Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

Nrf2 Signaling Pathway: Focus on Oxidative Stress in Spinal Cord Injury

  • Review
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Spinal cord injury (SCI) is a serious, disabling injury to the central nervous system that can lead to motor, sensory, and autonomic dysfunction below the injury plane. SCI can be divided into primary injury and secondary injury according to its pathophysiological process. Primary injury is irreversible in most cases, while secondary injury is a dynamic regulatory process. Secondary injury involves a series of pathological events, such as ischemia, oxidative stress, inflammatory events, apoptotic pathways, and motor dysfunction. Among them, oxidative stress is an important pathological event of secondary injury. Oxidative stress causes a series of destructive events such as lipid peroxidation, DNA damage, inflammation, and cell death, which further worsens the microenvironment of the injured site and leads to neurological dysfunction. The nuclear factor erythrocyte 2–associated factor 2 (Nrf2) is considered to be a key pathway of antioxidative stress and is closely related to the pathological process of SCI. Activation of this pathway can effectively inhibit the oxidative stress process and promote the recovery of nerve function after SCI. Therefore, the Nrf2 pathway may be a potential therapeutic target for SCI. This review deeply analyzed the generation of oxidative stress in SCI, the role and mechanism of Nrf2 as the main regulator of antioxidant stress in SCI, and the influence of cross-talk between Nrf2 and related pathways that may be involved in the pathological regulation of SCI on oxidative stress, and summarized the drugs and other treatment methods based on Nrf2 pathway regulation. The objective of this paper is to provide evidence for the role of Nrf2 activation in SCI and to highlight the important role of Nrf2 in alleviating SCI by elucidating the mechanism, so as to provide a theoretical basis for targeting Nrf2 pathway as a therapy for SCI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Not applicable.

Abbreviations

3′UTR:

3′-Untranslated region

ARE:

Antioxidant response element

ATP:

Adenosine triphosphate

BMSC:

Bone marrow mesenchymal stem cell

CAT:

Catalase

CHD6:

Chromatin domain helicase DNA binding protein 6

CREB:

Cyclic AMP response element binding protein

ERKs:

Extracellular signal–regulated kinases

GDF15:

Growth and differentiation factor 15

GPx:

Glutathione peroxidase

GSH:

Glutathione

GSK-3β:

Glycogen synthase kinase-3β

GST:

Glutathione S-transferase

HO-1:

Heme oxygenase 1

HRD1:

HMG-CoA reductase–degrading protein 1

HSP70:

Heat shock protein 70

JNK:

C-Jun NH2-terminal protein kinase

Keap1:

Kelch-like epichlorohydrin–associated protein 1

LPS:

Lipopolysaccharide

MAPK:

Mitogen-activated protein kinase

MDA:

Malondialdehyde

MG-Exos:

Microglia-derived exosomes

mPTP:

Mitochondrial permeability transition pore

NADPH:

Nicotinamide adenine dinucleotide phosphate

ncRNA:

Non-coding RNA

NF-κB:

Nuclear factor kappa B

NOX2:

Nicotinamide adenine dinucleotide phosphate oxidation 2

NQO1:

Quinone oxidoreductase

Nrf2:

Nuclear factor erythrocyte 2–associated factor 2

PI3K:

Phosphatidylinositol 3-kinase

PKC:

Protein kinase C

RARa:

Retinoic acid receptor a

RelA:

Protein called p65

rhEPO:

Recombinant human erythropoietin

RNS:

Reactive nitrogen species

ROS:

Reactive oxygen species

RXRa:

Retinoid X receptor a

SCI:

Spinal cord injury

SET8:

SET domain protein 8

SOD:

Superoxide dismutase

TGF-β:

Transforming growth factor-β

XO:

Xanthine oxidase

β-TrCP:

Beta-transducin repeat-containing protein

References

  1. Cofano F, Boido M, Monticelli M et al (2019) Mesenchymal stem cells for spinal cord injury: current options, limitations, and future of cell therapy. Int J Mol Sci 20(11):2698

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Anjum A, Yazid MD, Daud MF et al (2020) Spinal cord injury: pathophysiology, multimolecular interactions, and underlying recovery mechanisms. Int J Mol Sci 21(20):7533

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Wang H, Liu X, Zhao Y et al (2016) Incidence and pattern of traumatic spinal fractures and associated spinal cord injury resulting from motor vehicle collisions in China over 11 years: an observational study. Medicine 95(43):e5220

    Article  PubMed Central  PubMed  Google Scholar 

  4. Chen J, Chen Z, Zhang K et al (2021) Epidemiological features of traumatic spinal cord injury in Guangdong Province, China. J Spinal Cord Med 44(2):276–281

    Article  PubMed  Google Scholar 

  5. Khorasanizadeh M, Yousefifard M, Eskian M, Lu Y, Chalangari M, Harrop JS, Jazayeri SB, Seyedpour S, Khodaei B, Hosseini M, Rahimi-Movaghar V (2019) Neurological recovery following traumatic spinal cord injury: a systematic review and meta-analysis. J Neurosurg Spine. 30(5):683–699. https://doi.org/10.3171/2018.10.SPINE18802

  6. O’Shea TM, Burda JE, Sofroniew MV (2017) Cell biology of spinal cord injury and repair. J Clin Invest 127(9):3259–3270

    Article  PubMed Central  PubMed  Google Scholar 

  7. Alonso-Calviño E, Martínez-Camero I, Fernández-López E et al (2016) Increased responses in the somatosensory thalamus immediately after spinal cord injury. Neurobiol Dis 87:39–49

    Article  PubMed  Google Scholar 

  8. Lukovic D, Stojkovic M, Moreno-Manzano V et al (2015) Concise review: reactive astrocytes and stem cells in spinal cord injury: good guys or bad guys? Stem Cells (Dayton, Ohio) 33(4):1036–1041

    Article  PubMed  Google Scholar 

  9. Kim YH, Ha KY, Kim SI (2017) Spinal cord injury and related clinical trials. Clin Orthop Surg 9(1):1–9

    Article  PubMed Central  PubMed  Google Scholar 

  10. Kwon BK, Tetzlaff W, Grauer JN et al (2004) Pathophysiology and pharmacologic treatment of acute spinal cord injury. Spine J 4(4):451–464

    Article  PubMed  Google Scholar 

  11. Al Mamun A, Wu Y, Monalisa I et al (2021) Role of pyroptosis in spinal cord injury and its therapeutic implications. J Adv Res 28:97–109

    Article  CAS  PubMed  Google Scholar 

  12. Liu Y, Pan L, Jiang A et al (2018) Hydrogen sulfide upregulated lncRNA CasC7 to reduce neuronal cell apoptosis in spinal cord ischemia-reperfusion injury rat. Biomed Pharmacother 98:856–862

    Article  CAS  PubMed  Google Scholar 

  13. Zhao J, Cheng W, He X et al (2018) Chronic obstructive pulmonary disease molecular subtyping and pathway deviation-based candidate gene identification. Cell J 20(3):326–332

    PubMed Central  PubMed  Google Scholar 

  14. Lemaire SA, Price MD, Green SY et al (2012) Results of open thoracoabdominal aortic aneurysm repair. Ann Cardiothorac Surg 1(3):286–292

    PubMed Central  PubMed  Google Scholar 

  15. Zhao W, Gasterich N, Clarner T et al (2022) Astrocytic Nrf2 expression protects spinal cord from oxidative stress following spinal cord injury in a male mouse model. J Neuroinflammation 19(1):134

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Yu M, Wang Z, Wang D et al (2023) Oxidative stress following spinal cord injury: from molecular mechanisms to therapeutic targets. J Neurosci Res 101(10):1538–1554

    Article  CAS  PubMed  Google Scholar 

  17. Xu T, Gao P, Huang Y et al (2023) Git1-PGK1 interaction achieves self-protection against spinal cord ischemia-reperfusion injury by modulating Keap1/Nrf2 signaling. Redox Biol 62:102682

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Yao X, Carlson D, Sun Y et al (2015) Mitochondrial ROS induces cardiac inflammation via a pathway through mtDNA damage in a pneumonia-related sepsis model. PLoS ONE 10(10):e0139416

    Article  PubMed Central  PubMed  Google Scholar 

  19. Yu Q, Huang J, Hu J et al (2016) Advance in spinal cord ischemia reperfusion injury: blood-spinal cord barrier and remote ischemic preconditioning. Life Sci 154:34–38

    Article  CAS  PubMed  Google Scholar 

  20. He J, Ritzel RM, Wu J (2021) Functions and mechanisms of the voltage-gated proton channel Hv1 in brain and spinal cord injury. Front Cell Neurosci 15:662971

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Smith JA, Park S, Krause JS et al (2013) Oxidative stress, DNA damage, and the telomeric complex as therapeutic targets in acute neurodegeneration. Neurochem Int 62(5):764–775

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Sun F, Zhang H, Shi J et al (2021) Astragalin protects against spinal cord ischemia reperfusion injury through attenuating oxidative stress-induced necroptosis. Biomed Res Int 2021:7254708

    Article  PubMed Central  PubMed  Google Scholar 

  23. Ma Q (2013) Role of Nrf2 in oxidative stress and toxicity. Annu Rev Pharmacol Toxicol 53:401–426

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. He F, Ru X, Wen T (2020) NRF2, a transcription factor for stress response and beyond. Int J Mol Sci 21(13):4777

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Schmidlin CJ, Shakya A, Dodson M et al (2021) The intricacies of NRF2 regulation in cancer. Semin Cancer Biol 76:110–119

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Kang TC (2020) Nuclear factor-erythroid 2-related factor 2 (Nrf2) and mitochondrial dynamics/mitophagy in neurological diseases. Antioxidants (Basel, Switzerland) 9(7):617

    CAS  PubMed  Google Scholar 

  27. Zeng XP, Li XJ, Zhang QY et al (2017) Tert-butylhydroquinone protects liver against ischemia/reperfusion injury in rats through Nrf2-activating anti-oxidative activity. Transpl Proc 49(2):366–372

    Article  CAS  Google Scholar 

  28. Kerr F, Sofola-Adesakin O, Ivanov DK et al (2017) Direct Keap1-Nrf2 disruption as a potential therapeutic target for Alzheimer’s disease. PLoS Genet 13(3):e1006593

    Article  PubMed Central  PubMed  Google Scholar 

  29. Mazzuferi M, Kumar G, van Eyll J et al (2013) Nrf2 defense pathway: experimental evidence for its protective role in epilepsy. Ann Neurol 74(4):560–568

    Article  CAS  PubMed  Google Scholar 

  30. Zhai X, Chen X, Shi J et al (2013) Lactulose ameliorates cerebral ischemia-reperfusion injury in rats by inducing hydrogen by activating Nrf2 expression. Free Radical Biol Med 65:731–741

    Article  CAS  Google Scholar 

  31. Dwivedi S, Rajasekar N, Hanif K et al (2016) Sulforaphane ameliorates okadaic acid-induced memory impairment in rats by activating the Nrf2/HO-1 antioxidant pathway. Mol Neurobiol 53(8):5310–5323

    Article  CAS  PubMed  Google Scholar 

  32. Hall ED (2011) Antioxidant therapies for acute spinal cord injury. Neurotherapeutics 8(2):152–67

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Zhou L, Ouyang L, Lin S et al (2018) Protective role of β-carotene against oxidative stress and neuroinflammation in a rat model of spinal cord injury. Int Immunopharmacol 61:92–99

    Article  CAS  PubMed  Google Scholar 

  34. Han B, Jiang W, Liu H et al (2020) Upregulation of neuronal PGC-1α ameliorates cognitive impairment induced by chronic cerebral hypoperfusion. Theranostics 10(6):2832–2848

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Feng Z, Min L, Chen H et al (2021) Iron overload in the motor cortex induces neuronal ferroptosis following spinal cord injury. Redox Biol 43:101984

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Samarghandian S, Pourbagher-Shahri AM, Ashrafizadeh M et al (2020) A pivotal role of the Nrf2 signaling pathway in spinal cord injury: a prospective therapeutics study. CNS Neurol Disord: Drug Targets 19(3):207–219

    Article  CAS  PubMed  Google Scholar 

  37. Guo X, Kang J, Wang Z et al (2022) Nrf2 signaling in the oxidative stress response after spinal cord injury. Neuroscience 498:311–324

    Article  CAS  PubMed  Google Scholar 

  38. Jiang T, He Y (2022) Recent advances in the role of nuclear factor erythroid-2-related factor 2 in spinal cord injury: regulatory mechanisms and therapeutic options. Frontiers in Aging Neuroscience 14:851257

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Pizzino G, Irrera N, Cucinotta M et al (2017) Oxidative stress: harms and benefits for human health. Oxid Med Cell Longev 2017:8416763

    Article  PubMed Central  PubMed  Google Scholar 

  40. Yu S, Xie L, Liu Z et al (2019) MLN4924 exerts a neuroprotective effect against oxidative stress via Sirt1 in spinal cord ischemia-reperfusion injury. Oxid Med Cell Longev 2019:7283639

    Article  PubMed Central  PubMed  Google Scholar 

  41. Gao L, Zhang Z, Xu W et al (2019) Natrium benzoate alleviates neuronal apoptosis via the DJ-1-related anti-oxidative stress pathway involving Akt phosphorylation in a rat model of traumatic spinal cord injury. Front Mol Neurosci 12:42

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Liu D, Liu J, Sun D et al (2004) The time course of hydroxyl radical formation following spinal cord injury: the possible role of the iron-catalyzed Haber-Weiss reaction. J Neurotrauma 21(6):805–816

    Article  PubMed  Google Scholar 

  43. Pani G, Colavitti R, Bedogni B et al (2000) A redox signaling mechanism for density-dependent inhibition of cell growth. J Biol Chem 275(49):38891–38899

    Article  CAS  PubMed  Google Scholar 

  44. Taoka Y, Naruo M, Koyanagi E et al (1995) Superoxide radicals play important roles in the pathogenesis of spinal cord injury. Paraplegia 33(8):450–453

    CAS  PubMed  Google Scholar 

  45. Quinlan CL, Perevoshchikova IV, Hey-Mogensen M et al (2013) Sites of reactive oxygen species generation by mitochondria oxidizing different substrates. Redox Biol 1(1):304–312

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Hall ED, Yonkers PA, Andrus PK et al (1992) Biochemistry and pharmacology of lipid antioxidants in acute brain and spinal cord injury. J Neurotrauma 9(Suppl 2):S425–S442

    PubMed  Google Scholar 

  47. Xiong Y, Hall ED (2009) Pharmacological evidence for a role of peroxynitrite in the pathophysiology of spinal cord injury. Exp Neurol 216(1):105–114

    Article  CAS  PubMed  Google Scholar 

  48. Taoka Y, Okajima K, Uchiba M et al (1997) Gabexate mesilate, a synthetic protease inhibitor, prevents compression-induced spinal cord injury by inhibiting activation of leukocytes in rats. Crit Care Med 25(5):874–879

    Article  CAS  PubMed  Google Scholar 

  49. Trivedi A, Olivas AD, Noble-Haeusslein LJ (2006) Inflammation and spinal cord injury: infiltrating leukocytes as determinants of injury and repair processes. Clin Neurosci Res 6(5):283–292

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Khayrullina G, Bermudez S, Byrnes KR (2015) Inhibition of NOX2 reduces locomotor impairment, inflammation, and oxidative stress after spinal cord injury. J Neuroinflammation 12:172

    Article  PubMed Central  PubMed  Google Scholar 

  51. Busquets-Cortés C, Capó X, Argelich E et al (2018) Effects of millimolar steady-state hydrogen peroxide exposure on inflammatory and redox gene expression in immune cells from humans with metabolic syndrome. Nutrients 10(12):1920

    Article  PubMed Central  PubMed  Google Scholar 

  52. Andrabi SS, Yang J, Gao Y et al (2020) Nanoparticles with antioxidant enzymes protect injured spinal cord from neuronal cell apoptosis by attenuating mitochondrial dysfunction. J Control Release 317:300–311

    Article  CAS  PubMed  Google Scholar 

  53. Hamann K, Shi R (2009) Acrolein scavenging: a potential novel mechanism of attenuating oxidative stress following spinal cord injury. J Neurochem 111(6):1348–1356

    Article  CAS  PubMed  Google Scholar 

  54. Nukolova NV, Aleksashkin AD, Abakumova TO et al (2018) Multilayer polyion complex nanoformulations of superoxide dismutase 1 for acute spinal cord injury. J Control Release 270:226–236

    Article  CAS  PubMed  Google Scholar 

  55. Liu Z, Ren Z, Zhang J et al (2018) Role of ROS and nutritional antioxidants in human diseases. Front Physiol 9:477

    Article  PubMed Central  PubMed  Google Scholar 

  56. Catalá A, Díaz M (2016) Editorial: Impact of lipid peroxidation on the physiology and pathophysiology of cell membranes. Front Physiol 7:423

    Article  PubMed Central  PubMed  Google Scholar 

  57. Dröge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82(1):47–95

    Article  PubMed  Google Scholar 

  58. Chatgilialoglu C, Ferreri C, Krokidis MG et al (2021) On the relevance of hydroxyl radical to purine DNA damage. Free Radic Res 55(4):384–404

    Article  CAS  PubMed  Google Scholar 

  59. Turtle JD, Henwood MK, Strain MM et al (2019) Engaging pain fibers after a spinal cord injury fosters hemorrhage and expands the area of secondary injury. Exp Neurol 311:115–124

    Article  CAS  PubMed  Google Scholar 

  60. Zhang Y, Xu M, Hu C et al (2019) Sargassum fusiforme Fucoidan SP2 extends the lifespan of Drosophila melanogaster by upregulating the Nrf2-mediated antioxidant signaling pathway. Oxid Med Cell Longev 2019:8918914

    PubMed Central  PubMed  Google Scholar 

  61. Fakhri S, Abbaszadeh F, Moradi SZ et al (2022) Effects of polyphenols on oxidative stress, inflammation, and interconnected pathways during spinal cord injury. Oxid Med Cell Longev 2022:8100195

    Article  PubMed Central  PubMed  Google Scholar 

  62. Morgan MJ, Liu ZG (2011) Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res 21(1):103–115

    Article  CAS  PubMed  Google Scholar 

  63. Hausmann ON (2003) Post-traumatic inflammation following spinal cord injury. Spinal Cord 41(7):369–378

    Article  CAS  PubMed  Google Scholar 

  64. Jia J, Jin H, Nan D et al (2021) New insights into targeting mitochondria in ischemic injury. Apoptosis 26(3–4):163–83

    Article  CAS  PubMed  Google Scholar 

  65. Alizadeh A, Dyck SM, Karimi-Abdolrezaee S (2019) Traumatic spinal cord injury: an overview of pathophysiology, models and acute injury mechanisms. Front Neurol 10:282

    Article  PubMed Central  PubMed  Google Scholar 

  66. Cao Y, Lv G, Wang YS et al (2013) Mitochondrial fusion and fission after spinal sacord injury in rats. Brain Res 1522:59–66

    Article  CAS  PubMed  Google Scholar 

  67. Pivovarova NB, Andrews SB (2010) Calcium-dependent mitochondrial function and dysfunction in neurons. FEBS J 277(18):3622–3636

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Fatima G, Sharma VP, Das SK et al (2015) Oxidative stress and antioxidative parameters in patients with spinal cord injury: implications in the pathogenesis of disease. Spinal Cord 53(1):3–6

    Article  CAS  PubMed  Google Scholar 

  69. Tonelli C, Chio IIC, Tuveson DA (2018) Transcriptional regulation by Nrf2. Antioxid Redox Signal 29(17):1727–1745

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Buendia I, Michalska P, Navarro E et al (2016) Nrf2-ARE pathway: an emerging target against oxidative stress and neuroinflammation in neurodegenerative diseases. Pharmacol Ther 157:84–104

    Article  CAS  PubMed  Google Scholar 

  71. Shen Y, Liu X, Shi J et al (2019) Involvement of Nrf2 in myocardial ischemia and reperfusion injury. Int J Biol Macromol 125:496–502

    Article  CAS  PubMed  Google Scholar 

  72. Kryszczuk M, Kowalczuk O (2022) Significance of NRF2 in physiological and pathological conditions an comprehensive review. Arch Biochem Biophys 730:109417

    Article  CAS  PubMed  Google Scholar 

  73. Takagi Y, Kobayashi M, Li L et al (2004) MafT, a new member of the small Maf protein family in zebrafish. Biochem Biophys Res Commun 320(1):62–69

    Article  CAS  PubMed  Google Scholar 

  74. Baird L, Yamamoto M (2020) The molecular mechanisms regulating the KEAP1-NRF2 Pathway. Mol Cell Biol 40(13):e00099-20. https://doi.org/10.1128/MCB.00099-20

  75. Hayes JD, Dinkova-Kostova AT (2014) The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends Biochem Sci 39(4):199–218

    Article  CAS  PubMed  Google Scholar 

  76. Wang T, Liang X, Abeysekera IR et al (2017) Activation of the Nrf2-Keap 1 pathway in short-term iodide excess in thyroid in rats. Oxid Med Cell Longev 2017:4383652

    Article  PubMed Central  PubMed  Google Scholar 

  77. Krajka-Kuźniak V, Paluszczak J, Baer-Dubowska W (2017) The Nrf2-ARE signaling pathway: an update on its regulation and possible role in cancer prevention and treatment. Pharmacological Reports: PR 69(3):393–402

    Article  PubMed  Google Scholar 

  78. Katoh Y, Itoh K, Yoshida E et al (2001) Two domains of Nrf2 cooperatively bind CBP, a CREB binding protein, and synergistically activate transcription. Genes Cells 6(10):857–868

    Article  CAS  PubMed  Google Scholar 

  79. Zamponi E, Zamponi N, Coskun P et al (2018) Nrf2 stabilization prevents critical oxidative damage in Down syndrome cells. Aging Cell 17(5):e12812

    Article  PubMed Central  PubMed  Google Scholar 

  80. Wang H, Liu K, Geng M et al (2013) RXRα inhibits the NRF2-ARE signaling pathway through a direct interaction with the Neh7 domain of NRF2. Can Res 73(10):3097–3108

    Article  CAS  Google Scholar 

  81. Yamamoto M, Kensler TW, Motohashi H (2018) The KEAP1-NRF2 system: a thiol-based sensor-effector apparatus for maintaining redox homeostasis. Physiol Rev 98(3):1169–1203

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Quinti L, Dayalan Naidu S, Träger U et al (2017) KEAP1-modifying small molecule reveals muted NRF2 signaling responses in neural stem cells from Huntington’s disease patients. Proc Natl Acad Sci U S A 114(23):E4676–E4685

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Suzuki T, Takahashi J, Yamamoto M (2023) Molecular basis of the KEAP1-NRF2 signaling pathway. Mol Cells 46(3):133–141

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Cuadrado A, Rojo AI, Wells G et al (2019) Therapeutic targeting of the NRF2 and KEAP1 partnership in chronic diseases. Nat Rev Drug Discovery 18(4):295–317

    Article  CAS  PubMed  Google Scholar 

  85. Rinaldi Tosi ME, Bocanegra V, Manucha W et al (2011) The Nrf2-Keap1 cellular defense pathway and heat shock protein 70 (Hsp70) response. Role in protection against oxidative stress in early neonatal unilateral ureteral obstruction (UUO). Cell Stress Chaperones 16(1):57–68

    Article  PubMed  Google Scholar 

  86. Li H, Wu S, Shi N et al (2011) Nrf2/HO-1 pathway activation by manganese is associated with reactive oxygen species and ubiquitin-proteasome pathway, not MAPKs signaling. J Appl Toxicol: JAT 31(7):690–697

    Article  PubMed  Google Scholar 

  87. Gorrini C, Harris IS, Mak TW (2013) Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Discov 12(12):931–947

    Article  CAS  PubMed  Google Scholar 

  88. Cederbaum AI (2013) Nrf2 and antioxidant defense against CYP2E1 toxicity. Subcell Biochem 67:105–130

    Article  CAS  PubMed  Google Scholar 

  89. Cheng X, Ku CH, Siow RC (2013) Regulation of the Nrf2 antioxidant pathway by microRNAs: new players in micromanaging redox homeostasis. Free Radical Biol Med 64:4–11

    Article  CAS  Google Scholar 

  90. Guo Y, Yu S, Zhang C et al (2015) Epigenetic regulation of Keap1-Nrf2 signaling. Free Radical Biol Med 88(Pt B):337–349

    Article  CAS  Google Scholar 

  91. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    Article  CAS  PubMed  Google Scholar 

  92. Winter J, Jung S, Keller S et al (2009) Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol 11(3):228–234

    Article  CAS  PubMed  Google Scholar 

  93. Zhang C, Shu L, Kong AN (2015) MicroRNAs: new players in cancer prevention targeting Nrf2, oxidative stress and inflammatory pathways. Curr Pharmacol Rep 1(1):21–30

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  94. Sangokoya C, Telen MJ, Chi JT (2010) microRNA miR-144 modulates oxidative stress tolerance and associates with anemia severity in sickle cell disease. Blood 116(20):4338–4348

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  95. Yang M, Yao Y, Eades G et al (2011) MiR-28 regulates Nrf2 expression through a Keap1-independent mechanism. Breast Cancer Res Treat 129(3):983–991

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  96. Li N, Muthusamy S, Liang R et al (2011) Increased expression of miR-34a and miR-93 in rat liver during aging, and their impact on the expression of Mgst1 and Sirt1. Mech Ageing Dev 132(3):75–85

    Article  CAS  PubMed  Google Scholar 

  97. Singh B, Ronghe AM, Chatterjee A et al (2013) MicroRNA-93 regulates NRF2 expression and is associated with breast carcinogenesis. Carcinogenesis 34(5):1165–1172

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  98. Narasimhan M, Patel D, Vedpathak D et al (2012) Identification of novel microRNAs in post-transcriptional control of Nrf2 expression and redox homeostasis in neuronal, SH-SY5Y cells. PLoS ONE 7(12):e51111

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  99. Jones PA (2012) Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 13(7):484–492

    Article  CAS  PubMed  Google Scholar 

  100. Yu S, Khor TO, Cheung KL et al (2010) Nrf2 expression is regulated by epigenetic mechanisms in prostate cancer of TRAMP mice. PLoS ONE 5(1):e8579

    Article  PubMed Central  PubMed  Google Scholar 

  101. Silva-Palacios A, Ostolga-Chavarría M, Zazueta C et al (2018) Nrf2: molecular and epigenetic regulation during aging. Ageing Res Rev 47:31–40

    Article  CAS  PubMed  Google Scholar 

  102. Ray PD, Huang BW, Tsuji Y (2015) Coordinated regulation of Nrf2 and histone H3 serine 10 phosphorylation in arsenite-activated transcription of the human heme oxygenase-1 gene. Biochim Biophys Acta 1849(10):1277–1288

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  103. Correa F, Mallard C, Nilsson M et al (2011) Activated microglia decrease histone acetylation and Nrf2-inducible anti-oxidant defence in astrocytes: restoring effects of inhibitors of HDACs, p38 MAPK and GSK3β. Neurobiol Dis 44(1):142–151

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  104. Liu SX, Zhang Y, Wang YF et al (2012) Upregulation of heme oxygenase-1 expression by hydroxysafflor yellow A conferring protection from anoxia/reoxygenation-induced apoptosis in H9c2 cardiomyocytes. Int J Cardiol 160(2):95–101

    Article  PubMed  Google Scholar 

  105. Ding S, Yang Y, Mei J (2016) Protective effects of L-malate against myocardial ischemia/reperfusion injury in rats. Evid Based Complement Alternat Med 2016:3803657

    Article  PubMed Central  PubMed  Google Scholar 

  106. Wang Y, Li L, Wang Y et al (2018) New application of the commercial sweetener rebaudioside a as a hepatoprotective candidate: induction of the Nrf2 signaling pathway. Eur J Pharmacol 822:128–137

    Article  CAS  PubMed  Google Scholar 

  107. Jain AK, Jaiswal AK (2007) GSK-3beta acts upstream of Fyn kinase in regulation of nuclear export and degradation of NF-E2 related factor 2. J Biol Chem 282(22):16502–16510

    Article  CAS  PubMed  Google Scholar 

  108. Islam F, Bepary S, Nafady MH et al (2022) Polyphenols targeting oxidative stress in spinal cord injury: current status and future vision. Oxid Med Cell Longev 2022:8741787

    Article  PubMed Central  PubMed  Google Scholar 

  109. Li H, Kong R, Wan B et al (2020) Initiation of PI3K/AKT pathway by IGF-1 decreases spinal cord injury-induced endothelial apoptosis and microvascular damage. Life Sci 263:118572

    Article  CAS  PubMed  Google Scholar 

  110. Zhang B, Bailey WM, McVicar AL et al (2016) Age increases reactive oxygen species production in macrophages and potentiates oxidative damage after spinal cord injury. Neurobiol Aging 47:157–167

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  111. Zhang J, Wei H, Lin M et al (2013) Curcumin protects against ischemic spinal cord injury: the pathway effect. Neural Regen Res 8(36):3391–3400

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Chen JY, Zhu GY, Su XH et al (2017) 7-Deacetylgedunin suppresses inflammatory responses through activation of Keap1/Nrf2/HO-1 signaling. Oncotarget 8(33):55051–55063

    Article  PubMed Central  PubMed  Google Scholar 

  113. Kura B, SzeiffovaBacova B, Kalocayova B et al (2020) Oxidative stress-responsive microRNAs in heart injury. Int J Mol Sci 21(1):358

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  114. Salim S (2017) Oxidative stress and the central nervous system. J Pharmacol Exp Ther 360(1):201–205

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  115. Michel-Flutot P, Efthimiadi L, Djerbal L et al (2022) AMPK-Nrf2 signaling pathway in phrenic motoneurons following cervical spinal cord injury. Antioxidants (Basel, Switzerland) 11(9):1665

    CAS  PubMed  Google Scholar 

  116. Krajka-Kuźniak V, Paluszczak J, Baer-Dubowska W (2017) The Nrf2-ARE signaling pathway: an update on its regulation and possible role in cancer prevention and treatment. Pharmacol Rep 69(3):393–402

    Article  PubMed  Google Scholar 

  117. Hu L, Wang Y, Ren R et al (2016) Anti-oxidative stress actions and regulation mechanisms of Keap1-Nrf2/ARE signal pathway. J Int Pharm Res 66:146–52

    Google Scholar 

  118. Wang X, de Rivero VJP, Wang H et al (2012) Activation of the nuclear factor E2-related factor 2/antioxidant response element pathway is neuroprotective after spinal cord injury. J Neurotrauma 29(5):936–945

    Article  PubMed Central  PubMed  Google Scholar 

  119. Lin WP, Xiong GP, Lin Q et al (2016) Heme oxygenase-1 promotes neuron survival through down-regulation of neuronal NLRP1 expression after spinal cord injury. J Neuroinflammation 13(1):52

    Article  PubMed Central  PubMed  Google Scholar 

  120. Prestera T, Talalay P, Alam J et al (1995) Parallel induction of heme oxygenase-1 and chemoprotective phase 2 enzymes by electrophiles and antioxidants: regulation by upstream antioxidant-responsive elements (ARE). Mol Med (Cambridge, Mass) 1(7):827–837

    Article  CAS  Google Scholar 

  121. Zhang Z, Yang K, Mao R et al (2022) Ginsenoside Rg1 inhibits oxidative stress and inflammation in rats with spinal cord injury via Nrf2/HO-1 signaling pathway. NeuroReport 33(2):81–89

    Article  PubMed  Google Scholar 

  122. Jung KA, Kwak MK (2010) The Nrf2 system as a potential target for the development of indirect antioxidants. Molecules (Basel, Switzerland) 15(10):7266–7291

