Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

An algebraic approach to the analytic bootstrap

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 27 April 2017
  • Volume 2017, article number 157, (2017)
  • Cite this article

You have full access to this open access article

Download PDF
Journal of High Energy Physics Aims and scope Submit manuscript
An algebraic approach to the analytic bootstrap
Download PDF
  • Luis F. Alday1 &
  • Alexander Zhiboedov2 
  • 638 Accesses

  • 107 Citations

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

We develop an algebraic approach to the analytic bootstrap in CFTs. By acting with the Casimir operator on the crossing equation we map the problem of doing large spin sums to any desired order to the problem of solving a set of recursion relations. We compute corrections to the anomalous dimension of large spin operators due to the exchange of a primary and its descendants in the crossed channel and show that this leads to a Borel-summable expansion. We analyse higher order corrections to the microscopic CFT data in the direct channel and its matching to infinite towers of operators in the crossed channel. We apply this method to the critical O(N ) model. At large N we reproduce the first few terms in the large spin expansion of the known two-loop anomalous dimensions of higher spin currents in the traceless symmetric representation of O(N ) and make further predictions. At small N we present the results for the truncated large spin expansion series of anomalous dimensions of higher spin currents.

Article PDF

Download to read the full article text

Similar content being viewed by others

Notes on spinning operators in fermionic CFT

Article Open access 08 May 2017

Anomalous dimensions of higher spin currents in large N CFTs

Article Open access 09 January 2017

Towards a bootstrap approach to higher orders of epsilon expansion

Article Open access 26 February 2018

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Analytic Philosophy
  • Category Theory, Homological Algebra
  • Field Theory and Polynomials
  • Operator Theory
  • Quantum Electrodynamics, Relativistic and Many-body Calculations
  • Several Complex Variables and Analytic Spaces
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. S. Ferrara, A.F. Grillo and R. Gatto, Tensor representations of conformal algebra and conformally covariant operator product expansion, Annals Phys. 76 (1973) 161 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  2. A.M. Polyakov, Nonhamiltonian approach to conformal quantum field theory, Zh. Eksp. Teor. Fiz. 66 (1974) 23 [INSPIRE].

    Google Scholar 

  3. L.F. Alday and J.M. Maldacena, Comments on operators with large spin, JHEP 11 (2007) 019 [arXiv:0708.0672] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. A.L. Fitzpatrick, J. Kaplan, D. Poland and D. Simmons-Duffin, The analytic bootstrap and AdS superhorizon locality, JHEP 12 (2013) 004 [arXiv:1212.3616] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Z. Komargodski and A. Zhiboedov, Convexity and liberation at large spin, JHEP 11 (2013) 140 [arXiv:1212.4103] [INSPIRE].

    Article  ADS  Google Scholar 

  6. L.F. Alday, A. Bissi and T. Lukowski, Large spin systematics in CFT, JHEP 11 (2015) 101 [arXiv:1502.07707] [INSPIRE].

    ADS  Google Scholar 

  7. B. Basso and G.P. Korchemsky, Anomalous dimensions of high-spin operators beyond the leading order, Nucl. Phys. B 775 (2007) 1 [hep-th/0612247] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. F.A. Dolan and H. Osborn, Conformal four point functions and the operator product expansion, Nucl. Phys. B 599 (2001) 459 [hep-th/0011040] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. A.L. Fitzpatrick, J. Kaplan, M.T. Walters and J. Wang, Eikonalization of conformal blocks, JHEP 09 (2015) 019 [arXiv:1504.01737] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  10. L.F. Alday and A. Zhiboedov, Conformal bootstrap with slightly broken higher spin symmetry, JHEP 06 (2016) 091 [arXiv:1506.04659] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  11. S.E. Derkachov and A.N. Manashov, The simple scheme for the calculation of the anomalous dimensions of composite operators in the 1/N expansion, Nucl. Phys. B 522 (1998) 301 [hep-th/9710015] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  12. V.M. Braun and A.N. Manashov, Evolution equations beyond one loop from conformal symmetry, Eur. Phys. J. C 73 (2013) 2544 [arXiv:1306.5644] [INSPIRE].

    Article  ADS  Google Scholar 

  13. A. Pelissetto and E. Vicari, Critical phenomena and renormalization group theory, Phys. Rept. 368 (2002) 549 [cond-mat/0012164] [INSPIRE].

  14. R. Rattazzi, V.S. Rychkov, E. Tonni and A. Vichi, Bounding scalar operator dimensions in 4D CFT, JHEP 12 (2008) 031 [arXiv:0807.0004] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. K. Lang and W. Rühl, Critical O(N ) vector nonlinear σ-models: a resume of their field structure, hep-th/9311046 [INSPIRE].

  16. F. Kos, D. Poland and D. Simmons-Duffin, Bootstrapping the O(N ) vector models, JHEP 06 (2014) 091 [arXiv:1307.6856] [INSPIRE].

    Article  ADS  Google Scholar 

  17. F. Kos, D. Poland, D. Simmons-Duffin and A. Vichi, Bootstrapping the O(N ) archipelago, JHEP 11 (2015) 106 [arXiv:1504.07997] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  18. D. Li, D. Meltzer and D. Poland, Non-Abelian binding energies from the lightcone bootstrap, JHEP 02 (2016) 149 [arXiv:1510.07044] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  19. A.C. Petkou, C T and C J up to next-to-leading order in 1/N in the conformally invariant O(N ) vector model for 2 < d < 4, Phys. Lett. B 359 (1995) 101 [hep-th/9506116] [INSPIRE].

    Article  ADS  Google Scholar 

  20. S. El-Showk et al., Solving the 3D Ising model with the conformal bootstrap, Phys. Rev. D 86 (2012) 025022 [arXiv:1203.6064] [INSPIRE].

    ADS  Google Scholar 

  21. S. El-Showk et al., Solving the 3d Ising model with the conformal bootstrap II. c-Minimization and precise critical exponents, J. Stat. Phys. 157 (2014) 869 [arXiv:1403.4545] [INSPIRE].

  22. L.F. Alday and A. Bissi, Higher-spin correlators, JHEP 10 (2013) 202 [arXiv:1305.4604] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. L.F. Alday, A. Bissi and T. Lukowski, Lessons from crossing symmetry at large-N , JHEP 06 (2015) 074 [arXiv:1410.4717] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  24. A. Kaviraj, K. Sen and A. Sinha, Analytic bootstrap at large spin, JHEP 11 (2015) 083 [arXiv:1502.01437] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  25. L. Cornalba, M.S. Costa and J. Penedones, Eikonal approximation in AdS/CFT: resumming the gravitational loop expansion, JHEP 09 (2007) 037 [arXiv:0707.0120] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  26. T. Hartman, S. Jain and S. Kundu, Causality constraints in conformal field theory, JHEP 05 (2016) 099 [arXiv:1509.00014] [INSPIRE].

    Article  ADS  Google Scholar 

  27. X.O. Camanho, J.D. Edelstein, J. Maldacena and A. Zhiboedov, Causality constraints on corrections to the graviton three-point coupling, JHEP 02 (2016) 020 [arXiv:1407.5597] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  28. K. Lang and W. Rühl, The critical O(N ) σ-model at dimension 2 < d < 4 and order 1/n 2 : operator product expansions and renormalization, Nucl. Phys. B 377 (1992) 371 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  29. L. Yen, Crossings and nestings for arc-coloured permutations, arXiv:1211.3472.

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Mathematical Institute, University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, U.K.

    Luis F. Alday

  2. Center for the Fundamental Laws of Nature, Harvard University, Cambridge, MA, 02138, U.S.A.

    Alexander Zhiboedov

Authors
  1. Luis F. Alday
    View author publications

    Search author on:PubMed Google Scholar

  2. Alexander Zhiboedov
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Alexander Zhiboedov.

Additional information

ArXiv ePrint: 1510.08091

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alday, L.F., Zhiboedov, A. An algebraic approach to the analytic bootstrap. J. High Energ. Phys. 2017, 157 (2017). https://doi.org/10.1007/JHEP04(2017)157

Download citation

  • Received: 07 November 2016

  • Revised: 20 March 2017

  • Accepted: 22 March 2017

  • Published: 27 April 2017

  • DOI: https://doi.org/10.1007/JHEP04(2017)157

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Conformal Field Theory
  • AdS-CFT Correspondence
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature