Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Deep inelastic scattering in conformal QCD

  • Open access
  • Published: 31 March 2010
  • Volume 2010, article number 133, (2010)
  • Cite this article

You have full access to this open access article

Download PDF
Journal of High Energy Physics Aims and scope Submit manuscript
Deep inelastic scattering in conformal QCD
Download PDF
  • Lorenzo Cornalba1,2,
  • Miguel S. Costa3,4 &
  • João Penedones5 
  • 1076 Accesses

  • 102 Citations

  • Explore all metrics

Abstract

We consider the Regge limit of a CFT correlation function of two vector and two scalar operators, as appropriate to study small-x deep inelastic scattering in \( \mathcal{N} = 4 \) SYM or in QCD assuming approximate conformal symmetry. After clarifying the nature of the Regge limit for a CFT correlator, we use its conformal partial wave expansion to obtain an impact parameter representation encoding the exchange of a spin j Reggeon for any value of the coupling constant. The CFT impact parameter space is the three-dimensional hyperbolic space H 3, which is the impact parameter space for high energy scattering in the dual AdS space. We determine the small-x structure functions associated to the exchange of a Reggeon. We discuss unitarization from the point of view of scattering in AdS and comment on the validity of the eikonal approximation.

We then focus on the weak coupling limit of the theory where the amplitude is dominated by the exchange of the BFKL pomeron. Conformal invariance fixes the form of the vector impact factor and its decomposition in transverse spin 0 and spin 2 components. Our formalism reproduces exactly the general results predict by the Regge theory, both for a scalar target and for γ* − γ* scattering. We compute current impact factors for the specific examples of \( \mathcal{N} = 4 \) SYM and QCD, obtaining very simple results. In the case of the R-current of \( \mathcal{N} = 4 \) SYM, we show that the transverse spin 2 component vanishes. We conjecture that the impact factors of all chiral primary operators of \( \mathcal{N} = 4 \) SYM only have components with 0 transverse spin.

Article PDF

Download to read the full article text

Similar content being viewed by others

Deep inelastic scattering from polarized spin-1/2 hadrons at low x from string theory

Article Open access 12 October 2018

Intersecting defects in gauge theory, quantum spin chains, and Knizhnik-Zamolodchikov equations

Article Open access 15 October 2021

Regge trajectories and bridges between them in integrable AdS/CFT

Article Open access 10 July 2025

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Crystal Field Theory
  • Crystallography and Scattering Methods
  • Physics Phenomenology
  • String Theory
  • Theoretical Nuclear Physics
  • Theoretical Particle Physics
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. V.S. Fadin, E.A. Kuraev and L.N. Lipatov, On the Pomeranchuk singularity in asymptotically free theories, Phys. Lett. B 60 (1975) 50 [SPIRES].

    ADS  Google Scholar 

  2. E.A. Kuraev, L.N. Lipatov and V.S. Fadin, The Pomeranchuk singularity in nonabelian gauge theories, Sov. Phys. JETP 45 (1977) 199 [Zh. Eksp. Teor. Fiz. 72 (1977) 377] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  3. I.I. Balitsky and L.N. Lipatov, The Pomeranchuk singularity in quantum chromodynamics, Sov. J. Nucl. Phys. 28 (1978) 822 [Yad. Fiz. 28 (1978) 1597] [SPIRES].

    Google Scholar 

  4. A.H. Mueller and B. Patel, Single and double BFKL Pomeron exchange and a dipole picture of high-energy hard processes, Nucl. Phys. B 425 (1994) 471 [hep-ph/9403256] [SPIRES].

    Article  ADS  Google Scholar 

  5. L.V. Gribov, E.M. Levin and M.G. Ryskin, Semihard processes in QCD, Phys. Rept. 100 (1983) 1 [SPIRES].

    Article  ADS  Google Scholar 

  6. A.H. Mueller, Parton saturation at small x and in large nuclei, Nucl. Phys. B 558 (1999) 285 [hep-ph/9904404] [SPIRES].

    Article  ADS  Google Scholar 

  7. E. Iancu and L.D. McLerran, Saturation and universality in QCD at small x, Phys. Lett. B 510 (2001) 145 [hep-ph/0103032] [SPIRES].

    ADS  Google Scholar 

  8. A.H. Mueller and D.N. Triantafyllopoulos, The energy dependence of the saturation momentum, Nucl. Phys. B 640 (2002) 331 [hep-ph/0205167] [SPIRES].

    Article  ADS  Google Scholar 

  9. S. Munier and R.B. Peschanski, Geometric scaling as traveling waves, Phys. Rev. Lett. 91 (2003) 232001 [hep-ph/0309177] [SPIRES].

    Article  ADS  Google Scholar 

  10. S. Munier and R.B. Peschanski, Traveling wave fronts and the transition to saturation, Phys. Rev. D 69 (2004) 034008 [hep-ph/0310357] [SPIRES].

    ADS  Google Scholar 

  11. S. Munier and R.B. Peschanski, Universality and tree structure of high energy QCD, Phys. Rev. D 70 (2004) 077503 [hep-ph/0401215] [SPIRES].

    ADS  Google Scholar 

  12. L.N. Lipatov, Small-x physics in perturbative QCD, Phys. Rept. 286 (1997) 131 [hep-ph/9610276] [SPIRES].

    Article  ADS  Google Scholar 

  13. L. Cornalba and M.S. Costa, Saturation in deep inelastic scattering from AdS/CFT, Phys. Rev. D 78 (2008) 096010 [arXiv:0804.1562] [SPIRES].

    ADS  Google Scholar 

  14. L. Cornalba, M.S. Costa, J. Penedones and R. Schiappa, Eikonal approximation in AdS/CFT: from shock waves to four-point functions, JHEP 08 (2007) 019 [hep-th/0611122] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  15. L. Cornalba, M.S. Costa, J. Penedones and R. Schiappa, Eikonal approximation in AdS/CFT: conformal partial waves and finite N four-point functions, Nucl. Phys. B 767 (2007) 327 [hep-th/0611123] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  16. L. Cornalba, M.S. Costa and J. Penedones, Eikonal approximation in AdS/CFT: resumming the gravitational loop expansion, JHEP 09 (2007) 037 [arXiv:0707.0120] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  17. R.C. Brower, M.J. Strassler and C.-I. Tan, On the Eikonal approximation in AdS space, JHEP 03 (2009) 050 [arXiv:0707.2408] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  18. R.C. Brower, M.J. Strassler and C.-I. Tan, On the Pomeron at large ’t Hooft coupling, JHEP 03 (2009) 092 [arXiv:0710.4378] [SPIRES].

    Article  ADS  Google Scholar 

  19. L. Cornalba, Eikonal methods in AdS/CFT: regge theory and Multi-Reggeon exchange, arXiv:0710.5480 [SPIRES].

  20. Y. Hatta, E. Iancu and A.H. Mueller, Deep inelastic scattering at strong coupling from gauge/string duality : the saturation line, JHEP 01 (2008) 026 [arXiv:0710.2148] [SPIRES].

    Article  ADS  Google Scholar 

  21. Y. Hatta, Small-x physics in QCD and in gauge/string duality, Prog. Theor. Phys. Suppl. 174 (2008) 298 [SPIRES].

    Article  MATH  ADS  Google Scholar 

  22. E. Levin, J. Miller, B.Z. Kopeliovich and I. Schmidt, Glauber - Gribov approach for DIS on nuclei in N = 4 SYM, JHEP 02 (2009) 048 [arXiv:0811.3586] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  23. G. Beuf, Gravity dual of N = 4 SYM theory with fast moving sources, Phys. Lett. B 686 (2010) 55 [arXiv:0903.1047] [SPIRES].

    ADS  Google Scholar 

  24. J.L. Albacete, Y.V. Kovchegov and A. Taliotis, Asymmetric collision of two shock waves in AdS 5, JHEP 05 (2009) 060 [arXiv:0902.3046] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  25. E. Levin and I. Potashnikova, Soft interaction at high energy and N = 4 SYM, JHEP 06 (2009) 031 [arXiv:0902.3122] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  26. E. Avsar, E. Iancu, L. McLerran and D.N. Triantafyllopoulos, Shockwaves and deep inelastic scattering within the gauge/gravity duality, JHEP 11 (2009) 105 [arXiv:0907.4604] [SPIRES].

    Article  ADS  Google Scholar 

  27. J. Polchinski and M.J. Strassler, Deep inelastic scattering and gauge/string duality, JHEP 05 (2003) 012 [hep-th/0209211] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  28. C.A. Ballon Bayona, H. Boschi-Filho and N.R.F. Braga, Deep inelastic scattering from gauge string duality in the soft wall model, JHEP 03 (2008) 064 [arXiv:0711.0221] [SPIRES].

    Article  ADS  Google Scholar 

  29. C.A. Ballon Bayona, H. Boschi-Filho and N.R.F. Braga, Deep inelastic structure functions from supergravity at small x, JHEP 10 (2008) 088 [arXiv:0712.3530] [SPIRES].

    Article  ADS  Google Scholar 

  30. C.A. Ballon Bayona, H. Boschi-Filho and N.R.F. Braga, Deep inelastic scattering from gauge string duality in D3-D7 brane model, JHEP 09 (2008) 114 [arXiv:0807.1917] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  31. L. Cornalba, M.S. Costa and J. Penedones, Eikonal methods in AdS/CFT: BFKL Pomeron at weak coupling, JHEP 06 (2008) 048 [arXiv:0801.3002] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  32. L.N. Lipatov, The bare Pomeron in quantum chromodynamics, Sov. Phys. JETP 63 (1986) 904 [Zh. Eksp. Teor. Fiz. 90 (1986) 1536] [SPIRES].

    Google Scholar 

  33. J. Bartels, A. De Roeck and H. Lotter, The γ*γ* total cross section and the BFKL Pomeron at e + e − colliders, Phys. Lett. B 389 (1996) 742 [hep-ph/9608401] [SPIRES].

    ADS  Google Scholar 

  34. S.J. Brodsky, F. Hautmann and D.E. Soper, Virtual photon scattering at high energies as a probe of the short distance Pomeron, Phys. Rev. D 56 (1997) 6957 [hep-ph/9706427] [SPIRES].

    ADS  Google Scholar 

  35. J. Bartels, J. Kotanski, A.M. Mischler and V. Schomerus, Regge limit of R-current correlators in AdS Supergravity, Nucl. Phys. B 830 (2010) 153 [arXiv:0908.2301] [SPIRES].

    Article  ADS  Google Scholar 

  36. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [SPIRES].

    MATH  MathSciNet  ADS  Google Scholar 

  37. R.C. Brower, J. Polchinski, M.J. Strassler and C.-I. Tan, The Pomeron and gauge/string duality, JHEP 12 (2007) 005 [hep-th/0603115] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  38. J. Bartels, A.M. Mischler and M. Salvadore, Four point function of R-currents in N = 4 SYM in theRegge limit at weak coupling, Phys. Rev. D 78 (2008) 016004 [arXiv:0803.1423] [SPIRES].

    ADS  Google Scholar 

  39. C. Dullemond and E. van Beveren, Propagators in anti-de Sitter space-time, J. Math. Phys. 26 (1985) 2050 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  40. J. Penedones, High energy scattering in the AdS/CFT correspondence, arXiv:0712.0802 [SPIRES].

  41. S.B. Giddings, D.J. Gross and A. Maharana, Gravitational effects in ultrahigh-energy string scattering, Phys. Rev. D 77 (2008) 046001 [arXiv:0705.1816] [SPIRES].

    ADS  Google Scholar 

  42. O. Aharony, S. Minwalla and T. Wiseman, Plasma-balls in large-N gauge theories and localized black holes, Class. Quant. Grav. 23 (2006) 2171 [hep-th/0507219] [SPIRES].

    Article  MATH  MathSciNet  Google Scholar 

  43. P.A.M. Dirac, Wave equations in conformal space, Annals Math. 37 (1936) 429 [SPIRES].

    Article  MathSciNet  Google Scholar 

  44. I.T. Todorov, M.C. Mintchev and V.B. Petkova, Conformal invariance in quantum field theory, Scuola Normale Superiore, Pisa, Italy (1978) pg. 273 [SPIRES]

  45. L. Cornalba, M.S. Costa and J. Penedones, in preparation.

  46. S. Ferrara, A.F. Grillo, G. Parisi and R. Gatto, Covariant expansion of the conformal four-point function, Nucl. Phys. B 49 (1972) 77 [SPIRES].

    Article  ADS  Google Scholar 

  47. S. Ferrara, A.F. Grillo, R. Gatto and G. Parisi, Analyticity properties and asymptotic expansions of conformal covariant green’s functions, Nuovo Cim. A 19 (1974) 667 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  48. A.M. Polyakov, Non-Hamiltonian approach to conformal quantum field theory, JETP 39 (1974) 10.

    MathSciNet  ADS  Google Scholar 

  49. V.K. Dobrev, V.B. Petkova, S.G. Petrova and I.T. Todorov, Dynamical derivation of vacuum operator product expansion in Euclidean conformal quantum field theory, Phys. Rev. D 13 (1976) 887 [SPIRES].

    ADS  Google Scholar 

  50. I. Balitsky and G.A. Chirilli, Conformal kernel for NLO BFKL equation in \( \mathcal{N} = 4 \) SYM, Phys. Rev. D 79 (2009) 031502, [arXiv:0812.3416] [SPIRES].

    ADS  Google Scholar 

  51. I. Balitsky and G.A. Chirilli, NLO evolution of color dipoles in N=4 SYM, Nucl. Phys. B 822 (2009) 45 [arXiv:0903.5326] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  52. I. Balitsky, High-energy QCD and Wilson lines, hep-ph/0101042 [SPIRES].

  53. T. Banks and G. Festuccia, TheRegge limit for Green functions in conformal field theory, arXiv:0910.2746 [SPIRES].

Download references

Author information

Authors and Affiliations

  1. Centro Studi e Ricerche E. Fermi, Compendio Viminale, I-00184, Roma, Italy

    Lorenzo Cornalba

  2. Università di Milano-Bicocca and INFN, sezione di Milano-Bicocca, Piazza della Scienza 3, I–20126, Milano, Italy

    Lorenzo Cornalba

  3. Departamento de Física e Centro de Física do Porto, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, 4169–007, Porto, Portugal

    Miguel S. Costa

  4. Theory Group, Physics Department, CERN, CH-1211, Geneva 23, Switzerland

    Miguel S. Costa

  5. Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA, 93106-4030, U.S.A.

    João Penedones

Authors
  1. Lorenzo Cornalba
    View author publications

    Search author on:PubMed Google Scholar

  2. Miguel S. Costa
    View author publications

    Search author on:PubMed Google Scholar

  3. João Penedones
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to João Penedones.

Additional information

ArXiv ePrint: 0911.0043

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article

Cite this article

Cornalba, L., Costa, M.S. & Penedones, J. Deep inelastic scattering in conformal QCD. J. High Energ. Phys. 2010, 133 (2010). https://doi.org/10.1007/JHEP03(2010)133

Download citation

  • Received: 26 January 2010

  • Accepted: 03 March 2010

  • Published: 31 March 2010

  • DOI: https://doi.org/10.1007/JHEP03(2010)133

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Deep Inelastic Scattering
  • AdS-CFT Correspondence
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature