Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Veneziano amplitude of Vasiliev theory

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 05 October 2018
  • Volume 2018, article number 34, (2018)
  • Cite this article

You have full access to this open access article

Download PDF
Journal of High Energy Physics Aims and scope Submit manuscript
Veneziano amplitude of Vasiliev theory
Download PDF
  • Gustavo J. Turiaci1 &
  • Alexander Zhiboedov2 
  • 475 Accesses

  • 48 Citations

  • 1 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

We compute the four-point function of scalar operators in CFTs with weakly broken higher spin symmetry at arbitrary ’t Hooft coupling. We use the known three-point functions in these theories, the Lorentzian OPE inversion formula and crossing to fix the result up to the addition of three functions of the cross ratios. These are given by contact Witten diagrams in AdS and manifest non-analyticity of the OPE data in spin. We use Schwinger-Dyson equations to provide strong numerical evidence that such terms are absent in the large N Chern-Simons matter theories. The result is that the OPE data is analytic in spin up to J = 0.

Article PDF

Download to read the full article text

Similar content being viewed by others

Four point functions in CFT’s with slightly broken higher spin symmetry

Article Open access 12 May 2021

Holographic reconstruction of AdS exchanges from crossing symmetry

Article Open access 31 August 2017

A Mellin space approach to the conformal bootstrap

Article Open access 05 May 2017

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Field Theory and Polynomials
  • Mathematical Physics
  • Operator Theory
  • Special Functions
  • Integral Transforms and Operational Calculus
  • Several Complex Variables and Analytic Spaces
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. J.M. Maldacena, The Large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  2. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

  4. M.A. Vasiliev, Consistent equation for interacting gauge fields of all spins in (3+1)-dimensions, Phys. Lett. B 243 (1990) 378 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. M.A. Vasiliev, Higher spin gauge theories: Star product and AdS space, in The many faces of the superworld, M.A. Shifman ed., World Scientific (2000), pp. 533-610 [hep-th/9910096] [INSPIRE].

  6. M.A. Vasiliev, Nonlinear equations for symmetric massless higher spin fields in (A)dS(d), Phys. Lett. B 567 (2003) 139 [hep-th/0304049] [INSPIRE].

  7. I.R. Klebanov and A.M. Polyakov, AdS dual of the critical O(N) vector model, Phys. Lett. B 550 (2002) 213 [hep-th/0210114] [INSPIRE].

  8. E. Sezgin and P. Sundell, Massless higher spins and holography, Nucl. Phys. B 644 (2002) 303 [Erratum ibid. B 660 (2003) 403] [hep-th/0205131] [INSPIRE].

  9. S. Giombi and X. Yin, Higher Spin Gauge Theory and Holography: The Three-Point Functions, JHEP 09 (2010) 115 [arXiv:0912.3462] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. S. Giombi and X. Yin, Higher Spins in AdS and Twistorial Holography, JHEP 04 (2011) 086 [arXiv:1004.3736] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. N. Boulanger, P. Kessel, E.D. Skvortsov and M. Taronna, Higher spin interactions in four-dimensions: Vasiliev versus Fronsdal, J. Phys. A 49 (2016) 095402 [arXiv:1508.04139] [INSPIRE].

  12. C. Sleight and M. Taronna, Higher Spin Interactions from Conformal Field Theory: The Complete Cubic Couplings, Phys. Rev. Lett. 116 (2016) 181602 [arXiv:1603.00022] [INSPIRE].

    Article  ADS  Google Scholar 

  13. S. Giombi, S. Minwalla, S. Prakash, S.P. Trivedi, S.R. Wadia and X. Yin, Chern-Simons Theory with Vector Fermion Matter, Eur. Phys. J. C 72 (2012) 2112 [arXiv:1110.4386] [INSPIRE].

  14. O. Aharony, S. Giombi, G. Gur-Ari, J. Maldacena and R. Yacoby, The Thermal Free Energy in Large N Chern-Simons-Matter Theories, JHEP 03 (2013) 121 [arXiv:1211.4843] [INSPIRE].

    Article  ADS  Google Scholar 

  15. O. Aharony, G. Gur-Ari and R. Yacoby, Correlation Functions of Large N Chern-Simons-Matter Theories and Bosonization in Three Dimensions, JHEP 12 (2012) 028 [arXiv:1207.4593] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. O. Aharony, G. Gur-Ari and R. Yacoby, d = 3 Bosonic Vector Models Coupled to Chern-Simons Gauge Theories, JHEP 03 (2012) 037 [arXiv:1110.4382] [INSPIRE].

  17. G. Gur-Ari and R. Yacoby, Correlators of Large N Fermionic Chern-Simons Vector Models, JHEP 02 (2013) 150 [arXiv:1211.1866] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. S. Jain, M. Mandlik, S. Minwalla, T. Takimi, S.R. Wadia and S. Yokoyama, Unitarity, Crossing Symmetry and Duality of the S-matrix in large N Chern-Simons theories with fundamental matter, JHEP 04 (2015) 129 [arXiv:1404.6373] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  19. J. Maldacena and A. Zhiboedov, Constraining Conformal Field Theories with A Higher Spin Symmetry, J. Phys. A 46 (2013) 214011 [arXiv:1112.1016] [INSPIRE].

  20. V. Alba and K. Diab, Constraining conformal field theories with a higher spin symmetry in d = 4, arXiv:1307.8092 [INSPIRE].

  21. V. Alba and K. Diab, Constraining conformal field theories with a higher spin symmetry in d > 3 dimensions, JHEP 03 (2016) 044[arXiv:1510.02535] [INSPIRE].

  22. V.E. Didenko and E.D. Skvortsov, Exact higher-spin symmetry in CFT: all correlators in unbroken Vasiliev theory, JHEP 04 (2013) 158 [arXiv:1210.7963] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. J. Maldacena and A. Zhiboedov, Constraining conformal field theories with a slightly broken higher spin symmetry, Class. Quant. Grav. 30 (2013) 104003 [arXiv:1204.3882] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. X. Bekaert, J. Erdmenger, D. Ponomarev and C. Sleight, Towards holographic higher-spin interactions: Four-point functions and higher-spin exchange, JHEP 03 (2015) 170 [arXiv:1412.0016] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  25. X. Bekaert, J. Erdmenger, D. Ponomarev and C. Sleight, Quartic AdS Interactions in Higher-Spin Gravity from Conformal Field Theory, JHEP 11 (2015) 149 [arXiv:1508.04292] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. X. Bekaert, J. Erdmenger, D. Ponomarev and C. Sleight, Bulk quartic vertices from boundary four-point correlators, in Proceedings, International Workshop on Higher Spin Gauge Theories, Singapore, Singapore, November 4-6, 2015, pp. 291-303 (2017) [DOI:https://doi.org/10.1142/9789813144101 0015] [arXiv:1602.08570] [INSPIRE].

  27. E.D. Skvortsov and M. Taronna, On Locality, Holography and Unfolding, JHEP 11 (2015) 044 [arXiv:1508.04764] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  28. C. Sleight and M. Taronna, Higher spin gauge theories and bulk locality: a no-go result, arXiv:1704.07859 [INSPIRE].

  29. C. Sleight and M. Taronna, Feynman rules for higher-spin gauge fields on AdS d+1, JHEP 01 (2018) 060 [arXiv:1708.08668] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  30. L.F. Alday and A. Zhiboedov, Conformal Bootstrap With Slightly Broken Higher Spin Symmetry, JHEP 06 (2016) 091 [arXiv:1506.04659] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. G. Veneziano, Construction of a crossing - symmetric, Regge behaved amplitude for linearly rising trajectories, Nuovo Cim. A 57 (1968) 190 [INSPIRE].

  32. C.-M. Chang, S. Minwalla, T. Sharma and X. Yin, ABJ Triality: from Higher Spin Fields to Strings, J. Phys. A 46 (2013) 214009 [arXiv:1207.4485] [INSPIRE].

  33. A. Bedhotiya and S. Prakash, A test of bosonization at the level of four-point functions in Chern-Simons vector models, JHEP 12 (2015) 032 [arXiv:1506.05412] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  34. S. Caron-Huot, Analyticity in Spin in Conformal Theories, JHEP 09 (2017) 078 [arXiv:1703.00278] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. T. Leonhardt and W. Rühl, The Minimal conformal O(N ) vector σ-model at d = 3, J. Phys. A 37 (2004) 1403 [hep-th/0308111] [INSPIRE].

  36. D. Simmons-Duffin, D. Stanford and E. Witten, A spacetime derivation of the Lorentzian OPE inversion formula, JHEP 07 (2018) 085 [arXiv:1711.03816] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  37. L.F. Alday and S. Caron-Huot, Gravitational S-matrix from CFT dispersion relations, arXiv:1711.02031 [INSPIRE].

  38. L.F. Alday, Large Spin Perturbation Theory for Conformal Field Theories, Phys. Rev. Lett. 119 (2017) 111601 [arXiv:1611.01500] [INSPIRE].

    Article  ADS  Google Scholar 

  39. O. Aharony, L.F. Alday, A. Bissi and E. Perlmutter, Loops in AdS from Conformal Field Theory, JHEP 07 (2017) 036 [arXiv:1612.03891] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. J. Maldacena, S.H. Shenker and D. Stanford, A bound on chaos, JHEP 08 (2016) 106 [arXiv:1503.01409] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. A.L. Fitzpatrick, J. Kaplan, D. Poland and D. Simmons-Duffin, The Analytic Bootstrap and AdS Superhorizon Locality, JHEP 12 (2013) 004 [arXiv:1212.3616] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Z. Komargodski and A. Zhiboedov, Convexity and Liberation at Large Spin, JHEP 11 (2013) 140 [arXiv:1212.4103] [INSPIRE].

    Article  ADS  Google Scholar 

  43. L.F. Alday, A. Bissi and T. Lukowski, Large spin systematics in CFT, JHEP 11 (2015) 101 [arXiv:1502.07707] [INSPIRE].

    ADS  MATH  Google Scholar 

  44. D. Simmons-Duffin, The Lightcone Bootstrap and the Spectrum of the 3d Ising CFT, JHEP 03 (2017) 086 [arXiv:1612.08471] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. I. Heemskerk, J. Penedones, J. Polchinski and J. Sully, Holography from Conformal Field Theory, JHEP 10 (2009) 079 [arXiv:0907.0151] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  46. J. Penedones, Writing CFT correlation functions as AdS scattering amplitudes, JHEP 03 (2011) 025 [arXiv:1011.1485] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. E. Sezgin and P. Sundell, Holography in 4D (super) higher spin theories and a test via cubic scalar couplings, JHEP 07 (2005) 044 [hep-th/0305040] [INSPIRE].

  48. F.A. Dolan and H. Osborn, Conformal partial wave expansions for N = 4 chiral four point functions, Annals Phys. 321 (2006) 581 [hep-th/0412335] [INSPIRE].

  49. N. Arkani-Hamed and J. Maldacena, Cosmological Collider Physics, arXiv:1503.08043 [INSPIRE].

  50. S.S. Gubser and I.R. Klebanov, A Universal result on central charges in the presence of double trace deformations, Nucl. Phys. B 656 (2003) 23 [hep-th/0212138] [INSPIRE].

  51. F.A. Dolan and H. Osborn, Implications of N = 1 superconformal symmetry for chiral fields, Nucl. Phys. B 593 (2001) 599 [hep-th/0006098] [INSPIRE].

  52. F.A. Dolan and H. Osborn, Conformal four point functions and the operator product expansion, Nucl. Phys. B 599 (2001) 459 [hep-th/0011040] [INSPIRE].

  53. S. Giombi, V. Kirilin and E. Skvortsov, Notes on Spinning Operators in Fermionic CFT, JHEP 05 (2017) 041 [arXiv:1701.06997] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. M. Gary, S.B. Giddings and J. Penedones, Local bulk S-matrix elements and CFT singularities, Phys. Rev. D 80 (2009) 085005 [arXiv:0903.4437] [INSPIRE].

  55. J. Maldacena, D. Simmons-Duffin and A. Zhiboedov, Looking for a bulk point, JHEP 01 (2017) 013 [arXiv:1509.03612] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. S.R. Coleman and J. Mandula, All Possible Symmetries of the S Matrix, Phys. Rev. 159 (1967) 1251 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  57. D.M. Hofman and J. Maldacena, Conformal collider physics: Energy and charge correlations, JHEP 05 (2008) 012 [arXiv:0803.1467] [INSPIRE].

    Article  ADS  Google Scholar 

  58. S.D. Chowdhury, J.R. David and S. Prakash, Constraints on parity violating conformal field theories in d = 3, JHEP 11 (2017) 171 [arXiv:1707.03007] [INSPIRE].

  59. C. Cordova, J. Maldacena and G.J. Turiaci, Bounds on OPE Coefficients from Interference Effects in the Conformal Collider, JHEP 11 (2017) 032 [arXiv:1710.03199] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. D. Meltzer and E. Perlmutter, Beyond a = c: gravitational couplings to matter and the stress tensor OPE, JHEP 07 (2018) 157 [arXiv:1712.04861] [INSPIRE].

  61. A. Zhiboedov, On Conformal Field Theories With Extremal a/c Values, JHEP 04 (2014) 038 [arXiv:1304.6075] [INSPIRE].

    Article  ADS  Google Scholar 

  62. D. Karateev, P. Kravchuk and D. Simmons-Duffin, Weight Shifting Operators and Conformal Blocks, JHEP 02 (2018) 081 [arXiv:1706.07813] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  63. P. Kravchuk, Casimir recursion relations for general conformal blocks, JHEP 02 (2018) 011 [arXiv:1709.05347] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  64. J.M. Maldacena and G.L. Pimentel, On graviton non-Gaussianities during inflation, JHEP 09 (2011) 045 [arXiv:1104.2846] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  65. A. Bzowski, P. McFadden and K. Skenderis, Implications of conformal invariance in momentum space, JHEP 03 (2014) 111 [arXiv:1304.7760] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Department of Physics, Princeton University, Princeton, NJ, 08544, U.S.A.

    Gustavo J. Turiaci

  2. Department of Physics, Harvard University, Cambridge, MA, 02138, U.S.A.

    Alexander Zhiboedov

Authors
  1. Gustavo J. Turiaci
    View author publications

    Search author on:PubMed Google Scholar

  2. Alexander Zhiboedov
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Gustavo J. Turiaci.

Additional information

ArXiv ePrint: 1802.04390

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turiaci, G.J., Zhiboedov, A. Veneziano amplitude of Vasiliev theory. J. High Energ. Phys. 2018, 34 (2018). https://doi.org/10.1007/JHEP10(2018)034

Download citation

  • Received: 04 July 2018

  • Accepted: 01 October 2018

  • Published: 05 October 2018

  • DOI: https://doi.org/10.1007/JHEP10(2018)034

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Chern-Simons Theories
  • Conformal Field Theory
  • Higher Spin Symmetry

Profiles

  1. Gustavo J. Turiaci View author profile
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature