Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Radial expansion for spinning conformal blocks

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 12 July 2016
  • Volume 2016, article number 57, (2016)
  • Cite this article

You have full access to this open access article

Download PDF
Journal of High Energy Physics Aims and scope Submit manuscript
Radial expansion for spinning conformal blocks
Download PDF
  • Miguel S. Costa1,2,
  • Tobias Hansen1,
  • João Penedones1,2,3 &
  • …
  • Emilio Trevisani1 
  • 572 Accesses

  • 57 Citations

  • 3 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

This paper develops a method to compute any bosonic conformal block as a series expansion in the optimal radial coordinate introduced by Hogervorst and Rychkov. The method reduces to the known result when the external operators are all the same scalar operator, but it allows to compute conformal blocks for external operators with spin. Moreover, we explain how to write closed form recursion relations for the coefficients of the expansions. We study three examples of four point functions in detail: one vector and three scalars; two vectors and two scalars; two spin 2 tensors and two scalars. Finally, for the case of two external vectors, we also provide a more efficient way to generate the series expansion using the analytic structure of the blocks as a function of the scaling dimension of the exchanged operator.

Article PDF

Download to read the full article text

Similar content being viewed by others

Weight shifting operators and conformal blocks

Article Open access 14 February 2018

Recursion relations for conformal blocks

Article Open access 12 September 2016

Spinning operators and defects in conformal field theory

Article Open access 12 August 2019

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Approximations and Expansions
  • Linear Algebra
  • Multilinear Algebra
  • Special Functions
  • Integral Transforms and Operational Calculus
  • Several Complex Variables and Analytic Spaces
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. S. Ferrara, A.F. Grillo and R. Gatto, Tensor representations of conformal algebra and conformally covariant operator product expansion, Annals Phys. 76 (1973) 161 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  2. A.M. Polyakov, Nonhamiltonian approach to conformal quantum field theory, Zh. Eksp. Teor. Fiz. 66 (1974) 23 [INSPIRE].

    MathSciNet  Google Scholar 

  3. R. Rattazzi, V.S. Rychkov, E. Tonni and A. Vichi, Bounding scalar operator dimensions in 4D CFT, JHEP 12 (2008) 031 [arXiv:0807.0004] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. V.S. Rychkov and A. Vichi, Universal constraints on conformal operator dimensions, Phys. Rev. D 80 (2009) 045006 [arXiv:0905.2211] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  5. D. Poland and D. Simmons-Duffin, Bounds on 4D conformal and superconformal field theories, JHEP 05 (2011) 017 [arXiv:1009.2087] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. R. Rattazzi, S. Rychkov and A. Vichi, Central charge bounds in 4D conformal field theory, Phys. Rev. D 83 (2011) 046011 [arXiv:1009.2725] [INSPIRE].

    ADS  MATH  Google Scholar 

  7. R. Rattazzi, S. Rychkov and A. Vichi, Bounds in 4D conformal field theories with global symmetry, J. Phys. A 44 (2011) 035402 [arXiv:1009.5985] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  8. D. Poland, D. Simmons-Duffin and A. Vichi, Carving out the space of 4D CFTs, JHEP 05 (2012) 110 [arXiv:1109.5176] [INSPIRE].

    Article  ADS  Google Scholar 

  9. S. El-Showk et al., Solving the 3D Ising model with the conformal bootstrap, Phys. Rev. D 86 (2012) 025022 [arXiv:1203.6064] [INSPIRE].

    ADS  Google Scholar 

  10. P. Liendo, L. Rastelli and B.C. van Rees, The bootstrap program for boundary CFT d , JHEP 07 (2013) 113 [arXiv:1210.4258] [INSPIRE].

    Article  ADS  Google Scholar 

  11. C. Beem, L. Rastelli and B.C. van Rees, The \( \mathcal{N}=4 \) superconformal bootstrap, Phys. Rev. Lett. 111 (2013) 071601 [arXiv:1304.1803] [INSPIRE].

    Article  ADS  Google Scholar 

  12. F. Gliozzi, More constraining conformal bootstrap, Phys. Rev. Lett. 111 (2013) 161602 [arXiv:1307.3111] [INSPIRE].

    Article  ADS  Google Scholar 

  13. F. Kos, D. Poland and D. Simmons-Duffin, Bootstrapping the O(N) vector models, JHEP 06 (2014) 091 [arXiv:1307.6856] [INSPIRE].

    Article  ADS  Google Scholar 

  14. S. El-Showk, M. Paulos, D. Poland, S. Rychkov, D. Simmons-Duffin and A. Vichi, Conformal field theories in fractional dimensions, Phys. Rev. Lett. 112 (2014) 141601 [arXiv:1309.5089] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  15. S. El-Showk et al., Solving the 3D Ising model with the conformal bootstrap II. c-minimization and precise critical exponents, J. Stat. Phys. 157 (2014) 869 [arXiv:1403.4545] [INSPIRE].

  16. Y. Nakayama and T. Ohtsuki, Approaching the conformal window of O(n) × O(m) symmetric Landau-Ginzburg models using the conformal bootstrap, Phys. Rev. D 89 (2014) 126009 [arXiv:1404.0489] [INSPIRE].

    ADS  Google Scholar 

  17. S.M. Chester, J. Lee, S.S. Pufu and R. Yacoby, The \( \mathcal{N}=8 \) superconformal bootstrap in three dimensions, JHEP 09 (2014) 143 [arXiv:1406.4814] [INSPIRE].

    Article  ADS  Google Scholar 

  18. F. Kos, D. Poland and D. Simmons-Duffin, Bootstrapping mixed correlators in the 3D Ising model, JHEP 11 (2014) 109 [arXiv:1406.4858] [INSPIRE].

    Article  ADS  Google Scholar 

  19. M.F. Paulos, JuliBootS: a hands-on guide to the conformal bootstrap, arXiv:1412.4127 [INSPIRE].

  20. C. Beem, M. Lemos, P. Liendo, L. Rastelli and B.C. van Rees, The \( \mathcal{N}=2 \) superconformal bootstrap, JHEP 03 (2016) 183 [arXiv:1412.7541] [INSPIRE].

    Article  ADS  Google Scholar 

  21. D. Simmons-Duffin, A semidefinite program solver for the conformal bootstrap, JHEP 06 (2015) 174 [arXiv:1502.02033] [INSPIRE].

    Article  ADS  Google Scholar 

  22. F. Gliozzi, P. Liendo, M. Meineri and A. Rago, Boundary and interface CFTs from the conformal bootstrap, JHEP 05 (2015) 036 [arXiv:1502.07217] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  23. N. Bobev, S. El-Showk, D. Mazac and M.F. Paulos, Bootstrapping SCFTs with four supercharges, JHEP 08 (2015) 142 [arXiv:1503.02081] [INSPIRE].

    MathSciNet  Google Scholar 

  24. F. Kos, D. Poland, D. Simmons-Duffin and A. Vichi, Bootstrapping the O(N) archipelago, JHEP 11 (2015) 106 [arXiv:1504.07997] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  25. C. Beem, M. Lemos, L. Rastelli and B.C. van Rees, The (2, 0) superconformal bootstrap, Phys. Rev. D 93 (2016) 025016 [arXiv:1507.05637] [INSPIRE].

    ADS  Google Scholar 

  26. L. Iliesiu, F. Kos, D. Poland, S.S. Pufu, D. Simmons-Duffin and R. Yacoby, Bootstrapping 3D fermions, JHEP 03 (2016) 120 [arXiv:1508.00012] [INSPIRE].

    Article  ADS  Google Scholar 

  27. M. Lemos and P. Liendo, Bootstrapping \( \mathcal{N}=2 \) chiral correlators, JHEP 01 (2016) 025 [arXiv:1510.03866] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  28. Y.-H. Lin, S.-H. Shao, D. Simmons-Duffin, Y. Wang and X. Yin, N = 4 superconformal bootstrap of the K3 CFT, arXiv:1511.04065 [INSPIRE].

  29. S.M. Chester, L.V. Iliesiu, S.S. Pufu and R. Yacoby, Bootstrapping O(N) vector models with four supercharges in 3 ≤ d ≤ 4, arXiv:1511.07552 [INSPIRE].

  30. D. Li, D. Meltzer and D. Poland, Conformal collider physics from the lightcone bootstrap, JHEP 02 (2016) 143 [arXiv:1511.08025] [INSPIRE].

    Article  ADS  Google Scholar 

  31. S.M. Chester and S.S. Pufu, Towards bootstrapping QED 3, arXiv:1601.03476 [INSPIRE].

  32. C. Behan, PyCFTBoot: a flexible interface for the conformal bootstrap, arXiv:1602.02810 [INSPIRE].

  33. D.M. Hofman, D. Li, D. Meltzer, D. Poland and F. Rejon-Barrera, A proof of the conformal collider bounds, JHEP 06 (2016) 111 [arXiv:1603.03771] [INSPIRE].

    Article  ADS  Google Scholar 

  34. F. Kos, D. Poland, D. Simmons-Duffin and A. Vichi, Precision islands in the Ising and O(N) models, arXiv:1603.04436 [INSPIRE].

  35. L. Iliesiu, F. Kos, D. Poland, S.S. Pufu, D. Simmons-Duffin and R. Yacoby, Fermion-scalar conformal blocks, JHEP 04 (2016) 074 [arXiv:1511.01497] [INSPIRE].

    Article  ADS  Google Scholar 

  36. A. Castedo Echeverri, E. Elkhidir, D. Karateev and M. Serone, Seed conformal blocks in 4D CFT, arXiv:1601.05325 [INSPIRE].

  37. H. Osborn, Conformal blocks for arbitrary spins in two dimensions, Phys. Lett. B 718 (2012) 169 [arXiv:1205.1941] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  38. M.S. Costa, J. Penedones, D. Poland and S. Rychkov, Spinning conformal blocks, JHEP 11 (2011) 154 [arXiv:1109.6321] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  39. A. Castedo Echeverri, E. Elkhidir, D. Karateev and M. Serone, Deconstructing conformal blocks in 4D CFT, JHEP 08 (2015) 101 [arXiv:1505.03750] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  40. M.S. Costa and T. Hansen, Conformal correlators of mixed-symmetry tensors, JHEP 02 (2015) 151 [arXiv:1411.7351] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  41. F. Rejon-Barrera and D. Robbins, Scalar-vector bootstrap, JHEP 01 (2016) 139 [arXiv:1508.02676] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  42. M. Hogervorst and S. Rychkov, Radial coordinates for conformal blocks, Phys. Rev. D 87 (2013) 106004 [arXiv:1303.1111] [INSPIRE].

    ADS  Google Scholar 

  43. A.B. Zamolodchikov, Conformal symmetry in two-dimensions: an explicit recurrence formula for the conformal partial wave amplitude, Commun. Math. Phys. 96 (1984) 419 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  44. J. Penedones, E. Trevisani and M. Yamazaki, Recursion relations for conformal blocks, arXiv:1509.00428 [INSPIRE].

  45. M.S. Costa, J. Penedones, D. Poland and S. Rychkov, Spinning conformal correlators, JHEP 11 (2011) 071 [arXiv:1107.3554] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. M.S. Costa, T. Hansen, J. Penedones and E. Trevisani, Projectors and seed conformal blocks for traceless mixed-symmetry tensors, arXiv:1603.05551 [INSPIRE].

  47. A. Dymarsky, On the four-point function of the stress-energy tensors in a CFT, JHEP 10 (2015) 075 [arXiv:1311.4546] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Centro de Fisica do Porto, Universidade do Porto, Porto, Portugal

    Miguel S. Costa, Tobias Hansen, João Penedones & Emilio Trevisani

  2. Theory Division, Department of Physics, CERN, CH-1211, Genève 23, Switzerland

    Miguel S. Costa & João Penedones

  3. Fields and Strings Laboratory, Institute of Physics, EPFL, CH-1015, Lausanne, Switzerland

    João Penedones

Authors
  1. Miguel S. Costa
    View author publications

    Search author on:PubMed Google Scholar

  2. Tobias Hansen
    View author publications

    Search author on:PubMed Google Scholar

  3. João Penedones
    View author publications

    Search author on:PubMed Google Scholar

  4. Emilio Trevisani
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Emilio Trevisani.

Additional information

ArXiv ePrint: 1603.05552v2

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costa, M.S., Hansen, T., Penedones, J. et al. Radial expansion for spinning conformal blocks. J. High Energ. Phys. 2016, 57 (2016). https://doi.org/10.1007/JHEP07(2016)057

Download citation

  • Received: 18 May 2016

  • Accepted: 05 July 2016

  • Published: 12 July 2016

  • DOI: https://doi.org/10.1007/JHEP07(2016)057

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Conformal and W Symmetry
  • Field Theories in Higher Dimensions
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature