protein trafficking and degradation. J Biol Chem. 2017;292(5):1679–90.

    Article  CAS  PubMed  Google Scholar 

  • Finkbeiner S. The autophagy lysosomal pathway and neurodegeneration. Cold Spring Harb Perspect Biol. 2020;12(3):a033993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fisch KM, et al. Omics Pipe: a community-based framework for reproducible multi-omics data analysis. Bioinformatics. 2015;31(11):1724–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Floto RA, Sarkar S, Perlstein EO, Kampmann B, Schreiber SL, Rubinsztein DC. Small molecule enhancers of rapamycin-induced TOR inhibition promote autophagy, reduce toxicity in Huntington’s disease models and enhance killing of mycobacteria by macrophages. Autophagy. 2007;3(6):620–2.

    Article  CAS  PubMed  Google Scholar 

  • Friedländer MR, et al. miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res. 2011;40(1):37–52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fuchs Wightman F, et al. Target RNAs strike back on microRNAs. Front Genet. 2018;9:435.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fukumoto H, et al. A noncompetitive BACE1 inhibitor TAK-070 ameliorates Aβ pathology and behavioral deficits in a mouse model of Alzheimer’s disease. J Neurosci. 2010;30(33):11157–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garzon R, Marcucci G, Croce CM. Targeting microRNAs in cancer: rationale, strategies and challenges. Nat Rev Drug Discov. 2010;9(10):775–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gascon E, et al. Alterations in microRNA-124 and AMPA receptors contribute to social behavioral deficits in frontotemporal dementia. Nat Med. 2014;20(12):1444–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • GBD 2015 Neurological Disorders Collaborator Group. Global, regional, and national burden of neurological disorders during 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet Neurol. 2017;16(11):877–97.

    Article  Google Scholar 

  • Geekiyanage H, Chan C. MicroRNA-137/181c regulates serine palmitoyltransferase and in turn amyloid β, novel targets in sporadic Alzheimer’s disease. J Neurosci. 2011;31(41):14820–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geekiyanage H, et al. Blood serum miRNA: non-invasive biomarkers for Alzheimer’s disease. Exp Neurol. 2012;235(2):491–6.

    Article  CAS  PubMed  Google Scholar 

  • Geisler A, Fechner H. MicroRNA-regulated viral vectors for gene therapy. World J Exp Med. 2016;6(2):37–54.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gentner B, et al. Stable knockdown of microRNA in vivo by lentiviral vectors. Nat Methods. 2009;6(1):63–6.

    Article  CAS  PubMed  Google Scholar 

  • Giering JC, et al. Expression of shRNA from a tissue-specific pol II promoter is an effective and safe RNAi therapeutic. Mol Ther. 2008;16(9):1630–6.

    Article  CAS  PubMed  Google Scholar 

  • Gilbert LA, et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell. 2013;154(2):442–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giraldo P, Montoliu L. Size matters: use of YACs, BACs and PACs in transgenic animals. Transgenic Res. 2001;10(2):83–103.

    Article  CAS  PubMed  Google Scholar 

  • Giurato G, et al. iMir: an integrated pipeline for high-throughput analysis of small non-coding RNA data obtained by smallRNA-Seq. BMC Bioinformatics. 2013;14(1):362.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gjaltema RAF, Schulz EG. CRISPR/dCas9 switch systems for temporal transcriptional control. In: Jeltsch A, Rots MG, editors. Epigenome editing: methods and protocols. New York: Springer; 2018. p. 167–85.

    Chapter  Google Scholar 

  • Glass D, et al. Gene expression changes with age in skin, adipose tissue, blood and brain. Genome Biol. 2013;14(7):R75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gómez-Suaga P, et al. ER–mitochondria signaling in Parkinson’s disease. Cell Death Dis. 2018;9(3):1–12.

    Article  CAS  Google Scholar 

  • Gonçalves IdCG, et al. Neuronal activity regulates DROSHA via autophagy in spinal muscular atrophy. Sci Rep. 2018;8(1):1–15.

    Google Scholar 

  • Gossen M, Bujard H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci. 1992;89(12):5547–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gossen M, et al. Transcriptional activation by tetracyclines in mammalian cells. Science. 1995;268(5218):1766–9.

    Article  CAS  PubMed  Google Scholar 

  • Gryaznov SM. Oligonucleotide N3’ → P5’ phosphoramidates and thio-phoshoramidates as potential therapeutic agents. Chem Biodivers. 2010;7(3):477–93.

    Article  CAS  PubMed  Google Scholar 

  • Guda S, et al. miRNA-embedded shRNAs for lineage-specific BCL11A knockdown and hemoglobin F induction. Mol Ther. 2015;23(9):1465–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guedes JR, et al. MicroRNA deregulation and chemotaxis and phagocytosis impairment in Alzheimer’s disease. Alzheimers Dement. 2016;3(1):7–17.

    Google Scholar 

  • Guillén C, Benito M. mTORC1 overactivation as a key aging factor in the progression to type 2 diabetes mellitus. Front Endocrinol. 2018;9:621.

    Article  Google Scholar 

  • Guo Y-P, et al. Global gene knockout of Kcnip3 enhances pain sensitivity and exacerbates negative emotions in rats. Front Mol Neurosci. 2019;12:5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta V, et al. shortran: a pipeline for small RNA-seq data analysis. Bioinformatics. 2012;28(20):2698–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hackenberg M, Rodríguez-Ezpeleta N, Aransay AM. miRanalyzer: an update on the detection and analysis of microRNAs in high-throughput sequencing experiments. Nucleic Acids Res. 2011;39(Suppl 2):W132–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hackl M, et al. miR-17, miR-19b, miR-20a, and miR-106a are down-regulated in human aging. Aging Cell. 2010;9(2):291–6.

    Article  CAS  PubMed  Google Scholar 

  • Hafner M, Landthaler M, Burger L, Khorshid M, Hausser J, Berninger P, Rothballer A, Ascano M Jr, Jungkamp A-C, Munschauer M, Ulrich A, Wardle GS, Dewell S, Zavolan M, Tuschl T. Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell. 2010;141(1):129–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halawani D, Latterich M. p97: the cell’s molecular purgatory? Mol Cell. 2006;22(6):713–7.

    Article  CAS  PubMed  Google Scholar 

  • Hall AHS, et al. RNA interference using boranophosphate siRNAs: structure–activity relationships. Nucleic Acids Res. 2004;32(20):5991–6000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall B, Limaye A, Kulkarni AB. Overview: generation of gene knockout mice. Curr Protoc Cell Biol. 2009;44(1):19.12.1–19.12.17.

    Article  Google Scholar 

  • Hansen TB, et al. miRdentify: high stringency miRNA predictor identifies several novel animal miRNAs. Nucleic Acids Res. 2014;42(16):e124.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, Yokoyama M, Mishima K, Saito I, Okano H, Mizushima N. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature. 2006;441(7095):885–9.

    Article  CAS  PubMed  Google Scholar 

  • Haraguchi T, Ozaki Y, Iba H. Vectors expressing efficient RNA decoys achieve the long-term suppression of specific microRNA activity in mammalian cells. Nucleic Acids Res. 2009;37(6):e43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science. 2002;297(5580):353–6.

    Article  CAS  PubMed  Google Scholar 

  • Harris H, Rubinsztein DC. Control of autophagy as a therapy for neurodegenerative disease. Nat Rev Neurol. 2012;8(2):108–17.

    Article  CAS  Google Scholar 

  • Hars ES, et al. Autophagy regulates ageing in C. elegans. Autophagy. 2007;3(2):93–5.

    Article  CAS  PubMed  Google Scholar 

  • Hausser J, et al. Analysis of CDS-located miRNA target sites suggests that they can effectively inhibit translation. Genome Res. 2013;23(4):604–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He M. miRNA tagging and affinity-purification (miRAP). Bio Protoc. 2012;2(19):e265.

    Article  PubMed  Google Scholar 

  • He X, et al. Basic and clinical application of adeno-associated virus–mediated genome editing. Hum Gene Ther. 2018;30(6):673–81.

    Article  CAS  Google Scholar 

  • Helwak A, Tollervey D. Mapping the miRNA interactome by cross-linking ligation and sequencing of hybrids (CLASH). Nat Protoc. 2014;9(3):711–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoareau-Aveilla C, Valentin T, Daugrois C, Quelen C, Mitou G, Quentin S, Jia J, Spicuglia S, Ferrier P, Ceccon M, Giuriato S, Gambacorti-Passerini C, Brousset P, Lamant L, Meggetto F. Reversal of microRNA-150 silencing disadvantages crizotinib-resistant NPM-ALK(+) cell growth. J Clin Invest. 2015;125(9):3505–18.

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang H, et al. Transduction with lentiviral vectors altered the expression profile of host microRNAs. J Virol. 2018;92(18):e00503–18.

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang JA-O, et al. The microRNAs miR-204 and miR-211 maintain joint homeostasis and protect against osteoarthritis progression. Nat Commun. 2019;10(1):2876.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hutter K, et al. SAFB2 enables the processing of suboptimal stem-loop structures in clustered primary miRNA transcripts. Mol Cell. 2020;78(5):876–89.

    Article  CAS  PubMed  Google Scholar 

  • Ibáñez P, et al. Mutational analysis of the PINK1 gene in early-onset parkinsonism in Europe and North Africa. Brain. 2006;129(3):686–94.

    Article  PubMed  Google Scholar 

  • Ibáñez-Ventoso C, et al. Modulated microRNA expression during adult lifespan in Caenorhabditis elegans. Aging Cell. 2006;5(3):235–46.

    Article  PubMed  CAS  Google Scholar 

  • Indra AK, et al. Temporally-controlled site-specific mutagenesis in the basal layer of the epidermis: comparison of the recombinase activity of the tamoxifen-inducible Cre-ERT and Cre-ERT2 recombinases. Nucleic Acids Res. 1999;27(22):4324–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inukai S, de Lencastre A, Turner M, Slack F. Novel microRNAs differentially expressed during aging in the mouse brain. PLoS One. 2012;7(7):e40028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iovino N, et al. A loxP-containing pol II promoter for RNA interference is reversibly regulated by Cre recombinase. RNA Biol. 2005;2(3):86–92.

    Article  CAS  PubMed  Google Scholar 

  • Isakov O, et al. Novel insight into the non-coding repertoire through deep sequencing analysis. Nucleic Acids Res. 2012;40(11):e86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jack SS, Barbara Ramsay S. Boranophosphates as mimics of natural phosphodiesters in DNA. Curr Med Chem. 2001;8(10):1147–55.

    Article  Google Scholar 

  • Jackson AL, et al. Position-specific chemical modification of siRNAs reduces “off-target” transcript silencing. RNA. 2006;12(7):1197–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jankovic MZ, et al. Identification of mutations in the PARK2 gene in Serbian patients with Parkinson’s disease. J Neurol Sci. 2018;393:27–30.

    Article  CAS  PubMed  Google Scholar 

  • Jankowsky JL, Fadale DJ, Anderson J, Xu GM, Gonzales V, Jenkins NA, Copeland NG, Lee MK, Younkin LH, Wagner SL, Younkin SG, Borchelt DR. Mutant presenilins specifically elevate the levels of the 42 residue beta-amyloid peptide in vivo: evidence for augmentation of a 42-specific gamma secretase. Hum Mol Genet. 2004;13(2):159–70.

    Article  CAS  PubMed  Google Scholar 

  • Jeon I, et al. Human-to-mouse prion-like propagation of mutant huntingtin protein. Acta Neuropathol. 2016;132(4):677–592.

    Article  CAS  Google Scholar 

  • Jeong D, et al. miR-25 tough decoy enhances cardiac function in heart failure. Mol Ther. 2018;26(3):718–29.

    Article  CAS  PubMed  Google Scholar 

  • Jiang X, et al. Targeting hepatic miR-221/222 for therapeutic intervention of nonalcoholic steatohepatitis in mice. EBioMedicine. 2018;37:307–21.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jin L, Lloyd RV. In situ hybridization: methods and applications. J Clin Lab Anal. 1997;11(1):2–9.

    Article  CAS  PubMed  Google Scholar 

  • Jin HY, et al. Transfection of microRNA mimics should be used with caution. Front Genet. 2015;6:340.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jin P, et al. Autophagy-mediated clearance of ubiquitinated mutant huntingtin by graphene oxide. Nanoscale. 2016;8(44):18740–50.

    Article  CAS  PubMed  Google Scholar 

  • Ju J-S, Fuentealba RA, Miller SE, Jackson E, Piwnica-Worms D, Baloh RH, Weihl CC. Valosin-containing protein (VCP) is required for autophagy and is disrupted in VCP disease. J Cell Biol. 2009;187(6):875–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kafri T, et al. Lentiviral vectors: regulated gene expression. Mol Ther. 2000;1(6):516–21.

    Article  CAS  PubMed  Google Scholar 

  • Kakrana A, et al. sPARTA: a parallelized pipeline for integrated analysis of plant miRNA and cleaved mRNA data sets, including new miRNA target-identification software. Nucleic Acids Res. 2014;42(18):e139.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kametani F, Hasegawa M. Reconsideration of amyloid hypothesis and tau hypothesis in Alzheimer’s disease. Front Neurosci. 2018;12:25.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kawasaki AM, et al. Uniformly modified 2’-deoxy-2’-fluoro-phosphorothioate oligonucleotides as nuclease-resistant antisense compounds with high affinity and specificity for RNA targets. J Med Chem. 1993;36(7):831–41.

    Article  CAS  PubMed  Google Scholar 

  • Khalil H, et al. Aging is associated with hypermethylation of autophagy genes in macrophages. Epigenetics. 2016;11(5):381–8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kiernan MC, et al. Amyotrophic lateral sclerosis. Lancet. 2011;377(9769):942–55.

    Article  CAS  PubMed  Google Scholar 

  • Kiffin R, et al. Altered dynamics of the lysosomal receptor for chaperone-mediated autophagy with age. J Cell Sci. 2007;120(5):782.

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Inoue K, Ishii J, Vanti WB, Voronov SV, Murchison E, Hannon G, Abeliovich A. A MicroRNA feedback circuit in midbrain dopamine neurons. Science (New York, NY). 2007;317(5842):1220–4.

    Article  CAS  Google Scholar 

  • Kim J, Kundu M, Viollet B, Guan K-L. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol. 2011;13(2):132–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim J, et al. MAGI: a Node.js web service for fast microRNA-Seq analysis in a GPU infrastructure. Bioinformatics. 2014;30(19):2826–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim J, et al. miR-27a and miR-27b regulate autophagic clearance of damaged mitochondria by targeting PTEN-induced putative kinase 1 (PINK1). Mol Neurodegener. 2016a;11(1):1–16.

    Article  CAS  Google Scholar 

  • Kim M, et al. Mutation in ATG5 reduces autophagy and leads to ataxia with developmental delay. elife. 2016b;5:e12245.

    Article  PubMed  PubMed Central  Google Scholar 

  • Klein C, et al. PINK1, Parkin, and DJ-1 mutations in Italian patients with early-onset parkinsonism. Eur J Hum Genet. 2005;13(9):1086–93.

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi T, et al. Dicer-dependent pathways regulate chondrocyte proliferation and differentiation. Proc Natl Acad Sci U S A. 2008;105(6):1949–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Komatsu M, Wang QJ, Holstein GR, Friedrich VL Jr, Iwata J-i, Kominami E, Chait BT, Tanaka K, Yue Z. Essential role for autophagy protein Atg7 in the maintenance of axonal homeostasis and the prevention of axonal degeneration. Proc Natl Acad Sci U S A. 2007;104(36):14489–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koo EH, Lansbury PT Jr, Kelly JW. Amyloid diseases: abnormal protein aggregation in neurodegeneration. Proc Natl Acad Sci U S A. 1999;96(18):9989–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kouprina N, et al. A new generation of human artificial chromosomes for functional genomics and gene therapy. Cell Mol Life Sci. 2013;70(7):1135–48.

    Article  CAS  PubMed  Google Scholar 

  • Krasniak CS, Ahmad ST. The role of CHMP2B (Intron5) in autophagy and frontotemporal dementia. Brain Res. 2016;1649:151–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krek A, et al. Combinatorial microRNA target predictions. Nat Genet. 2005;37(5):495–500.

    Article  CAS  PubMed  Google Scholar 

  • Krismer F, et al. Intact olfaction in a mouse model of multiple system atrophy. PLoS One. 2013;8(5):e64625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krützfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, Stoffel M. Silencing of microRNAs in vivo with ‘antagomirs’. Nature. 2005;438(7068):685–9.

    Article  PubMed  CAS  Google Scholar 

  • Krützfeldt J, et al. Specificity, duplex degradation and subcellular localization of antagomirs. Nucleic Acids Res. 2007;35(9):2885–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kuenne C, et al. MIRPIPE: quantification of microRNAs in niche model organisms. Bioinformatics. 2014;30(23):3412–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuhn DE, et al. Experimental validation of miRNA targets. Methods. 2008;44(1):47–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuhn DE, Nuovo GJ, Terry AV Jr, Martin MM, Malana GE, Sansom SE, Pleister AP, Beck WD, Head E, Feldman DS, Elton TS. Chromosome 21-derived microRNAs provide an etiological basis for aberrant protein expression in human down syndrome brains. J Biol Chem. 2013;288(6):4228.

    Article  CAS  PubMed Central  Google Scholar 

  • Kuhnert F, Mancuso MR, Hampton J, Stankunas K, Asano T, Chen C-Z, Kuo CJ. Attribution of vascular phenotypes of the murine Egfl7 locus to the microRNA miR-126. Development. 2008;135(24):3989–93.

    Article  CAS  PubMed  Google Scholar 

  • Lai Q, et al. Chapter 8—Roles of microRNAs in Parkinson’s and other neurodegenerative diseases. In: Mallick B, editor. AGO-driven non-coding RNAs. San Diego: Academic; 2019. p. 209–32.

    Chapter  Google Scholar 

  • Lal A, et al. miR-24 inhibits cell proliferation by targeting E2F2, MYC, and other cell-cycle genes via binding to “seedless” 3’UTR microRNA recognition elements. Mol Cell. 2009;35(5):610–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, Pfeffer S, Rice A, Kamphorst AO, Landthaler M, Lin C, Socci ND, Hermida L, Fulci V, Chiaretti S, Foà R, Schliwka J, Fuchs U, Novosel A, Müller R-U, Schermer B, Bissels U, Inman J, Phan Q, Chien M, Weir DB, Choksi R, De Vita G, Frezzetti D, Trompeter H-I, Hornung V, Teng G, Hartmann G, Palkovits M, Di Lauro R, Wernet P, Macino G, Rogler CE, Nagle JW, Ju J, Papavasiliou FN, Benzing T, Lichter P, Tam W, Brownstein MJ, Bosio A, Borkhardt A, Russo JJ, Sander C, Zavolan M, Tuschl T. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell. 2007;129(7):1401–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JA, Gao FB. Inhibition of autophagy induction delays neuronal cell loss caused by dysfunctional ESCRT-III in frontotemporal dementia. J Neurosci. 2009;29(26):8506–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee Y, et al. The nuclear RNase III Drosha initiates microRNA processing. Nature. 2003;425(6956):415–9.

    Article  CAS  PubMed  Google Scholar 

  • Lee Y, et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 2004;23(20):4051–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee S-T, et al. MiR-206 regulates brain-derived neurotrophic factor in Alzheimer disease model. Ann Neurol. 2012;72(2):269–77.

    Article  CAS  PubMed  Google Scholar 

  • Lei J, Sun Y. miR-PREFeR: an accurate, fast and easy-to-use plant miRNA prediction tool using small RNA-Seq data. Bioinformatics. 2014;30(19):2837–9.

    Article  CAS  PubMed  Google Scholar 

  • Lewandoski M. Conditional control of gene expression in the mouse. Nat Rev Genet. 2001;2(10):743–55.

    Article  CAS  PubMed  Google Scholar 

  • Lewis BP, Shih I-h, Jones-Rhoades MW, Bartel DP, Burge CB. The microRNA.org resource: targets and expression. Cell. 2003;115(7):787–98.

    Article  CAS  PubMed  Google Scholar 

  • Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120(1):15–20.

    Article  CAS  PubMed  Google Scholar 

  • Lewis MA, Quint E, Glazier AM, Fuchs H, De Angelis MH, Langford C, van Dongen S, Abreu-Goodger C, Piipari M, Redshaw N, Dalmay T, Moreno-Pelayo MA, Enright AJ, Steel KP. An ENU-induced mutation of miR-96 associated with progressive hearing loss in mice. Nat Genet. 2009;41(5):614–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li W, Ruan K. MicroRNA detection by microarray. Anal Bioanal Chem. 2009;394(4):1117–24.

    Article  CAS  PubMed  Google Scholar 

  • Li C, et al. Downregulation of microRNA-193b-3p promotes autophagy and cell survival by targeting TSC1/mTOR signaling in NSC-34 cells. Front Mol Neurosci. 2017a;10:160.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li N, et al. Plasma levels of miR-137 and miR-124 are associated with Parkinson’s disease but not with Parkinson’s disease with depression. Neurol Sci. 2017b;38(5):761–7.

    Article  PubMed  Google Scholar 

  • Li Y-H, et al. The E3 ligase for metastasis associated 1 protein, TRIM25, is targeted by microRNA-873 in hepatocellular carcinoma. Exp Cell Res. 2018a;368(1):37–41.

    Article  CAS  PubMed  Google Scholar 

  • Li H, et al. FTO is involved in Alzheimer’s disease by targeting TSC1-mTOR-Tau signaling. Biochem Biophys Res Commun. 2018b;498(1):234–9.

    Article  CAS  PubMed  Google Scholar 

  • Lim LP, et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature. 2005;433(7027):769–73.

    Article  CAS  PubMed  Google Scholar 

  • Ling H, Calin GA. Chapter 25—The role of microRNAs and ultraconserved non-coding RNAs in cancer. In: Dellaire G, Berman JN, Arceci RJ, editors. Cancer genomics. Boston: Academic; 2014. p. 435–47.

    Chapter  Google Scholar 

  • Liu W, Wang X. Prediction of functional microRNA targets by integrative modeling of microRNA binding and target expression data. Genome Biol. 2019;20(1):18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu L, Feng D, Chen G, Chen M, Zheng Q, Song P, Ma Q, Zhu C, Wang R, Qi W, Huang L, Xue P, Li B, Wang X, Jin H, Wang J, Yang F, Liu P, Zhu Y, Sui S, Chen Q. Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat Cell Biol. 2012a;14(2):177–85.

    Article  PubMed  CAS  Google Scholar 

  • Liu C, et al. MirSNP, a database of polymorphisms altering miRNA target sites, identifies miRNA-related SNPs in GWAS SNPs and eQTLs. BMC Genomics. 2012b;13(1):661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Londin E, et al. Analysis of 13 cell types reveals evidence for the expression of numerous novel primate- and tissue-specific microRNAs. Proc Natl Acad Sci U S A. 2015;112(10):E1106–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loureiro A, da Silva GJ. CRISPR-Cas: converting a bacterial defence mechanism into a state-of-the-art genetic manipulation tool. Antibiotics (Basel). 2019;8(1):18.

    Article  CAS  Google Scholar 

  • Lu TX, Rothenberg ME. MicroRNA. J Allergy Clin Immunol. 2018;141(4):1202–7.

    Article  CAS  PubMed  Google Scholar 

  • Lu T-P, et al. miRSystem: an integrated system for characterizing enriched functions and pathways of microRNA targets. PLoS One. 2012;7(8):e42390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lujan H, et al. Synthesis and characterization of nanometer-sized liposomes for encapsulation and microRNA transfer to breast cancer cells. Int J Nanomedicine. 2019;14:5159–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo X, et al. PolyA RT-PCR-based quantification of microRNA by using universal TaqMan probe. Biotechnol Lett. 2012;34(4):627–33.

    Article  CAS  PubMed  Google Scholar 

  • Ma H, Zhang J, Wu H. Designing Ago2-specific siRNA/shRNA to avoid competition with endogenous miRNAs. Mol Ther Nucleic Acids. 2014;3:e176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maes OC, et al. Murine microRNAs implicated in liver functions and aging process. Mech Ageing Dev. 2008;129(9):534–41.

    Article  CAS  PubMed  Google Scholar 

  • Maes OC, Sarojini H, Wang E. Stepwise up-regulation of MicroRNA expression levels from replicating to reversible and irreversible growth arrest states in WI-38 human fibroblasts. J Cell Physiol. 2009;221(1):109–19.

    Article  CAS  PubMed  Google Scholar 

  • Majlessi M, Nelson NC, Becker MM. Advantages of 2′-O-methyl oligoribonucleotide probes for detecting RNA targets. Nucleic Acids Res. 1998;26(9):2224–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manoharan M. 2’-Carbohydrate modifications in antisense oligonucleotide therapy: importance of conformation, configuration and conjugation. Biochim Biophys Acta Gene Struct Express. 1999;1489(1):117–30.

    Article  CAS  Google Scholar 

  • Marone M, et al. Semiquantitative RT-PCR analysis to assess the expression levels of multiple transcripts from the same sample. Biol Procedures online. 2001;3(1):19–25.

    Article  CAS  Google Scholar 

  • Martin MM, Lee EJ, Buckenberger JA, Schmittgen TD, Elton TS. MicroRNA-155 regulates human angiotensin II type 1 receptor expression in fibroblasts. J Biol Chem. 2013;288(6):4226.

    Article  CAS  PubMed Central  Google Scholar 

  • Martin DD, et al. Autophagy in Huntington disease and huntingtin in autophagy. Trends Neurosci. 2015;38(1):26–35.

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Vicente M, Talloczy Z, Wong E, Tang G, Koga H, Kaushik S, de Vries R, Arias E, Harris S, Sulzer D, Cuervo AM. Cargo recognition failure is responsible for inefficient autophagy in Huntington’s disease. Nat Neurosci. 2010;13(5):567–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathelier A, Carbone A. MIReNA: finding microRNAs with high accuracy and no learning at genome scale and from deep sequencing data. Bioinformatics. 2010;26(18):2226–34.

    Article  CAS  PubMed  Google Scholar 

  • Maurin T, et al. RNase III-independent microRNA biogenesis in mammalian cells. RNA. 2012;18(12):2166–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McLaughlin J, et al. Sustained suppression of Bcr-Abl-driven lymphoid leukemia by microRNA mimics. Proc Natl Acad Sci. 2007;104(51):20501–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Medina PP, Nolde M, Slack FJ. OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma. Nature. 2010;467(7311):86–90.

    Article  CAS  PubMed  Google Scholar 

  • Meyer SU, Pfaffl MW, Ulbrich SE. Normalization strategies for microRNA profiling experiments: a ‘normal’ way to a hidden layer of complexity? Biotechnol Lett. 2010;32(12):1777–88.

    Article  CAS  PubMed  Google Scholar 

  • Mimura S, et al. Profile of microRNAs associated with aging in rat liver. Int J Mol Med. 2014;34(4):1065–72.

    Article  CAS  PubMed  Google Scholar 

  • Missirlis PI, Smailus DE, Holt RA. A high-throughput screen identifying sequence and promiscuity characteristics of the loxP spacer region in Cre-mediated recombination. BMC Genomics. 2006;7(1):73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mitsumura TA-O, et al. Ablation of miR-146b in mice causes hematopoietic malignancy. Blood Adv. 2018;2(23):3483–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyagishi M, Taira K. U6 promoter–driven siRNAs with four uridine 3′ overhangs efficiently suppress targeted gene expression in mammalian cells. Nat Biotechnol. 2002;20(5):497–500.

    Article  CAS  PubMed  Google Scholar 

  • Mong EF, et al. Chromosome 19 microRNA cluster enhances cell reprogramming by inhibiting epithelial-to-mesenchymal transition. Sci Rep. 2020;10(1):3029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mook OR, Baas F, de Wissel MB, Fluiter K. Evaluation of locked nucleic acid-modified small interfering RNA in vitro and in vivo. Mol Cancer Ther. 2007;6(3):833–43.

    Article  CAS  PubMed  Google Scholar 

  • Mori MA, Raghavan P, Thomou T, Boucher J, Robida-Stubbs S, Macotela Y, Russell SJ, Kirkland JL, Blackwell TK, Kahn CR. Role of microRNA processing in adipose tissue in stress defense and longevity. Cell Metab. 2012;16(3):336–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mourelatos Z. The seeds of silence. Nature. 2008;455(7209):44–5.

    Article  CAS  PubMed  Google Scholar 

  • Muller H, Marzi MJ, Nicassio F. IsomiRage: from functional classification to differential expression of miRNA isoforms. Front Bioeng Biotechnol. 2014;2:38.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mun B, et al. Efficient self-assembled microRNA delivery system consisting of cholesterol-conjugated microRNA and PEGylated polycationic polymer for tumor treatment. ACS Appl Bio Mater. 2019;2(5):2219–28.

    Article  CAS  PubMed  Google Scholar 

  • Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT, Bruce J, Schuck T, Grossman M, Clark CM, McCluskey LF, Miller BL, Masliah E, Mackenzie IR, Feldman H, Feiden W, Kretzschmar HA, Trojanowski JQ, Lee VM. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science. 2006;314(5796):130–3.

    Article  CAS  PubMed  Google Scholar 

  • Nicklin Stuart A, et al. Analysis of cell-specific promoters for viral gene therapy targeted at the vascular endothelium. Hypertension. 2001;38(1):65–70.

    Article  Google Scholar 

  • Nielsen BS. MicroRNA in situ hybridization. In: Fan J-B, editor. Next-generation microRNA expression profiling technology: methods and protocols. Totowa: Humana Press; 2012. p. 67–84.

    Chapter  Google Scholar 

  • Nielsen TT, et al. Neuron-specific RNA interference using lentiviral vectors. J Gene Med. 2009;11(7):559–69.

    Article  CAS  PubMed  Google Scholar 

  • Nilsson P, et al. Aβ secretion and plaque formation depend on autophagy. Cell Rep. 2013;5(1):61–9.

    Article  CAS  PubMed  Google Scholar 

  • Nixon RA. Autophagy, amyloidogenesis and Alzheimer disease. J Cell Sci. 2007;120(23):4081–91.

    Article  CAS  PubMed  Google Scholar 

  • Nixon RA. The role of autophagy in neurodegenerative disease. Nat Med. 2013;19(8):983–97.

    Article  CAS  PubMed  Google Scholar 

  • Noirot C, et al. LeARN: a platform for detecting, clustering and annotating non-coding RNAs. BMC Bioinformatics. 2008;9(1):21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nonaka T, Masuda-Suzukake M, Arai T, Hasegawa Y, Akatsu H, Obi T, Yoshida M, Murayama S, Mann DMA, Akiyama H, Hasegawa M. Prion-like properties of pathological TDP-43 aggregates from diseased brains. Cell Rep. 2013;4(1):124–34.

    Article  CAS  PubMed  Google Scholar 

  • Noren Hooten N, et al. microRNA expression patterns reveal differential expression of target genes with age. PLoS One. 2010;5(5):e10724.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Noren Hooten N, et al. Age-related changes in microRNA levels in serum. Aging. 2013;5(10):725–40.

    Article  PubMed  Google Scholar 

  • Nunez-Iglesias J, et al. Joint genome-wide profiling of miRNA and mRNA expression in Alzheimer’s disease cortex reveals altered miRNA regulation. PLoS One. 2010;5(2):e8898.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oak N, et al. Framework for microRNA variant annotation and prioritization using human population and disease datasets. Hum Mutat. 2019;40(1):73–89.

    Article  CAS  PubMed  Google Scholar 

  • Ochaba J, et al. Potential function for the Huntingtin protein as a scaffold for selective autophagy. Proc Natl Acad Sci U S A. 2014;111(47):16889–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okamura K, et al. The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila. Cell. 2007;130(1):89–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orr ME, Sullivan AC, Frost B. A brief overview of tauopathy: causes, consequences, and therapeutic strategies. Trends Pharmacol Sci. 2017;38(7):637–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paddison PJ, Caudy AA, Bernstein E, Hannon GJ, Conklin DS. Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev. 2002;16(8):948–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pallan PS, et al. Unexpected origins of the enhanced pairing affinity of 2′-fluoro-modified RNA. Nucleic Acids Res. 2010;39(8):3482–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pandolfini L, et al. METTL1 promotes let-7 microRNA processing via m7G methylation. Mol Cell. 2019;74(6):1278–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pantano L, Estivill X, Martí E. SeqBuster, a bioinformatic tool for the processing and analysis of small RNAs datasets, reveals ubiquitous miRNA modifications in human embryonic cells. Nucleic Acids Res. 2009;38(5):e34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Park J-S, et al. Comparative nucleic acid transfection efficacy in primary hepatocytes for gene silencing and functional studies. BMC Res Notes. 2011;4(1):8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parker R, Song H. The enzymes and control of eukaryotic mRNA turnover. Nat Struct Mol Biol. 2004;11(2):121–7.

    Article  CAS  PubMed  Google Scholar 

  • Pattanayak S, et al. Chapter 4—Combinatorial control of gene function with wavelength-selective caged morpholinos. In: Deiters A, editor. Methods in enzymology. Academic; 2019. p. 69–88.

    Google Scholar 

  • Peltier HJ, Latham GJ. Normalization of microRNA expression levels in quantitative RT-PCR assays: identification of suitable reference RNA targets in normal and cancerous human solid tissues. RNA (New York, NY). 2008;14(5):844–52.

    Article  CAS  Google Scholar 

  • Petersén A, Larsen KE, Behr GG, Romero N, Przedborski S, Brundin P, Sulzer D. Expanded CAG repeats in exon 1 of the Huntington’s disease gene stimulate dopamine-mediated striatal neuron autophagy and degeneration. Hum Mol Genet. 2001;10(12):1243–54.

    Article  PubMed  Google Scholar 

  • Piatek MJ, Werner A. Endogenous siRNAs: regulators of internal affairs. Biochem Soc Trans. 2014;42(4):1174–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pichard V, et al. Specific micro RNA-regulated TetR-KRAB transcriptional control of transgene expression in viral vector-transduced cells. PLoS One. 2012;7(12):e51952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piovan C, et al. Generation of mouse lines conditionally over-expressing microRNA using the Rosa26-Lox-Stop-Lox system. In: Singh SR, Coppola V, editors. Mouse genetics: methods and protocols. New York: Springer; 2014. p. 203–24.

    Chapter  Google Scholar 

  • Pircs K, et al. Huntingtin aggregation impairs autophagy, leading to argonaute-2 accumulation and global microRNA dysregulation. Cell Rep. 2018;24(6):1397–406.

    Article  CAS  PubMed  Google Scholar 

  • Platt RJ, et al. CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell. 2014;159(2):440–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pluta K, et al. Lentiviral vectors encoding tetracycline-dependent repressors and transactivators for reversible knockdown of gene expression: a comparative study. BMC Biotechnol. 2007;7(1):41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Poehler A-M, et al. Autophagy modulates SNCA/α-synuclein release, thereby generating a hostile microenvironment. Autophagy. 2014;10(12):2171–92.

    Article  CAS  PubMed  Google Scholar 

  • Poursadegh Zonouzi AA, Shekari M, Nejatizadeh A, Shakerizadeh S, Fardmanesh H, Poursadegh Zonouzi A, Rahmati-Yamchi M, Tozihi M. Impaired expression of Drosha in breast cancer. Breast Dis. 2017;37(2):55–62.

    Article  CAS  PubMed  Google Scholar 

  • Prakash TP, et al. Positional effect of chemical modifications on short interference RNA activity in mammalian cells. J Med Chem. 2005;48(13):4247–53.

    Article  CAS  PubMed  Google Scholar 

  • Prosser HM, et al. A resource of vectors and ES cells for targeted deletion of microRNAs in mice. Nat Biotechnol. 2011;29(9):840–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pukaß K, Richter-Landsberg C. Inhibition of UCH-L1 in oligodendroglial cells results in microtubule stabilization and prevents α-synuclein aggregate formation by activating the autophagic pathway: implications for multiple system atrophy. Front Cell Neurosci. 2015;9:163.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qadota H, et al. Establishment of a tissue-specific RNAi system in C. elegans. Gene. 2007;400(1):166–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi LS, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell. 2013;152(5):1173–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qian K, et al. miRSeqNovel: an R based workflow for analyzing miRNA sequencing data. Mol Cell Probes. 2012;26(5):208–11.

    Article  CAS  PubMed  Google Scholar 

  • Qibin L, Jiang W. MIREAP: microRNA discovery by deep sequencing. 2008.

    Google Scholar 

  • Rabinowitz JD, White E. Autophagy and metabolism. Science. 2010;330(6009):1344–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramkissoon SH, Mainwaring LA, Sloand EM, Young NS, Kajigaya S. Nonisotopic detection of microRNA using digoxigenin labeled RNA probes. Mol Cell Probes. 2006;20(1):1–4.

    Article  CAS  PubMed  Google Scholar 

  • Ran FA, et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature. 2015;520(7546):186–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rand TA, et al. Argonaute2 cleaves the anti-guide strand of siRNA during RISC activation. Cell. 2005;123(4):621–9.

    Article  CAS  PubMed  Google Scholar 

  • Ravi A, et al. Proliferation and tumorigenesis of a murine sarcoma cell line in the absence of DICER1. Cancer Cell. 2012;21(6):848–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ravikumar B, Duden R, Rubinsztein DC. Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Hum Mol Genet. 2002;11(9):1107–17.

    Article  CAS  PubMed  Google Scholar 

  • Raymond CK, Roberts BS, Garrett-Engele P, Lim LP, Johnson JM. Simple, quantitative primer-extension PCR assay for direct monitoring of microRNAs and short-interfering RNAs. RNA. 2005;11(11):1737–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rettig GR, Behlke MA. Progress toward in vivo use of siRNAs-II. Mol Ther. 2012;20(3):483–512.

    Article  CAS  PubMed  Google Scholar 

  • Rocha EM, De Miranda B, Sanders LH. Alpha-synuclein: pathology, mitochondrial dysfunction and neuroinflammation in Parkinson’s disease. Neurobiol Dis. 2018;109:249–57.

    Article  CAS  PubMed  Google Scholar 

  • Ronen R, et al. miRNAkey: a software for microRNA deep sequencing analysis. Bioinformatics. 2010;26(20):2615–6.

    Article  CAS  PubMed  Google Scholar 

  • Rubinsztein DC, Mariño G, Kroemer G. Autophagy and aging. Cell. 2011;146(5):682–95.

    Article  CAS  PubMed  Google Scholar 

  • Ruby JG, Jan CH, Bartel DP. Intronic microRNA precursors that bypass Drosha processing. Nature. 2007;448(7149):83–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rueda A, et al. sRNAtoolbox: an integrated collection of small RNA research tools. Nucleic Acids Res. 2015;43(W1):W467–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rui YN, et al. Huntingtin functions as a scaffold for selective macroautophagy. Nat Cell Biol. 2015;17(3):262–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruimeng L, Jin Z, Yan L. PINK1/Parkin-mediated mitochondrial autophagy. Chin J Biochem Mol Biol. 2019;35(10):1072–9.

    Google Scholar 

  • Russell DW, Miller AD, Alexander IE. Adeno-associated virus vectors preferentially transduce cells in S phase. Proc Natl Acad Sci. 1994;91(19):8915–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sabatini DM. Twenty-five years of mTOR: uncovering the link from nutrients to growth. Proc Natl Acad Sci. 2017;114(45):11818–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sablok G, et al. isomiRex: web-based identification of microRNAs, isomiR variations and differential expression using next-generation sequencing datasets. FEBS Lett. 2013;587(16):2629–34.

    Article  CAS  PubMed  Google Scholar 

  • Sala Frigerio C, et al. Reduced expression of hsa-miR-27a-3p in CSF of patients with Alzheimer disease. Neurology. 2013;81(24):2103–6.

    Article  CAS  PubMed  Google Scholar 

  • Salminen A, Kaarniranta K, Kauppinen A, Ojala J, Haapasalo A, Soininen H, Hiltunen M. Impaired autophagy and APP processing in Alzheimer’s disease: the potential role of Beclin 1 interactome. Prog Neurobiol. 2013;106:33–54.

    Article  PubMed  CAS  Google Scholar 

  • Sanders DW, et al. Distinct tau prion strains propagate in cells and mice and define different tauopathies. Neuron. 2014;82(6):1271–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sandoval H, Thiagarajan P, Dasgupta SK, Schumacher A, Prchal JT, Chen M, Wang J. Essential role for Nix in autophagic maturation of erythroid cells. Nature. 2008;454(7201):232–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santulli G. MicroRNAs and endothelial (dys) function. J Cell Physiol. 2016;231(8):1638–44.

    Article  CAS  PubMed  Google Scholar 

  • Schena M, Shalon D, Davis RW, Brown PO. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science. 1995;270(5235):467–70.

    Article  CAS  PubMed  Google Scholar 

  • Schratt G. microRNAs at the synapse. Nat Rev Neurosci. 2009;10(12):842–9.

    Article  CAS  PubMed  Google Scholar 

  • Schwarz L, et al. Involvement of macroautophagy in multiple system atrophy and protein aggregate formation in oligodendrocytes. J Mol Neurosci. 2012;47(2):256–66.

    Article  CAS  PubMed  Google Scholar 

  • Schweers RL, Zhang J, Randall MS, Loyd MR, Li W, Dorsey FC, Kundu M, Opferman JT, Cleveland JL, Miller JL, Ney PA. NIX is required for programmed mitochondrial clearance during reticulocyte maturation. Proc Natl Acad Sci U S A. 2007;104(49):19500–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwenk F, Baron U, Rajewsky K. A cre-transgenic mouse strain for the ubiquitous deletion of loxP-flanked gene segments including deletion in germ cells. Nucleic Acids Res. 1995;23(24):5080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shah SZA, et al. Regulation of microRNAs-mediated autophagic flux: a new regulatory avenue for neurodegenerative diseases with focus on prion diseases. Front Aging Neurosci. 2018;10:139.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shan G, Li Y, Zhang J, Li W, Szulwach KE, Duan R, Faghihi MA, Khalil AM, Lu L, Paroo Z, Chan AWS, Shi Z, Liu Q, Wahlestedt C, He C, Jin P. A small molecule enhances RNA interference and promotes microRNA processing. Nat Biotechnol. 2008;26(8):933–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shang R, et al. Genomic clustering facilitates nuclear processing of suboptimal pri-miRNA loci. Mol Cell. 2020;78(2):303–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharbati-Tehrani S, et al. miR-Q: a novel quantitative RT-PCR approach for the expression profiling of small RNA molecules such as miRNAs in a complex sample. BMC Mol Biol. 2008;9(1):34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sheehan D, et al. Biochemical properties of phosphonoacetate and thiophosphonoacetate oligodeoxyribonucleotides. Nucleic Acids Res. 2003;31(14):4109–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen WC, et al. Mutations in the ubiquitin-binding domain of OPTN/optineurin interfere with autophagy-mediated degradation of misfolded proteins by a dominant-negative mechanism. Autophagy. 2015;11(4):685–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi J, et al. mirPRo–a novel standalone program for differential expression and variation analysis of miRNAs. Sci Rep. 2015;5(1):14617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sinha M, et al. Altered microRNAs in STHdhQ111/HdhQ111 cells: miR-146a targets TBP. Biochem Biophys Res Commun. 2010;396(3):742–7.

    Article  CAS  PubMed  Google Scholar 

  • Smith-Vikos T, Slack FJ. MicroRNAs and their roles in aging. J Cell Sci. 2012;125(1):7–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sosulski ML, et al. Deregulation of selective autophagy during aging and pulmonary fibrosis: the role of TGFβ1. Aging Cell. 2015;14(5):774–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spilman P, et al. Inhibition of mTOR by rapamycin abolishes cognitive deficits and reduces amyloid-β levels in a mouse model of Alzheimer’s disease. PLoS One. 2010;5(4):e9979.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stangegaard M, Høgh Dufva I, Dufva M. Reverse transcription using random pentadecamer primers increases yield and quality of resulting cDNA. BioTechniques. 2006;40(5):649–57.

    Article  CAS  PubMed  Google Scholar 

  • Stegmeier F, et al. A lentiviral microRNA-based system for single-copy polymerase II-regulated RNA interference in mammalian cells. Proc Natl Acad Sci U S A. 2005;102(37):13212–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stern P, et al. A system for Cre-regulated RNA interference in vivo. Proc Natl Acad Sci. 2008;105(37):13895–900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stocks MB, et al. The UEA sRNA workbench: a suite of tools for analysing and visualizing next generation sequencing microRNA and small RNA datasets. Bioinformatics. 2012;28(15):2059–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stöhr J, Watts JC, Mensinger ZL, Oehler A, Grillo SK, DeArmond SJ, Prusiner SB, Giles K. Purified and synthetic Alzheimer’s amyloid beta (Aβ) prions. Proc Natl Acad Sci U S A. 2012;109(27):11025–30.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun L, Li J, Xiao X. Overcoming adeno-associated virus vector size limitation through viral DNA heterodimerization. Nat Med. 2000;6(5):599–602.

    Article  CAS  PubMed  Google Scholar 

  • Sun Y-X, et al. Differential activation of mTOR complex 1 signaling in human brain with mild to severe Alzheimer’s disease. J Alzheimers Dis. 2014a;38(2):437–44.

    Article  CAS  PubMed  Google Scholar 

  • Sun Z, et al. CAP-miRSeq: a comprehensive analysis pipeline for microRNA sequencing data. BMC Genomics. 2014b;15(1):423.

    Article  PubMed  PubMed Central  Google Scholar 

  • Szulc J, et al. A versatile tool for conditional gene expression and knockdown. Nat Methods. 2006;3(2):109–16.

    Article  CAS  PubMed  Google Scholar 

  • Taft RJ, Glazov EA, Lassmann T, Hayashizaki Y, Carninci P, Mattick JS. Small RNAs derived from snoRNAs. RNA. 2009;15(7):1233–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tagawa H, et al. Synergistic action of the microRNA-17 polycistron and Myc in aggressive cancer development. Cancer Sci. 2007;98(9):1482–90.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi H, et al. Comprehensive MRI quantification of the substantia nigra pars compacta in Parkinson’s disease. Eur J Radiol. 2018;109:48–56.

    Article  CAS  PubMed  Google Scholar 

  • Tanenbaum ME, et al. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell. 2014;159(3):635–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanji K, et al. Alteration of autophagosomal proteins in the brain of multiple system atrophy. Neurobiol Dis. 2013;49:190–8.

    Article  CAS  PubMed  Google Scholar 

  • Teyssou E, et al. Mutations in SQSTM1 encoding p62 in amyotrophic lateral sclerosis: genetics and neuropathology. Acta Neuropathol. 2013;125(4):511–22.

    Article  CAS  PubMed  Google Scholar 

  • Tian Y, Bustos V, Flajolet M, Greengard P. A small-molecule enhancer of autophagy decreases levels of Abeta and APP-CTF via Atg5-dependent autophagy pathway. FASEB J. 2011;6:1934–42.

    Article  CAS  Google Scholar 

  • Tolosa E, et al. MicroRNA alterations in iPSC-derived dopaminergic neurons from Parkinson disease patients. Neurobiol Aging. 2018;69:283–91.

    Article  CAS  PubMed  Google Scholar 

  • Trayhurn P. Northern blotting. Proc Nutr Soc. 1996;55(1B):583–9.

    Article  CAS  PubMed  Google Scholar 

  • Tuschl T. Expanding small RNA interference. Nat Biotechnol. 2002;20(5):446–8.

    Article  CAS  PubMed  Google Scholar 

  • Tyler DM, Okamura K, Chung W-J, Hagen JW, Berezikov E, Hannon GJ, Lai EC. Functionally distinct regulatory RNAs generated by bidirectional transcription and processing of microRNA loci. Genes Dev. 2008;22(1):26–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tysnes OB, Storstein A. Epidemiology of Parkinson’s disease. J Neural Transm (Vienna). 2017;124(8):901–5.

    Article  Google Scholar 

  • Uddin MS, Al Mamun A, Labu ZK, Hidalgo-Lanussa O, Barreto GE, Ashraf GM. Autophagic dysfunction in Alzheimer’s disease: cellular and molecular mechanistic approaches to halt Alzheimer’s pathogenesis. J Cell Physiol. 2019;234(6):8094–112.

    Article  CAS  PubMed  Google Scholar 

  • Valente EM, Abou-Sleiman PM, Caputo V, Muqit MMK, Harvey K, Gispert S, Ali Z, Del Turco D, Bentivoglio AR, Healy DG, Albanese A, Nussbaum R, González-Maldonado R, Deller T, Salvi S, Cortelli P, Gilks WP, Latchman DS, Harvey RJ, Dallapiccola B, Auburger G, Wood NW. Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science. 2004a;304(5674):1158–60.

    Article  CAS  PubMed  Google Scholar 

  • Valente EM, Salvi S, Ialongo T, Marongiu R, Elia AE, Caputo V, Romito L, Albanese A, Dallapiccola B, Bentivoglio AR. PINK1 mutations are associated with sporadic early-onset parkinsonism. Ann Neurol. 2004b;56(3):336–41.

    Article  CAS  PubMed  Google Scholar 

  • Valera E, et al. MicroRNA-101 modulates autophagy and oligodendroglial alpha-synuclein accumulation in multiple system atrophy. Front Mol Neurosci. 2017;10:329.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Válóczi A, Hornyik C, Varga N, Burgyán J, Kauppinen S, Havelda Z. Sensitive and specific detection of microRNAs by northern blot analysis using LNA-modified oligonucleotide probes. Nucleic Acids Res. 2004;32(22):e175.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vandesompele J, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002;3(7).

    Google Scholar 

  • Vasudevan S. Functional validation of microRNA-target RNA interactions. Methods. 2012;58(2):126–34.

    Article  CAS  PubMed  Google Scholar 

  • Vella MC, et al. The C. elegans microRNA let-7 binds to imperfect let-7 complementary sites from the lin-41 3’UTR. Genes Dev. 2004;18(2):132–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ventura A, Young AG, Winslow MM, Lintault L, Meissner A, Erkeland SJ, Newman J, Bronson RT, Crowley D, Stone JR, Jaenisch R, Sharp PA, Jacks T. Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell. 2008;132(5):875–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verheijen BM, Vermulst M, van Leeuwen FW. Somatic mutations in neurons during aging and neurodegeneration. Acta Neuropathol. 2018;135(6):811–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vinnikov IA-O, et al. Hypothalamic miR-103 protects from hyperphagic obesity in mice. J Neurosci. 2014;34(32):10659–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vinnikov IA, Domanskyi A, Konopka W. Continuous delivery of oligonucleotides into the brain. In: Kye MJ, editor. MicroRNA technologies. New York: Springer; 2017. p. 89–117.

    Google Scholar 

  • Vitsios DM, Enright AJ. Chimira: analysis of small RNA sequencing data and microRNA modifications. Bioinformatics. 2015;31(20):3365–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voelkerding KV, Dames SA, Durtschi JD. Next-generation sequencing: from basic research to diagnostics. Clin Chem. 2009;55(4):641–58.

    Article  CAS  PubMed  Google Scholar 

  • Wahlestedt C, et al. Potent and nontoxic antisense oligonucleotides containing locked nucleic acids. Proc Natl Acad Sci. 2000;97(10):5633–6638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walczak M, Martens S. Dissecting the role of the Atg12-Atg5-Atg16 complex during autophagosome formation. Autophagy. 2013;9(3):424–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walker FO. Huntington’s disease. Lancet. 2007;369(9557):218–28.

    Article  CAS  PubMed  Google Scholar 

  • Wang X, et al. miR-34a, a microRNA up-regulated in a double transgenic mouse model of Alzheimer’s disease, inhibits bcl2 translation. Brain Res Bull. 2009a;80(4):268–73.

    Article  CAS  PubMed  Google Scholar 

  • Wang W-C, et al. miRExpress: analyzing high-throughput sequencing data for profiling microRNA expression. BMC Bioinformatics. 2009b;10(1):328.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang W-X, et al. Patterns of microRNA expression in normal and early Alzheimer’s disease human temporal cortex: white matter versus gray matter. Acta Neuropathol. 2011;121(2):193–205.

    Article  PubMed  Google Scholar 

  • Wang X, et al. RNA interference of long noncoding RNA HOTAIR suppresses autophagy and promotes apoptosis and sensitivity to cisplatin in oral squamous cell carcinoma. J Oral Pathol Med. 2018;47(10):930–7.

    Article  CAS  PubMed  Google Scholar 

  • Wang X-W, et al. A microRNA-inducible CRISPR–Cas9 platform serves as a microRNA sensor and cell-type-specific genome regulation tool. Nat Cell Biol. 2019;21(4):522–30.

    Article  PubMed  CAS  Google Scholar 

  • Webb JL, Ravikumar B, Atkins J, Skepper JN, Rubinsztein DC. Alpha-Synuclein is degraded by both autophagy and the proteasome. J Biol Chem. 2003;278(27):25009–13.

    Article  CAS  PubMed  Google Scholar 

  • Welborn JP, et al. Rhox8 ablation in the Sertoli cells using a tissue-specific RNAi approach results in impaired male fertility in Mice1. Biol Reprod. 2015;93(1):1–14.

    Article  CAS  Google Scholar 

  • Whitehead KA, et al. Silencing or stimulation? siRNA delivery and the immune system. Annu Rev Chem Biomol Eng. 2011;2(1):77–96.

    Article  CAS  PubMed  Google Scholar 

  • Williams A, et al. Novel targets for Huntington’s disease in an mTOR-independent autophagy pathway. Nat Chem Biol. 2008;4(5):295–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson RC, Doudna JA. Molecular mechanisms of RNA interference. Annu Rev Biophys. 2013;42:217–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woerman AL, et al. α-synuclein: multiple system atrophy prions. Cold Spring Harb Perspect Med. 2018;8(7):2157–1422.

    Article  CAS  Google Scholar 

  • Wong YC, Holzbaur EL. Optineurin is an autophagy receptor for damaged mitochondria in parkin-mediated mitophagy that is disrupted by an ALS-linked mutation. Proc Natl Acad Sci. 2014;111(42):E4439–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong AM, Wang JW, Axel R. Spatial representation of the glomerular map in the Drosophila protocerebrum. Cell. 2002;109(2):229–41.

    Article  CAS  PubMed  Google Scholar 

  • Wong H-KA, Veremeyko T, Patel N, Lemere CA, Walsh DM, Esau C, Vanderburg C, Krichevsky AM. De-repression of FOXO3a death axis by microRNA-132 and -212 causes neuronal apoptosis in Alzheimer’s disease. Hum Mol Genet. 2013;22(15):3077–92.

    Article  CAS  PubMed  Google Scholar 

  • Wong TH, et al. Three VCP mutations in patients with frontotemporal dementia. J Alzheimers Dis. 2018;65(4):1139–46.

    Article  CAS  PubMed  Google Scholar 

  • Wu Z, Yang H, Colosi P. Effect of genome size on AAV vector packaging. Mol Ther. 2010;18(1):80–6.

    Article  CAS  PubMed  Google Scholar 

  • Wu D, et al. Dicer-microRNA pathway is critical for peripheral nerve regeneration and functional recovery in vivo and regenerative axonogenesis in vitro. Exp Neurol. 2012;233(1):555–65.

    Article  CAS  PubMed  Google Scholar 

  • Wu J, et al. mirTools 2.0 for non-coding RNA discovery, profiling, and functional annotation based on high-throughput sequencing. RNA Biol. 2013;10(7):1087–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Q, et al. Methylation of miR-129-5p CpG island modulates multi-drug resistance in gastric cancer by targeting ABC transporters. Oncotarget. 2014;5(22):11552.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu Q, et al. The protective role of microRNA-200c in Alzheimer’s disease pathologies is induced by beta amyloid-triggered endoplasmic reticulum stress. Front Mol Neurosci. 2016;9:140.

    Article  PubMed  PubMed Central  Google Scholar 

  • Xie M, et al. Mammalian 5’-capped microRNA precursors that generate a single microRNA. Cell. 2013;155(7):1568–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu R, et al. MicroRNA-1246 regulates the radio-sensitizing effect of curcumin in bladder cancer cells via activating P53. Int Urol Nephrol. 2019;51(10):1771–9.

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Li L. miRDeep-P: a computational tool for analyzing the microRNA transcriptome in plants. Bioinformatics. 2011;27(18):2614–5.

    Article  CAS  PubMed  Google Scholar 

  • Yang WJ, Yang DD, Na S, Sandusky GE, Zhang Q, Zhao G. Dicer is required for embryonic angiogenesis during mouse development. J Biol Chem. 2005;280(10):9330–5.

    Article  CAS  PubMed  Google Scholar 

  • Yang J-S, Maurin T, Robine N, Rasmussen KD, Jeffrey KL, Chandwani R, Papapetrou EP, Sadelain M, O’Carroll D, Lai EC. Conserved vertebrate mir-451 provides a platform for Dicer-independent, Ago2-mediated microRNA biogenesis. Proc Natl Acad Sci U S A. 2010;107(34):15163–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J-S, Maurin T, Lai EC. Functional parameters of Dicer-independent microRNA biogenesis. RNA. 2012;18(5):945–57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang J, et al. MiR-34 modulates Caenorhabditis elegans lifespan via repressing the autophagy gene atg9. Age. 2013;35(1):11–22.

    Article  PubMed  CAS  Google Scholar 

  • Yang K, et al. isomiR2Function: an integrated workflow for identifying microRNA variants in plants. Front Plant Sci. 2017;8:322.

    PubMed  PubMed Central  Google Scholar 

  • Yao L, et al. MicroRNA-124 regulates the expression of p62/p38 and promotes autophagy in the inflammatory pathogenesis of Parkinson’s disease. FASEB J. 2019;33(7):8648–65.

    Article  CAS  PubMed  Google Scholar 

  • Ye L, et al. Knockdown of TIGAR by RNA interference induces apoptosis and autophagy in HepG2 hepatocellular carcinoma cells. Biochem Biophys Res Commun. 2013;437(2):300–6.

    Article  CAS  PubMed  Google Scholar 

  • Yekta S, Shih I-H, Bartel DP. MicroRNA-directed cleavage of HOXB8 mRNA. Science. 2004;304(5670):594–6.

    Article  CAS  PubMed  Google Scholar 

  • Yin JQ, Zhao RC, Morris KV. Profiling microRNA expression with microarrays. Trends Biotechnol. 2008;26(2):70–6.

    Article  CAS  PubMed  Google Scholar 

  • Yu WH, et al. Macroautophagy—a novel Beta-amyloid peptide-generating pathway activated in Alzheimer’s disease. J Cell Biol. 2005;171(1):87–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu D, et al. Single-stranded RNAs use RNAi to potently and allele-selectively inhibit mutant huntingtin expression. Cell. 2012;150(5):895–908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu L, et al. miRNA Digger: a comprehensive pipeline for genome-wide novel miRNA mining. Sci Rep. 2016;6(1):18901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu CH, et al. TDP-43 triggers mitochondrial DNA release via mPTP to activate cGAS/STING in ALS. Cell. 2020;183(3):636–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan S, et al. Methylation by NSun2 represses the levels and function of microRNA 125b. Mol Cell Biol. 2014a;34(19):3630.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yuan T, et al. eRNA: a graphic user interface-based tool optimized for large data analysis from high-throughput RNA sequencing. BMC Genomics. 2014b;15(1):176.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zarrilli F, et al. Peptide nucleic acids as miRNA target protectors for the treatment of cystic fibrosis. Molecules. 2017;22(7):1144.

    Article  PubMed Central  CAS  Google Scholar 

  • Zeng Y, Wagner EJ, Cullen BR. Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Mol Cell. 2002;9(6):1327–33.

    Article  CAS  PubMed  Google Scholar 

  • Zeng Q, et al. Overexpression of miR-155 promotes the proliferation and invasion of oral squamous carcinoma cells by regulating BCL6/cyclin D2. Int J Mol Med. 2016;37(5):1274–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang C, Cuervo AM. Restoration of chaperone-mediated autophagy in aging liver improves cellular maintenance and hepatic function. Nat Med. 2008;14(9):959–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang R, Peng Y, Wang W, Su B. Rapid evolution of an X-linked microRNA cluster in primates. Genome Res. 2007;17(5):612–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, et al. The cell growth suppressor, mir-126, targets IRS-1. Biochem Biophys Res Commun. 2008;377(1):136–40.

    Article  CAS  PubMed  Google Scholar 

  • Zhang G-L, et al. Suppression of hepatitis B virus replication by microRNA-199a-3p and microRNA-210. Antivir Res. 2010;88(2):169–75.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Kandic I, Kutryk MJ. Dysregulation of angiogenesis-related microRNAs in endothelial progenitor cells from patients with coronary artery disease. Biochem Biophys Res Commun. 2011;405(1):42–6.

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, et al. Conditional gene manipulation: cre-ating a new biological era. J Zhejiang Univ Sci B. 2012;13(7):511–24.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, et al. MTide: an integrated tool for the identification of miRNA–target interaction in plants. Bioinformatics. 2014;31(2):290–1.

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, et al. CRISPR/gRNA-directed synergistic activation mediator (SAM) induces specific, persistent and robust reactivation of the HIV-1 latent reservoirs. Sci Rep. 2015;5(1):16277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, et al. MiR-214-3p attenuates cognition defects via the inhibition of autophagy in SAMP8 mouse model of sporadic Alzheimer’s disease. Neurotoxicology. 2016a;56:139–49.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, et al. MiR-299-5p regulates apoptosis through autophagy in neurons and ameliorates cognitive capacity in APPswe/PS1dE9 mice. Sci Rep. 2016b;6(1):1–14.

    CAS  Google Scholar 

  • Zhang Y, et al. DeAnnIso: a tool for online detection and annotation of isomiRs from small RNA sequencing data. Nucleic Acids Res. 2016c;44(W1):W166–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao W, et al. wapRNA: a web-based application for the processing of RNA sequences. Bioinformatics. 2011;27(21):3076–7.

    Article  CAS  PubMed  Google Scholar 

  • Zhou H, Huang C, Xia XG. A tightly regulated Pol III promoter for synthesis of miRNA genes in tandem. Biochim Biophys Acta. 2008;1779(11):773–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou H, et al. In vivo simultaneous transcriptional activation of multiple genes in the brain using CRISPR–dCas9-activator transgenic mice. Nat Neurosci. 2018;21(3):440–6.

    Article  CAS  PubMed  Google Scholar 

  • Zhou H, et al. Glia-to-neuron conversion by CRISPR-CasRx alleviates symptoms of neurological disease in mice. Cell. 2020;181(3):590–603.

    Article  CAS  PubMed  Google Scholar 

  • Zorc M, et al. Catalog of microRNA seed polymorphisms in vertebrates. PLoS One. 2012;7(1):e30737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zovoilis A, et al. microRNA-34c is a novel target to treat dementias. EMBO J. 2011;30(20):4299–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilya A. Vinnikov .

Editor information

Editors and Affiliations

Ethics declarations

This study was supported by the SJTU startup fund for junior researchers #AF0800059 to Q.L. and the joint grant from ShengYushou Center of Cell Biology and Immunology to I.A.V.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Science Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lai, Q., Kovzel, N., Konovalov, R., Vinnikov, I.A. (2021). MicroRNAs Regulating Autophagy in Neurodegeneration. In: Xie, Z. (eds) Autophagy: Biology and Diseases. Advances in Experimental Medicine and Biology, vol 1208. Springer, Singapore. https://doi.org/10.1007/978-981-16-2830-6_11

Download citation

Publish with us

Policies and ethics