Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

The Regge limit for Green functions in conformal field theory

  • Open access
  • Published: 29 June 2010
  • Volume 2010, article number 105, (2010)
  • Cite this article

You have full access to this open access article

Download PDF
Journal of High Energy Physics Aims and scope Submit manuscript
The Regge limit for Green functions in conformal field theory
Download PDF
  • T. Banks1,2 &
  • G. Festuccia1 
  • 862 Accesses

  • 9 Citations

  • 1 Altmetric

  • Explore all metrics

Abstract

We define a Regge limit for off-shell Green functions in quantum field theory, and study it in the particular case of conformal field theories (CFT). Our limit differs from that defined in [32–35], the latter being only a particular corner of the Regge regime. By studying the limit for free CFTs, we are able to reproduce the Low-Nussinov [39, 40], BFKL [24–26] approach to the pomeron at weak coupling. The dominance of Feynman graphs where only two high momentum lines are exchanged in the t-channel, follows simply from the free field analysis. We can then define the BFKL kernel in terms of the two point function of a simple light-like bilocal operator. We also include a brief discussion of the gravity dual predictions for the Regge limit at strong coupling.

Article PDF

Download to read the full article text

Similar content being viewed by others

Could reggeon field theory be an effective theory for QCD in the Regge limit?

Article Open access 30 March 2016

Spatial Regularization of Green’s Function in an Electric Field and the Quasi-Classical Complex Energy Spectrum in Quantum Dots

Article 01 August 2022

\(\hbox {Next-to}{}^k\) Leading Log Expansions by Chord Diagrams

Article 10 February 2020

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Classical and Quantum Gravity
  • Crystal Field Theory
  • Field Theory and Polynomials
  • Real Functions
  • Special Functions
  • Integral Transforms and Operational Calculus
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. R. Blankenbecler and R.L. Sugar, Feynman-Diagram Models of Regge and Multi-Regge Couplings, Phys. Rev. 168 (1968) 1597 [SPIRES].

    Article  ADS  Google Scholar 

  2. J.L. Cardy, Regge Behavior in as Asymptotically Free Field Theory, Phys. Lett. B 53 (1974) 355 [SPIRES].

    ADS  Google Scholar 

  3. C. Lovelace, Regge Behavior Under Asymptotic Freedom, Phys. Lett. B 55 (1975) 187 [SPIRES].

    ADS  Google Scholar 

  4. J.B. Bronzan and R.L. Sugar, Regge Behavior of Spontaneously Broken Nonabelian Gauge Theory, Phys. Rev. D 17 (1978) 585 [SPIRES].

    ADS  Google Scholar 

  5. M.C. Bergere and C. Gilain, Regge Pole Behavior in ϕ 3 Field Theory, J. Math. Phys. 19 (1978) 1495 [SPIRES].

    Article  ADS  Google Scholar 

  6. J.B. Bronzan and R.L. Sugar, Regge Behavior of Spontaneously Broken Nonabelian Gauge Theory. 2, Phys. Rev. D 17 (1978) 2813 [SPIRES].

    ADS  Google Scholar 

  7. M.C. Bergere and C. de Calan, Regge Pole Behavior In Strictly Renormalizable Scalar Field Theories, Phys. Rev. D 20 (1979) 2047 [SPIRES].

    ADS  Google Scholar 

  8. S.J. Chang and T.-M. Yan, Regge trajectories in the phi-to-the-3 multiperipheral model with strong coupling, Phys. Rev. D 7 (1973) 3698 [SPIRES].

    ADS  Google Scholar 

  9. J.-L. Gervais and A. Neveu, The Slope Of The Leading Regge Trajectory In Quantum Chromodynamics, Nucl. Phys. B 163 (1980) 189 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  10. H. Cheng and T.T. Wu, Regge poles for large coupling constants. i, Phys. Rev. D 5 (1972) 3189 [SPIRES].

    ADS  Google Scholar 

  11. H. Cheng and T.T. Wu, Regge poles for large coupling constants. ii, Phys. Rev. D 5 (1972) 3192 [SPIRES].

    ADS  Google Scholar 

  12. S.G. Matinyan and A.G. Sedrakian, MultiparticleRegge Poles in Quantum Field Theory. ϕ 3 Theory, Yad. Fiz. 24 (1976) 844 [SPIRES].

    Google Scholar 

  13. I.I. Balitsky, L.N. Lipatov and V.S. Fadin, Regge Processes In Nonabelian Gauge Theories (in Russian), in Leningrad 1979, Proceedings, Physics Of Elementary Particles, Leningrad U.R.S.S. (1979), pg. 109–149 [SPIRES].

  14. D.A. Dicus, D.Z. Freedman and V.L. Teplitz, Regge pole content of chiral and gauge field theories, Phys. Rev. D 4 (1971) 2320 [SPIRES].

    ADS  Google Scholar 

  15. T. Jaroszewicz, Infrared Divergences andRegge Behavior in QCD, Acta Phys. Polon. B 11 (1980) 965 [SPIRES].

    Google Scholar 

  16. M. Praszalowicz, Regge Limit In QCD, Acta Phys. Polon. B 12 (1981) 773 [SPIRES].

    Google Scholar 

  17. H.M. Fried, Field-theoretic model for high-energy scattering. ii. Regge and non-regge damping in πN scattering, Phys. Rev. D 1 (1970) 596 [SPIRES].

    ADS  Google Scholar 

  18. D. Shapero, Regge poles in scalar-vector field theory, Phys. Rev. 186 (1969) 1697 [SPIRES].

    Article  ADS  Google Scholar 

  19. B.W. Lee and R.F. Sawyer, Regge Poles and High-energy Limits in Field Theory, Phys. Rev. 127 (1962) 2266 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  20. R.A. Brandt and C.A. Orzalesi, A mechanism for the origin of Regge asymptotic behavior in quantum field theory, Phys. Lett. B 34 (1971) 641 [SPIRES].

    ADS  Google Scholar 

  21. H.B. Nielsen, Connection between the Regge trajectory universal slope α′ and the transverse momentum distribution of partons in planar Feynman diagram model, Phys. Lett. B 35 (1971) 515 [SPIRES].

    ADS  Google Scholar 

  22. G.V. Frolov, V.N. Gribov and L.N. Lipatov, On Regge poles in quantum electrodynamics, Phys. Lett. B 31 (1970) 34 [SPIRES].

    ADS  Google Scholar 

  23. K. Seto, RelativisticRegge approach from the Bethe-salpeter equation, Prog. Theor. Phys. 40 (1968) 605 [SPIRES].

    Article  ADS  Google Scholar 

  24. E.A. Kuraev, L.N. Lipatov and V.S. Fadin, Multi - Reggeon Processes in the Yang-Mills Theory, Sov. Phys. JETP 44 (1976) 443 [Zh. Eksp. Teor. Fiz. 71 (1976) 840] [SPIRES].

    ADS  Google Scholar 

  25. I.I. Balitsky and L.N. Lipatov, The Pomeranchuk Singularity in Quantum Chromodynamics, Sov. J. Nucl. Phys. 28 (1978) 822 [Yad. Fiz. 28 (1978) 1597] [SPIRES].

    Google Scholar 

  26. L.N. Lipatov, The Bare Pomeron in Quantum Chromodynamics, Sov. Phys. JETP 63 (1986) 904 [Zh. Eksp. Teor. Fiz. 90 (1986) 1536] [SPIRES].

    Google Scholar 

  27. A.H. Mueller, Soft gluons in the infinite momentum wave function and the BFKL Pomeron, Nucl. Phys. B 415 (1994) 373 [SPIRES].

    Article  ADS  Google Scholar 

  28. A.H. Mueller, Unitarity and the BFKL Pomeron, Nucl. Phys. B 437 (1995) 107 [hep-ph/9408245] [SPIRES].

    Article  ADS  Google Scholar 

  29. R.C. Brower, J. Polchinski, M.J. Strassler and C.-I. Tan, The Pomeron and Gauge/String Duality, JHEP 12 (2007) 005 [hep-th/0603115] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  30. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [SPIRES].

    MATH  MathSciNet  ADS  Google Scholar 

  31. S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  32. L. Cornalba, M.S. Costa and J. Penedones, Eikonal Methods in AdS/CFT: BFKL Pomeron at Weak Coupling, JHEP 06 (2008) 048 [arXiv:0801.3002] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  33. L. Cornalba, M.S. Costa, J. Penedones and R. Schiappa, Eikonal approximation in AdS/CFT: From shock waves to four-point functions, JHEP 08 (2007) 019 [hep-th/0611122] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  34. L. Cornalba, M.S. Costa, J. Penedones and R. Schiappa, Eikonal approximation in AdS/CFT: Conformal partial waves and finite N four-point functions, Nucl. Phys. B 767 (2007) 327 [hep-th/0611123] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  35. L. Cornalba, M.S. Costa and J. Penedones, Deep Inelastic Scattering in Conformal QCD, JHEP 03 (2010) 133 [arXiv:0911.0043] [SPIRES].

    Article  Google Scholar 

  36. D.M. Hofman and J. Maldacena, Conformal collider physics: Energy and charge correlations, JHEP 05 (2008) 012 [arXiv:0803.1467] [SPIRES].

    Article  ADS  Google Scholar 

  37. F.A. Dolan and H. Osborn, Conformal four point functions and the operator product expansion, Nucl. Phys. B 599 (2001) 459 [hep-th/0011040] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  38. F.A. Dolan and H. Osborn, Conformal partial waves and the operator product expansion, Nucl. Phys. B 678 (2004) 491 [hep-th/0309180] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  39. F.E. Low, A Model of the Bare Pomeron, Phys. Rev. D 12 (1975) 163 [SPIRES].

    ADS  Google Scholar 

  40. S. Nussinov, Colored Quark Version of Some Hadronic Puzzles, Phys. Rev. Lett. 34 (1975) 1286 [SPIRES].

    Article  ADS  Google Scholar 

  41. A.V. Kotikov and L.N. Lipatov, DGLAP and BFKL evolution equations in the N = 4 supersymmetric gauge theory, Nucl. Phys. B 661 (2003) 19 [Erratum ibid. B 685 (2004) 405] [hep-ph/0208220] [SPIRES].

    ADS  Google Scholar 

  42. A.V. Kotikov and L.N. Lipatov, NLO corrections to the BFKL equation in QCD and in supersymmetric gauge theories, Nucl. Phys. B 582 (2000) 19 [hep-ph/0004008] [SPIRES].

    Article  ADS  Google Scholar 

  43. I. Balitsky, High-energy QCD and Wilson lines, hep-ph/0101042 [SPIRES].

  44. J.S. Geronimo and H. Navelet, On certain two dimensional integrals that appear in conformal field theory, J. Math. Phys. 44 (2003) 2293 [math-ph/0003019] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Physics and SCIPP, University of California, Santa Cruz, CA, 95064, U.S.A.

    T. Banks & G. Festuccia

  2. Department of Physics and NHETC, Rutgers University, Piscataway, NJ, 08540, U.S.A.

    T. Banks

Authors
  1. T. Banks
    View author publications

    Search author on:PubMed Google Scholar

  2. G. Festuccia
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to G. Festuccia.

Additional information

ArXiv ePrint: 0910.2746

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article

Cite this article

Banks, T., Festuccia, G. The Regge limit for Green functions in conformal field theory. J. High Energ. Phys. 2010, 105 (2010). https://doi.org/10.1007/JHEP06(2010)105

Download citation

  • Received: 01 May 2010

  • Accepted: 03 June 2010

  • Published: 29 June 2010

  • DOI: https://doi.org/10.1007/JHEP06(2010)105

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Conformal and W Symmetry
  • QCD
  • Gauge-gravity correspondence
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature