Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content

Mitochondrial Heteroplasmy

  • Chapter
  • First Online:
Mitochondrial Dynamics in Cardiovascular Medicine

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 982))

Abstract

Genetic polymorphisms, in concert with well-characterized etiology and progression of major pathologies, plays a significant role in aberrant processes afflicting human populations. Mitochondrial heteroplasmy represents a dynamically determined co-expression of inherited polymorphisms and somatic pathology in varying ratios within individual mitochondrial DNA (mtDNA) genomes with repetitive patterns of tissue specificity. The ratios of the MtDNA genomes represent a balance between healthy and pathological cellular outcomes. Mechanistically, cardiomyopathies have profound alterations of normative mitochondrial function. Certain allele imbalances in the nuclear mitochondrial genome are associated with key energy mitochondrial proteins. Mitochondrial heteroplasmy may manifest itself at critical protein expression points, e.g., cytochrome c oxidase (COX). Pathological mtDNA mutations also are associated with the development of congestive heart failure. Interestingly, mitochondrial ‘normal vs. abnormal’ ratios of various heteroplasmic populations may occur in families. In the translational context of human health and disease, we discuss the need for determining critical foci to probe multiple biological roles of mitochondrial heteroplasmy in cardiomyopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 127.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 159.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 219.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Taylor RW, Turnbull DM. Mitochondrial DNA mutations in human disease. Nat Rev Genet. 2005;6:389–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Song S, Pursell ZF, Copeland WC, Longley MJ, Kunkel TA, Mathews CK. DNA precursor asymmetries in mammalian tissue mitochondria and possible contribution to mutagenesis through reduced replication fidelity. Proc Natl Acad Sci U S A. 2005;102:4990–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Crimi M, O’Hearn SF, Wallace DC, Comi GP. Molecular research technologies in mitochondrial diseases: the microarray approach. IUBMB Life. 2005;57:811–8.

    Article  CAS  PubMed  Google Scholar 

  4. Wallace DC. The mitochondrial genome in human adaptive radiation and disease: on the road to therapeutics and performance enhancement. Gene. 2005;354:169–80.

    Article  CAS  PubMed  Google Scholar 

  5. Kenney MC, Chwa M, Atilano SR, Falatoonzadeh P, Ramirez C, Malik D, Tarek M, Caceres-del-Carpio J, Nesburn AB, Boyer DS, Kuppermann BD, Vawter M, Jazwinski SM, Miceli M, Wallace DC, Udar N. Inherited mitochondrial DNA variants can affect complement, inflammation and apoptosis pathways: insights into mitochondrial-nuclear interactions. Hum Mol Genet. 2014;23:3537–51.

    Article  PubMed  Google Scholar 

  6. Kenney MC, Chwa M, Atilano SR, Falatoonzadeh P, Ramirez C, Malik D, Tarek M, Del Carpio JC, Nesburn AB, Boyer DS, Kuppermann BD, Vawter MP, Jazwinski SM, Miceli MV, Wallace DC, Udar N. Molecular and bioenergetic differences between cells with African versus European inherited mitochondrial DNA haplogroups: implications for population susceptibility to diseases. Biochim Biophys Acta. 1842;2014:208–19.

    Google Scholar 

  7. Atilano SR, Malik D, Chwa M, Caceres-Del-Carpio J, Nesburn AB, Boyer DS, Kuppermann BD, Jazwinski SM, Miceli MV, Wallace DC, Udar N, Kenney MC. Mitochondrial DNA variants can mediate methylation status of inflammation, angiogenesis and signaling genes. Hum Mol Genet. 2015;24:4491–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang G, McCain ML, Yang L, He A, Pasqualini FS, Agarwal A, Yuan H, Jiang D, Zhang D, Zangi L, Geva J, Roberts AE, Ma Q, Ding J, Chen J, Wang DZ, Li K, Wang J, Wanders RJ, Kulik W, Vaz FM, Laflamme MA, Murry CE, Chien KR, Kelley RI, Church GM, Parker KK, Pu WT. Modeling the mitochondrial cardiomyopathy of Barth syndrome with induced pluripotent stem cell and heart-on-chip technologies. Nat Med. 2014;20:616–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz Jr LA, Kinzler KW. Cancer genome landscapes. Science. 2013;339:1546–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Frank SA. Somatic mosaicism and disease. Curr Biol. 2014;24:R577–81.

    Article  CAS  PubMed  Google Scholar 

  11. Joseph CG, Darrah E, Shah AA, Skora AD, Casciola-Rosen LA, Wigley FM, Boin F, Fava A, Thoburn C, Kinde I, Jiao Y, Papadopoulos N, Kinzler KW, Vogelstein B, Rosen A. Association of the autoimmune disease scleroderma with an immunologic response to cancer. Science. 2014;343:152–7.

    Article  CAS  PubMed  Google Scholar 

  12. Ross KA. Coherent somatic mutation in autoimmune disease. PLoS One. 2014;9:e101093.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Poduri A, Evrony GD, Cai X, Walsh CA. Somatic mutation, genomic variation, and neurological disease. Science. 2013;341:1237758.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Jamuar SS, Lam AT, Kircher M, D’Gama AM, Wang J, Barry BJ, Zhang X, Hill RS, Partlow JN, Rozzo A, Servattalab S, Mehta BK, Topcu M, Amrom D, Andermann E, Dan B, Parrini E, Guerrini R, Scheffer IE, Berkovic SF, Leventer RJ, Shen Y, Wu BL, Barkovich AJ, Sahin M, Chang BS, Bamshad M, Nickerson DA, Shendure J, Poduri A, Yu TW, Walsh CA. Somatic mutations in cerebral cortical malformations. N Engl J Med. 2014;371:733–43.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJ, Staden R, Young IG. Sequence and organization of the human mitochondrial genome. Nature. 1981;290:457–65.

    Article  CAS  PubMed  Google Scholar 

  16. Valero T. Mitochondrial biogenesis: pharmacological approaches. Curr Pharm Des. 2014;20:5507–9.

    Article  CAS  PubMed  Google Scholar 

  17. Jayaprakash AD, Benson EK, Gone S, Liang R, Shim J, Lambertini L, Toloue MM, Wigler M, Aaronson SA, Sachidanandam R. Stable heteroplasmy at the single-cell level is facilitated by intercellular exchange of mtDNA. Nucleic Acids Res. 2015;43:2177–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Stefano GB, Kream RM. Cancer: mitochondrial origins. Med Sci Monit. 2015;21:3736–9.

    Article  PubMed  PubMed Central  Google Scholar 

  19. He Y, Wu J, Dressman DC, Iacobuzio-Donahue C, Markowitz SD, Velculescu VE, Diaz Jr LA, Kinzler KW, Vogelstein B, Papadopoulos N. Heteroplasmic mitochondrial DNA mutations in normal and tumour cells. Nature. 2010;464:610–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schon EA, Gilkerson RW. Functional complementation of mitochondrial DNAs: mobilizing mitochondrial genetics against dysfunction. Biochim Biophys Acta. 1800;2010:245–9.

    Google Scholar 

  21. Chen Z, Qi Y, French S, Zhang G, Covian Garcia R, Balaban R, Xu H. Genetic mosaic analysis of a deleterious mitochondrial DNA mutation in Drosophila reveals novel aspects of mitochondrial regulation and function. Mol Biol Cell. 2015;26:674–84.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hill JH, Chen Z, Xu H. Selective propagation of functional mitochondrial DNA during oogenesis restricts the transmission of a deleterious mitochondrial variant. Nat Genet. 2014;46:389–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Meyers DE, Basha HI, Koenig MK. Mitochondrial cardiomyopathy: pathophysiology, diagnosis, and management. Tex Heart Inst J. 2013;40:385–94.

    PubMed  PubMed Central  Google Scholar 

  24. Greaves LC, Reeve AK, Taylor RW, Turnbull DM. Mitochondrial DNA and disease. J Pathol. 2012;226:274–86.

    Article  CAS  PubMed  Google Scholar 

  25. Li M, Schroder R, Ni S, Madea B, Stoneking M. Extensive tissue-related and allele-related mtDNA heteroplasmy suggests positive selection for somatic mutations. Proc Natl Acad Sci U S A. 2015;112:2491–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Stefano GB, Mantione KJ, Casares FM, Kream RM. Anaerobically functioning mitochondria: Evolutionary perspective on modulation of energy metabolism in Mytilus edulis. Invertebr Surviv J. 2015;12:22–8.

    Google Scholar 

  27. Snyder C, Stefano GB. Mitochondria and chloroplasts shared in animal and plant tissues: significance of communication. Med Sci Monit. 2015;21:1507–11.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Stefano GB, Snyder C, Kream RM. Mitochondria, chloroplasts in animal and plant cells: significance of conformational matching. Med Sci Monit. 2015;21:REV2064–9.

    Article  Google Scholar 

  29. Allen JF. Why chloroplasts and mitochondria retain their own genomes and genetic systems: colocation for redox regulation of gene expression. PNAS. 2015;112:10231–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Xu X, Duan S, Yi F, Ocampo A, Liu GH, Izpisua Belmonte JC. Mitochondrial regulation in pluripotent stem cells. Cell Metab. 2013;18:325–32.

    Article  CAS  PubMed  Google Scholar 

  31. Jung G, Bernstein D. hiPSC modeling of inherited cardiomyopathies. Curr Treat Options Cardiovasc Med. 2014;16:320.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ellen Kreipke R, Wang Y, Miklas JW, Mathieu J, Ruohola-Baker H. Metabolic remodeling in early development and cardiomyocyte maturation. Semin Cell Dev Biol. 2016;52:84–92.

    Article  CAS  PubMed  Google Scholar 

  33. Schlame M, Ren M. Barth syndrome, a human disorder of cardiolipin metabolism. FEBS Lett. 2006;580:5450–5.

    Article  CAS  PubMed  Google Scholar 

  34. Prigione A, Rohwer N, Hoffmann S, Mlody B, Drews K, Bukowiecki R, Blumlein K, Wanker EE, Ralser M, Cramer T, Adjaye J. HIF1alpha modulates cell fate reprogramming through early glycolytic shift and upregulation of PDK1-3 and PKM2. Stem Cells. 2014;32:364–76.

    Article  CAS  PubMed  Google Scholar 

  35. Stefano GB, Kream RM. Hypoxia defined as a common culprit/initiation factor in mitochondrial-mediated proinflammatory processes. Med Sci Monit. 2015;21:1478–84.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Santorelli FM, Tessa A, D’Amati G, Casali C. The emerging concept of mitochondrial cardiomyopathies. Am Heart J. 2001;141:E1.

    Article  CAS  PubMed  Google Scholar 

  37. Fayssoil A. Heart diseases in mitochondrial encephalomyopathy, lactic acidosis, and stroke syndrome. Congest Heart Fail. 2009;15:284–7.

    Article  CAS  PubMed  Google Scholar 

  38. Anan R, Nakagawa M, Miyata M, Higuchi I, Nakao S, Suehara M, Osame M, Tanaka H. Cardiac involvement in mitochondrial diseases. A study on 17 patients with documented mitochondrial DNA defects. Circulation. 1995;91:955–61.

    Article  CAS  PubMed  Google Scholar 

  39. Majamaa-Voltti K, Peuhkurinen K, Kortelainen ML, Hassinen IE, Majamaa K. Cardiac abnormalities in patients with mitochondrial DNA mutation 3243A>G. BMC Cardiovasc Disord. 2002;2:12.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Lindroos MM, Parkka JP, Taittonen MT, Iozzo P, Karppa M, Hassinen IE, Knuuti J, Nuutila P, Majamaa K. Myocardial glucose uptake in patients with the m.3243A > G mutation in mitochondrial DNA. J Inherit Metab Dis. 2016;39:67–74.

    Article  CAS  PubMed  Google Scholar 

  41. Vilarinho L, Santorelli FM, Rosas MJ, Tavares C, Melo-Pires M, DiMauro S. The mitochondrial A3243G mutation presenting as severe cardiomyopathy. J Med Genet. 1997;34:607–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zeviani M, Gellera C, Antozzi C, Rimoldi M, Morandi L, Villani F, Tiranti V, DiDonato S. Maternally inherited myopathy and cardiomyopathy: association with mutation in mitochondrial DNA tRNA(Leu)(UUR). Lancet. 1991;338:143–7.

    Article  CAS  PubMed  Google Scholar 

  43. Silvestri G, Santorelli FM, Shanske S, Whitley CB, Schimmenti LA, Smith SA, DiMauro S. A new mtDNA mutation in the tRNA(Leu(UUR)) gene associated with maternally inherited cardiomyopathy. Hum Mutat. 1994;3:37–43.

    Article  CAS  PubMed  Google Scholar 

  44. Bruno C, Kirby DM, Koga Y, Garavaglia B, Duran G, Santorelli FM, Shield LK, Xia W, Shanske S, Goldstein JD, Iwanaga R, Akita Y, Carrara F, Davis A, Zeviani M, Thorburn DR, DiMauro S. The mitochondrial DNA C3303T mutation can cause cardiomyopathy and/or skeletal myopathy. J Pediatr. 1999;135:197–202.

    Article  CAS  PubMed  Google Scholar 

  45. Ueki I, Koga Y, Povalko N, Akita Y, Nishioka J, Yatsuga S, Fukiyama R, Matsuishi T. Mitochondrial tRNA gene mutations in patients having mitochondrial disease with lactic acidosis. Mitochondrion. 2006;6:29–36.

    Article  CAS  PubMed  Google Scholar 

  46. van den Bosch BJ, de Coo IF, Hendrickx AT, Busch HF, de Jong G, Scholte HR, Smeets HJ. Increased risk for cardiorespiratory failure associated with the A3302G mutation in the mitochondrial DNA encoded tRNALeu(UUR) gene. Neuromuscul Disord. 2004;14:683–8.

    Article  PubMed  Google Scholar 

  47. Tessa A, Vilarinho L, Casali C, Santorelli FM. MtDNA-related idiopathic dilated cardiomyopathy. Eur J Hum Genet. 1999;7:847–8.

    Article  CAS  PubMed  Google Scholar 

  48. Grasso M, Diegoli M, Brega A, Campana C, Tavazzi L, Arbustini E. The mitochondrial DNA mutation T12297C affects a highly conserved nucleotide of tRNA(Leu(CUN)) and is associated with dilated cardiomyopathy. Eur J Hum Genet. 2001;9:311–5.

    Article  CAS  PubMed  Google Scholar 

  49. Wang J, Brautbar A, Chan AK, Dzwiniel T, Li FY, Waters PJ, Graham BH, Wong LJ. Two mtDNA mutations 14487T>C (M63V, ND6) and 12297T>C (tRNA Leu) in a Leigh syndrome family. Mol Genet Metab. 2009;96:59–65.

    Article  CAS  PubMed  Google Scholar 

  50. Tanaka M, Ino H, Ohno K, Hattori K, Sato W, Ozawa T, Tanaka T, Itoyama S. Mitochondrial mutation in fatal infantile cardiomyopathy. Lancet. 1990;336:1452.

    Article  CAS  PubMed  Google Scholar 

  51. Tomari Y, Hino N, Nagaike T, Suzuki T, Ueda T. Decreased CCA-addition in human mitochondrial tRNAs bearing a pathogenic A4317G or A10044G mutation. J Biol Chem. 2003;278:16828–33.

    Article  CAS  PubMed  Google Scholar 

  52. Taniike M, Fukushima H, Yanagihara I, Tsukamoto H, Tanaka J, Fujimura H, Nagai T, Sano T, Yamaoka K, Inui K, et al. Mitochondrial tRNA(Ile) mutation in fatal cardiomyopathy. Biochem Biophys Res Commun. 1992;186:47–53.

    Article  CAS  PubMed  Google Scholar 

  53. Hino N, Suzuki T, Yasukawa T, Seio K, Watanabe K, Ueda T. The pathogenic A4269G mutation in human mitochondrial tRNA(Ile) alters the T-stem structure and decreases the binding affinity for elongation factor Tu. Genes Cells. 2004;9:243–52.

    Article  CAS  PubMed  Google Scholar 

  54. Hayashi J, Ohta S, Kagawa Y, Takai D, Miyabayashi S, Tada K, Fukushima H, Inui K, Okada S, Goto Y, et al. Functional and morphological abnormalities of mitochondria in human cells containing mitochondrial DNA with pathogenic point mutations in tRNA genes. J Biol Chem. 1994;269:19060–6.

    CAS  PubMed  Google Scholar 

  55. Merante F, Myint T, Tein I, Benson L, Robinson BH. An additional mitochondrial tRNA(Ile) point mutation (A-to-G at nucleotide 4295) causing hypertrophic cardiomyopathy. Hum Mutat. 1996;8:216–22.

    Article  CAS  PubMed  Google Scholar 

  56. Mahjoub S, Sternberg D, Boussaada R, Filaut S, Gmira F, Mechmech R, Jardel C, Arab SB. A novel mitochondrial DNA tRNAIle (m.4322dupC) mutation associated with idiopathic dilated cardiomyopathy. Diagn Mol Pathol. 2007;16:238–42.

    Article  CAS  PubMed  Google Scholar 

  57. Wahbi K, Larue S, Jardel C, Meune C, Stojkovic T, Ziegler F, Lombes A, Eymard B, Duboc D, Laforet P. Cardiac involvement is frequent in patients with the m.8344A>G mutation of mitochondrial DNA. Neurology. 2010;74:674–7.

