Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content

Biomarkers of Autophagy

  • Chapter
  • First Online:
Autophagy: Biology and Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1208))

  • 4132 Accesses

  • 14 Citations

Abstract

Biomarkers (short for biological markers) are biological measures of a biological state. Autophagy biomarkers play an important role as an indicator of autophagy during normal physiological processes, pathogenic processes or pharmacological responses to drugs. In this chapter, some biomarkers of different types of autophagy, including macroautophagy, selective autophagy, chaperone-mediated autophagy, and microautophagy, as well as the lysosomal biomarkers are introduced. The described biomarkers may be used to detect the level of autophagy in cells or tissues in a dynamic, real-time, and quantitative manner. However, each biomarker has its specific significance and limitation. Therefore, the analysis of the autophagy level in cells or tissues through the detection of autophagy biomarkers should be carried out carefully.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 143.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

3-MA:

3-Methyladenine

AMP:

Adenosine monophosphate

AMPK:

5′ AMP-activated protein kinase

Atg:

Autophagy-related gene

BNIP3:

Bcl-2 and adenovirus E1B 19-KDa interacting protein 3

CMA:

Chaperone-mediated autophagy

CNS:

Central nervous system

DFCP1:

Double FYVE-containing protein 1

DRAM1:

Damage-regulated autophagy modulator 1

GABARAP:

Gamma-aminobutyric acid receptor-associated protein

GFP:

Green fluorescent protein

GTP:

guanosine triphosphate

MFN1:

Mitofusion 1

MFN2:

Mitofusion 2

mTOR:

mammalian target of rapamycin

PE:

Phosphatidylethanolamines

PI3K:

Phosphatidylinositol 3-kinase

PtdIns:

Phosphatidylinositol

TGN:

Trans-Golgi network

VPS:

Vacuolar protein sorting

ZFYVE1:

Zinc finger FYVE domain-containing protein 1

References

  • Bartlett BJ, et al. p62, Ref(2)P and ubiquitinated proteins are conserved markers of neuronal aging, aggregate formation and progressive autophagic defects. Autophagy. 2011;7(6):572–83.

    Article  CAS  Google Scholar 

  • Cha-Molstad H, et al. p62/SQSTM1/Sequestosome-1 is an N-recognin of the N-end rule pathway which modulates autophagosome biogenesis. Nat Commun. 2017;8(1):102.

    Article  Google Scholar 

  • Crighton D, et al. DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell. 2006;126(1):121–34.

    Article  CAS  Google Scholar 

  • Cuervo AM, Wong E. Chaperone-mediated autophagy: roles in disease and aging. Cell Res. 2014;24(1):92–104.

    Article  CAS  Google Scholar 

  • Dancourt J, Melia TJ. Lipidation of the autophagy proteins LC3 and GABARAP is a membrane-curvature dependent process. Autophagy. 2014;10(8):1470–1.

    Article  CAS  Google Scholar 

  • Demishtein A, et al. SQSTM1/p62-mediated autophagy compensates for loss of proteasome polyubiquitin recruiting capacity. Autophagy. 2017;13(10):1697–708.

    Article  CAS  Google Scholar 

  • Durcan TM, Fon EA. The three ‘P’s of mitophagy: PARKIN, PINK1, and post-translational modifications. Genes Dev. 2015;29(10):989–99.

    Article  CAS  Google Scholar 

  • Fan W, Nassiri A, Zhong Q. Autophagosome targeting and membrane curvature sensing by Barkor/Atg14(L). Proc Natl Acad Sci U S A. 2011;108(19):7769–74.

    Article  CAS  Google Scholar 

  • Galluzzi L, et al. Molecular definitions of autophagy and related processes. EMBO J. 2017;36(13):1811–36.

    Article  CAS  Google Scholar 

  • Hanada T, Ohsumi Y. Structure-function relationship of Atg12, a ubiquitin-like modifier essential for autophagy. Autophagy. 2005;1(2):110–8.

    Article  CAS  Google Scholar 

  • Huber LA, Teis D. Lysosomal signaling in control of degradation pathways. Curr Opin Cell Biol. 2016;39:8–14.

    Article  CAS  Google Scholar 

  • Ji C, et al. Role of Wdr45b in maintaining neural autophagy and cognitive function. Autophagy. 2020;16(4):615–25.

    Article  CAS  Google Scholar 

  • Jia S, et al. Mammalian Atg9 contributes to the post-Golgi transport of lysosomal hydrolases by interacting with adaptor protein-1. FEBS Lett. 2017;591(24):4027–38.

    Article  CAS  Google Scholar 

  • Kirkin V, et al. NBR1 cooperates with p62 in selective autophagy of ubiquitinated targets. Autophagy. 2009;5(5):732–3.

    Article  CAS  Google Scholar 

  • Klionsky DJ. For the last time, it is GFP-Atg8, not Atg8-GFP (and the same goes for LC3). Autophagy. 2011;7(10):1093–4.

    Article  CAS  Google Scholar 

  • Klionsky DJ, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy. 2016;12(1):1–222.

    Article  Google Scholar 

  • Lefebvre C, Legouis R, Culetto E. ESCRT and autophagies: endosomal functions and beyond. Semin Cell Dev Biol. 2018;74:21–8.

    Article  CAS  Google Scholar 

  • Liu L, et al. Receptor-mediated mitophagy in yeast and mammalian systems. Cell Res. 2014;24(7):787–95.

    Article  CAS  Google Scholar 

  • Mari M, et al. An Atg9-containing compartment that functions in the early steps of autophagosome biogenesis. J Cell Biol. 2010;190(6):1005–22.

    Article  CAS  Google Scholar 

  • Mei Y, et al. Identification of BECN1 and ATG14 coiled-coil interface residues that are important for starvation-induced autophagy. Biochemistry. 2016;55(30):4239–53.

    Article  CAS  Google Scholar 

  • Mizushima N, et al. A protein conjugation system essential for autophagy. Nature. 1998;395(6700):395–8.

    Article  CAS  Google Scholar 

  • Mizushima N, Ohsumi Y, Yoshimori T. Autophagosome formation in mammalian cells. Cell Struct Funct. 2002;27(6):421–9.

    Article  Google Scholar 

  • Mukherjee A, et al. Selective endosomal microautophagy is starvation-inducible in Drosophila. Autophagy. 2016;12(11):1984–99.

    Article  CAS  Google Scholar 

  • Nascimbeni AC, et al. ER-plasma membrane contact sites contribute to autophagosome biogenesis by regulation of local PI3P synthesis. EMBO J. 2017;36(14):2018–33.

    Article  CAS  Google Scholar 

  • Noda NN, et al. Structural basis of Atg8 activation by a homodimeric E1, Atg7. Mol Cell. 2011;44(3):462–75.

    Article  CAS  Google Scholar 

  • Novak I, et al. Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep. 2010;11(1):45–51.

    Article  CAS  Google Scholar 

  • Obara K, et al. The Atg18-Atg2 complex is recruited to autophagic membranes via phosphatidylinositol 3-phosphate and exerts an essential function. J Biol Chem. 2008;283(35):23972–80.

    Article  CAS  Google Scholar 

  • Romanov J, et al. Mechanism and functions of membrane binding by the Atg5-Atg12/Atg16 complex during autophagosome formation. EMBO J. 2012;31(22):4304–17.

    Article  CAS  Google Scholar 

  • Runwal G, et al. LC3-positive structures are prominent in autophagy-deficient cells. Sci Rep. 2019;9(1):10147.

    Article  Google Scholar 

  • Sahani MH, Itakura E, Mizushima N. Expression of the autophagy substrate SQSTM1/p62 is restored during prolonged starvation depending on transcriptional upregulation and autophagy-derived amino acids. Autophagy. 2014;10(3):431–41.

    Article  CAS  Google Scholar 

  • Scheffner M, Nuber U, Huibregtse JM. Protein ubiquitination involving an E1-E2-E3 enzyme ubiquitin thioester cascade. Nature. 1995;373(6509):81–3.

    Article  CAS  Google Scholar 

  • Shao Y, et al. Stimulation of ATG12-ATG5 conjugation by ribonucleic acid. Autophagy. 2007;3(1):10–6.

    Article  CAS  Google Scholar 

  • Tekirdag K, Cuervo AM. Chaperone-mediated autophagy and endosomal microautophagy: joint by a chaperone. J Biol Chem. 2018;293(15):5414–24.

    Article  CAS  Google Scholar 

  • Twig G, et al. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J. 2008;27(2):433–46.

    Article  CAS  Google Scholar 

  • Wang T, et al. Rab7: role of its protein interaction cascades in endo-lysosomal traffic. Cell Signal. 2011;23(3):516–21.

    Article  Google Scholar 

  • Wirth M, Joachim J, Tooze SA. Autophagosome formation—the role of ULK1 and Beclin1-PI3KC3 complexes in setting the stage. Semin Cancer Biol. 2013;23(5):301–9.

    Article  CAS  Google Scholar 

  • Wu JC, et al. The regulation of N-terminal Huntingtin (Htt552) accumulation by Beclin1. Acta Pharmacol Sin. 2012;33(6):743–51.

    Article  CAS  Google Scholar 

  • Xu HD, Qin ZH. Beclin 1, Bcl-2 and autophagy. Adv Exp Med Biol. 2019;1206:109–26.

    Article  CAS  Google Scholar 

  • Yu ZQ, et al. Dual roles of Atg8-PE deconjugation by Atg4 in autophagy. Autophagy. 2012;8(6):883–92.

    Article  CAS  Google Scholar 

  • Zavodszky E, Vicinanza M, Rubinsztein DC. Biology and trafficking of ATG9 and ATG16L1, two proteins that regulate autophagosome formation. FEBS Lett. 2013;587(13):1988–96.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng-Hong Qin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Science Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lin, F., Zhu, YT., Qin, ZH. (2021). Biomarkers of Autophagy. In: Xie, Z. (eds) Autophagy: Biology and Diseases. Advances in Experimental Medicine and Biology, vol 1208. Springer, Singapore. https://doi.org/10.1007/978-981-16-2830-6_12

Download citation

Publish with us

Policies and ethics