Abstract
Biomarkers (short for biological markers) are biological measures of a biological state. Autophagy biomarkers play an important role as an indicator of autophagy during normal physiological processes, pathogenic processes or pharmacological responses to drugs. In this chapter, some biomarkers of different types of autophagy, including macroautophagy, selective autophagy, chaperone-mediated autophagy, and microautophagy, as well as the lysosomal biomarkers are introduced. The described biomarkers may be used to detect the level of autophagy in cells or tissues in a dynamic, real-time, and quantitative manner. However, each biomarker has its specific significance and limitation. Therefore, the analysis of the autophagy level in cells or tissues through the detection of autophagy biomarkers should be carried out carefully.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Abbreviations
- 3-MA:
-
3-Methyladenine
- AMP:
-
Adenosine monophosphate
- AMPK:
-
5′ AMP-activated protein kinase
- Atg:
-
Autophagy-related gene
- BNIP3:
-
Bcl-2 and adenovirus E1B 19-KDa interacting protein 3
- CMA:
-
Chaperone-mediated autophagy
- CNS:
-
Central nervous system
- DFCP1:
-
Double FYVE-containing protein 1
- DRAM1:
-
Damage-regulated autophagy modulator 1
- GABARAP:
-
Gamma-aminobutyric acid receptor-associated protein
- GFP:
-
Green fluorescent protein
- GTP:
-
guanosine triphosphate
- MFN1:
-
Mitofusion 1
- MFN2:
-
Mitofusion 2
- mTOR:
-
mammalian target of rapamycin
- PE:
-
Phosphatidylethanolamines
- PI3K:
-
Phosphatidylinositol 3-kinase
- PtdIns:
-
Phosphatidylinositol
- TGN:
-
Trans-Golgi network
- VPS:
-
Vacuolar protein sorting
- ZFYVE1:
-
Zinc finger FYVE domain-containing protein 1
References
Bartlett BJ, et al. p62, Ref(2)P and ubiquitinated proteins are conserved markers of neuronal aging, aggregate formation and progressive autophagic defects. Autophagy. 2011;7(6):572–83.
Cha-Molstad H, et al. p62/SQSTM1/Sequestosome-1 is an N-recognin of the N-end rule pathway which modulates autophagosome biogenesis. Nat Commun. 2017;8(1):102.
Crighton D, et al. DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell. 2006;126(1):121–34.
Cuervo AM, Wong E. Chaperone-mediated autophagy: roles in disease and aging. Cell Res. 2014;24(1):92–104.
Dancourt J, Melia TJ. Lipidation of the autophagy proteins LC3 and GABARAP is a membrane-curvature dependent process. Autophagy. 2014;10(8):1470–1.
Demishtein A, et al. SQSTM1/p62-mediated autophagy compensates for loss of proteasome polyubiquitin recruiting capacity. Autophagy. 2017;13(10):1697–708.
Durcan TM, Fon EA. The three ‘P’s of mitophagy: PARKIN, PINK1, and post-translational modifications. Genes Dev. 2015;29(10):989–99.
Fan W, Nassiri A, Zhong Q. Autophagosome targeting and membrane curvature sensing by Barkor/Atg14(L). Proc Natl Acad Sci U S A. 2011;108(19):7769–74.
Galluzzi L, et al. Molecular definitions of autophagy and related processes. EMBO J. 2017;36(13):1811–36.
Hanada T, Ohsumi Y. Structure-function relationship of Atg12, a ubiquitin-like modifier essential for autophagy. Autophagy. 2005;1(2):110–8.
Huber LA, Teis D. Lysosomal signaling in control of degradation pathways. Curr Opin Cell Biol. 2016;39:8–14.
Ji C, et al. Role of Wdr45b in maintaining neural autophagy and cognitive function. Autophagy. 2020;16(4):615–25.
Jia S, et al. Mammalian Atg9 contributes to the post-Golgi transport of lysosomal hydrolases by interacting with adaptor protein-1. FEBS Lett. 2017;591(24):4027–38.
Kirkin V, et al. NBR1 cooperates with p62 in selective autophagy of ubiquitinated targets. Autophagy. 2009;5(5):732–3.
Klionsky DJ. For the last time, it is GFP-Atg8, not Atg8-GFP (and the same goes for LC3). Autophagy. 2011;7(10):1093–4.
Klionsky DJ, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy. 2016;12(1):1–222.
Lefebvre C, Legouis R, Culetto E. ESCRT and autophagies: endosomal functions and beyond. Semin Cell Dev Biol. 2018;74:21–8.
Liu L, et al. Receptor-mediated mitophagy in yeast and mammalian systems. Cell Res. 2014;24(7):787–95.
Mari M, et al. An Atg9-containing compartment that functions in the early steps of autophagosome biogenesis. J Cell Biol. 2010;190(6):1005–22.
Mei Y, et al. Identification of BECN1 and ATG14 coiled-coil interface residues that are important for starvation-induced autophagy. Biochemistry. 2016;55(30):4239–53.
Mizushima N, et al. A protein conjugation system essential for autophagy. Nature. 1998;395(6700):395–8.
Mizushima N, Ohsumi Y, Yoshimori T. Autophagosome formation in mammalian cells. Cell Struct Funct. 2002;27(6):421–9.
Mukherjee A, et al. Selective endosomal microautophagy is starvation-inducible in Drosophila. Autophagy. 2016;12(11):1984–99.
Nascimbeni AC, et al. ER-plasma membrane contact sites contribute to autophagosome biogenesis by regulation of local PI3P synthesis. EMBO J. 2017;36(14):2018–33.
Noda NN, et al. Structural basis of Atg8 activation by a homodimeric E1, Atg7. Mol Cell. 2011;44(3):462–75.
Novak I, et al. Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep. 2010;11(1):45–51.
Obara K, et al. The Atg18-Atg2 complex is recruited to autophagic membranes via phosphatidylinositol 3-phosphate and exerts an essential function. J Biol Chem. 2008;283(35):23972–80.
Romanov J, et al. Mechanism and functions of membrane binding by the Atg5-Atg12/Atg16 complex during autophagosome formation. EMBO J. 2012;31(22):4304–17.
Runwal G, et al. LC3-positive structures are prominent in autophagy-deficient cells. Sci Rep. 2019;9(1):10147.
Sahani MH, Itakura E, Mizushima N. Expression of the autophagy substrate SQSTM1/p62 is restored during prolonged starvation depending on transcriptional upregulation and autophagy-derived amino acids. Autophagy. 2014;10(3):431–41.
Scheffner M, Nuber U, Huibregtse JM. Protein ubiquitination involving an E1-E2-E3 enzyme ubiquitin thioester cascade. Nature. 1995;373(6509):81–3.
Shao Y, et al. Stimulation of ATG12-ATG5 conjugation by ribonucleic acid. Autophagy. 2007;3(1):10–6.
Tekirdag K, Cuervo AM. Chaperone-mediated autophagy and endosomal microautophagy: joint by a chaperone. J Biol Chem. 2018;293(15):5414–24.
Twig G, et al. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J. 2008;27(2):433–46.
Wang T, et al. Rab7: role of its protein interaction cascades in endo-lysosomal traffic. Cell Signal. 2011;23(3):516–21.
Wirth M, Joachim J, Tooze SA. Autophagosome formation—the role of ULK1 and Beclin1-PI3KC3 complexes in setting the stage. Semin Cancer Biol. 2013;23(5):301–9.
Wu JC, et al. The regulation of N-terminal Huntingtin (Htt552) accumulation by Beclin1. Acta Pharmacol Sin. 2012;33(6):743–51.
Xu HD, Qin ZH. Beclin 1, Bcl-2 and autophagy. Adv Exp Med Biol. 2019;1206:109–26.
Yu ZQ, et al. Dual roles of Atg8-PE deconjugation by Atg4 in autophagy. Autophagy. 2012;8(6):883–92.
Zavodszky E, Vicinanza M, Rubinsztein DC. Biology and trafficking of ATG9 and ATG16L1, two proteins that regulate autophagosome formation. FEBS Lett. 2013;587(13):1988–96.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Science Press
About this chapter
Cite this chapter
Lin, F., Zhu, YT., Qin, ZH. (2021). Biomarkers of Autophagy. In: Xie, Z. (eds) Autophagy: Biology and Diseases. Advances in Experimental Medicine and Biology, vol 1208. Springer, Singapore. https://doi.org/10.1007/978-981-16-2830-6_12
Download citation
DOI: https://doi.org/10.1007/978-981-16-2830-6_12
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-16-2829-0
Online ISBN: 978-981-16-2830-6
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)