    Article  CAS  PubMed  Google Scholar 

  58. Silvestri G, Ciafaloni E, Santorelli FM, Shanske S, Servidei S, Graf WD, Sumi M, DiMauro S. Clinical features associated with the A – >G transition at nucleotide 8344 of mtDNA (“MERRF mutation”). Neurology. 1993;43:1200–6.

    Article  CAS  PubMed  Google Scholar 

  59. Vallance HD, Jeven G, Wallace DC, Brown MD. A case of sporadic infantile histiocytoid cardiomyopathy caused by the A8344G (MERRF) mitochondrial DNA mutation. Pediatr Cardiol. 2004;25:538–40.

    Article  CAS  PubMed  Google Scholar 

  60. Santorelli FM, Mak SC, El-Schahawi M, Casali C, Shanske S, Baram TZ, Madrid RE, DiMauro S. Maternally inherited cardiomyopathy and hearing loss associated with a novel mutation in the mitochondrial tRNA(Lys) gene (G8363A). Am J Hum Genet. 1996;58:933–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Virgilio R, Ronchi D, Bordoni A, Fassone E, Bonato S, Donadoni C, Torgano G, Moggio M, Corti S, Bresolin N, Comi GP. Mitochondrial DNA G8363A mutation in the tRNA Lys gene: clinical, biochemical and pathological study. J Neurol Sci. 2009;281:85–92.

    Article  CAS  PubMed  Google Scholar 

  62. Menotti F, Brega A, Diegoli M, Grasso M, Modena MG, Arbustini E. A novel mtDNA point mutation in tRNA(Val) is associated with hypertrophic cardiomyopathy and MELAS. Ital Heart J. 2004;5:460–5.

    PubMed  Google Scholar 

  63. Merante F, Tein I, Benson L, Robinson BH. Maternally inherited hypertrophic cardiomyopathy due to a novel T-to-C transition at nucleotide 9997 in the mitochondrial tRNA(glycine) gene. Am J Hum Genet. 1994;55:437–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Santorelli FM, Tanji K, Manta P, Casali C, Krishna S, Hays AP, Mancini DM, DiMauro S, Hirano M. Maternally inherited cardiomyopathy: an atypical presentation of the mtDNA 12S rRNA gene A1555G mutation. Am J Hum Genet. 1999;64:295–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wang SB, Weng WC, Lee NC, Hwu WL, Fan PC, Lee WT. Mutation of mitochondrial DNA G13513A presenting with Leigh syndrome, Wolff-Parkinson-White syndrome and cardiomyopathy. Pediatr Neonatol. 2008;49:145–9.

    Article  PubMed  Google Scholar 

  66. Thorburn DR, Rahman S. Mitochondrial DNA-associated leigh syndrome and NARP. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, LJH B, et al., editors. GeneReviews®. Seattle: University of Washington; 2003.

    Google Scholar 

  67. Agapitos E, Pavlopoulos PM, Patsouris E, Davaris P. Subacute necrotizing encephalomyelopathy (Leigh’s disease): a clinicopathologic study of ten cases. Gen Diagn Pathol. 1997;142:335–41.

    CAS  PubMed  Google Scholar 

  68. Ware SM, El-Hassan N, Kahler SG, Zhang Q, Ma YW, Miller E, Wong B, Spicer RL, Craigen WJ, Kozel BA, Grange DK, Wong LJ. Infantile cardiomyopathy caused by a mutation in the overlapping region of mitochondrial ATPase 6 and 8 genes. J Med Genet. 2009;46:308–14.

    Article  CAS  PubMed  Google Scholar 

  69. Imai A, Fujita S, Kishita Y, Kohda M, Tokuzawa Y, Hirata T, Mizuno Y, Harashima H, Nakaya A, Sakata Y, Takeda A, Mori M, Murayama K, Ohtake A, Okazaki Y. Rapidly progressive infantile cardiomyopathy with mitochondrial respiratory chain complex V deficiency due to loss of ATPase 6 and 8 protein. Int J Cardiol. 2016;207:203–5.

    Article  PubMed  Google Scholar 

  70. Imai A, Kishita Y, Nakayama Y, Fujita S, Futatani T, Kohda M, Yatsuka Y, Nakaya A, Sakata Y, Murayama K, Ohtake A, Okazaki Y. Dried blood spots for newborn screening allows easy determination of a high heteroplasmy rate in severe infantile cardiomyopathy. Int J Cardiol. 2016;221:446–9.

    Article  PubMed  Google Scholar 

  71. Zhu Y, Gu X, Xu C. A mitochondrial DNA A8701G mutation associated with maternally inherited hypertension and dilated cardiomyopathy in a Chinese pedigree of a consanguineous marriage. Chin Med J. 2016;129:259–66.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Zifa E, Theotokis P, Kaminari A, Maridaki H, Leze H, Petsiava E, Mamuris Z, Stathopoulos C. A novel G3337A mitochondrial ND1 mutation related to cardiomyopathy co-segregates with tRNALeu(CUN) A12308G and tRNAThr C15946T mutations. Mitochondrion. 2008;8:229–36.

    Article  CAS  PubMed  Google Scholar 

  73. Tang S, Batra A, Zhang Y, Ebenroth ES, Huang T. Left ventricular noncompaction is associated with mutations in the mitochondrial genome. Mitochondrion. 2010;10:350–7.

    Article  CAS  PubMed  Google Scholar 

  74. Finsterer J. Cardiogenetics, neurogenetics, and pathogenetics of left ventricular hypertrabeculation/noncompaction. Pediatr Cardiol. 2009;30:659–81.

    Article  PubMed  Google Scholar 

  75. Boles RG, Luna C, Ito M. Severe reversible cardiomyopathy in four unrelated infants associated with mitochondrial DNA D-loop heteroplasmy. Pediatr Cardiol. 2003;24:484–7.

    Article  CAS  PubMed  Google Scholar 

  76. Zeviani M, Petruzzella V, Carrozzo R. Disorders of nuclear-mitochondrial intergenomic signalling. J Bioenerg Biomembr. 1997;29:121–30.

    Article  CAS  PubMed  Google Scholar 

  77. Zeviani M, Servidei S, Gellera C, Bertini E, DiMauro S, DiDonato S. An autosomal dominant disorder with multiple deletions of mitochondrial DNA starting at the D-loop region. Nature. 1989;339:309–11.

    Article  CAS  PubMed  Google Scholar 

  78. Bohlega S, Tanji K, Santorelli FM, Hirano M, al-Jishi A, DiMauro S. Multiple mitochondrial DNA deletions associated with autosomal recessive ophthalmoplegia and severe cardiomyopathy. Neurology. 1996;46:1329–34.

    Article  CAS  PubMed  Google Scholar 

  79. Marin-Garcia J, Ananthakrishnan R, Goldenthal MJ. Hypertrophic cardiomyopathy with mitochondrial DNA depletion and respiratory enzyme defects. Pediatr Cardiol. 1998;19:266–8.

    Article  CAS  PubMed  Google Scholar 

  80. Campello S, Lacalle RA, Bettella M, Manes S, Scorrano L, Viola A. Orchestration of lymphocyte chemotaxis by mitochondrial dynamics. J Exp Med. 2006;203:2879–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Campello S, Scorrano L. Mitochondrial shape changes: orchestrating cell pathophysiology. EMBO Rep. 2010;11:678–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wallace DC. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet. 2005;39:359–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Calloway CD, Reynolds RL, Herrin Jr GL, Anderson WW. The frequency of heteroplasmy in the HVII region of mtDNA differs across tissue types and increases with age. Am J Hum Genet. 2000;66:1384–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Stefano GB, Kream RM. Dysregulated mitochondrial and chloroplast bioenergetics from a translational medical perspective (Review). Int J Mol Med. 2016;37:547–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Stefano GB, Kream RM. Mitochondrial DNA heteroplasmy in human health and disease. Biomed Rep. 2016;4:259–62.

    PubMed  PubMed Central  Google Scholar 

  86. Stefano GB, Challenger S, Kream RM. Hyperglycemia-associated alterations in cellular signaling and dysregulated mitochondrial bioenergetics in human metabolic disorders. Eur J Nutr. 2016;55:2339–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Ms. Danielle Benz, for her assistance in the preparation and formatting of the content of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George B. Stefano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Stefano, G.B., Bjenning, C., Wang, F., Wang, N., Kream, R.M. (2017). Mitochondrial Heteroplasmy. In: Santulli, G. (eds) Mitochondrial Dynamics in Cardiovascular Medicine. Advances in Experimental Medicine and Biology, vol 982. Springer, Cham. https://doi.org/10.1007/978-3-319-55330-6_30

Download citation

Keywords

Publish with us

Policies and ethics