    Article  CAS  PubMed  Google Scholar 

  123. Kryl’skii ED, Popova TN, Safonova OA et al (2019) Transcriptional regulation of antioxidant enzymes activity and modulation of oxidative stress by melatonin in rats under cerebral ischemia/reperfusion conditions. Neuroscience 406:653–66

    Article  PubMed  Google Scholar 

  124. Ebrahimy N, Gasterich N, Behrens V et al (2022) Neuroprotective effect of the Nrf2/ARE/miRNA145-5p signaling pathway in the early phase of spinal cord injury. Life Sci 304:120726

    Article  CAS  PubMed  Google Scholar 

  125. Chen GH, Song CC, Pantopoulos K et al (2022) Mitochondrial oxidative stress mediated Fe-induced ferroptosis via the NRF2-ARE pathway. Free Radical Biol Med 180:95–107

    Article  CAS  Google Scholar 

  126. Li Z, Wu F, Xu D et al (2019) Inhibition of TREM1 reduces inflammation and oxidative stress after spinal cord injury (SCI) associated with HO-1 expressions. Biomed Pharmacother 109:2014–2021

    Article  CAS  PubMed  Google Scholar 

  127. Dorrington MG, Fraser IDC (2019) NF-κB signaling in macrophages: dynamics, crosstalk, and signal integration. Front Immunol 10:705

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  128. Capece D, Verzella D, Flati I et al (2022) NF-κB: blending metabolism, immunity, and inflammation. Trends Immunol 43(9):757–775

    Article  CAS  PubMed  Google Scholar 

  129. Kapahi P, Takahashi T, Natoli G et al (2000) Inhibition of NF-kappa B activation by arsenite through reaction with a critical cysteine in the activation loop of Ikappa B kinase. J Biol Chem 275(46):36062–36066

    Article  CAS  PubMed  Google Scholar 

  130. Huang S, Pettaway CA, Uehara H et al (2001) Blockade of NF-kappaB activity in human prostate cancer cells is associated with suppression of angiogenesis, invasion, and metastasis. Oncogene 20(31):4188–4197

    Article  CAS  PubMed  Google Scholar 

  131. Bao G, Li C, Qi L et al (2016) Tetrandrine protects against oxygen-glucose-serum deprivation/reoxygenation-induced injury via PI3K/AKT/NF-κB signaling pathway in rat spinal cord astrocytes. Biomed Pharmacother 84:925–930

    Article  CAS  PubMed  Google Scholar 

  132. Nguyen TT, Ung TT, Li S et al (2019) Metformin inhibits lithocholic acid-induced interleukin 8 upregulation in colorectal cancer cells by suppressing ROS production and NF-kB activity. Sci Rep 9(1):2003

    Article  PubMed Central  PubMed  Google Scholar 

  133. Karin M, Yamamoto Y, Wang QM (2004) The IKK NF-kappa B system: a treasure trove for drug development. Nat Rev Drug Discov 3(1):17–26

    Article  CAS  PubMed  Google Scholar 

  134. Wang N, Yu H, Song Q et al (2021) Sesamol-loaded stearic acid-chitosan nanomicelles mitigate the oxidative stress-stimulated apoptosis and induction of pro-inflammatory cytokines in motor neuronal of the spinal cord through NF-κB signaling pathway. Int J Biol Macromol 186:23–32

    Article  CAS  PubMed  Google Scholar 

  135. Wang YT, Lu XM, Chen KT et al (2015) Immunotherapy strategies for spinal cord injury. Curr Pharm Biotechnol 16(6):492–505

    Article  CAS  PubMed  Google Scholar 

  136. McGarry T, Biniecka M, Veale DJ et al (2018) Hypoxia, oxidative stress and inflammation. Free Radical Biol Med 125:15–24

    Article  CAS  Google Scholar 

  137. Shi X, Zhou H, Wei J et al (2022) The signaling pathways and therapeutic potential of itaconate to alleviate inflammation and oxidative stress in inflammatory diseases. Redox Biol 58:102553

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  138. Bellezza I, Grottelli S, Gatticchi L et al (2014) α-Tocopheryl succinate pre-treatment attenuates quinone toxicity in prostate cancer PC3 cells. Gene 539(1):1–7

    Article  CAS  PubMed  Google Scholar 

  139. Bellezza I, Mierla AL, Minelli A (2010) Nrf2 and NF-κB and their concerted modulation in cancer pathogenesis and progression. Cancers 2(2):483–497

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  140. Sandberg M, Patil J, D’Angelo B et al (2014) NRF2-regulation in brain health and disease: implication of cerebral inflammation. Neuropharmacology 79:298–306

    Article  CAS  PubMed  Google Scholar 

  141. Lu Y, Yang YY, Zhou MW et al (2018) Ketogenic diet attenuates oxidative stress and inflammation after spinal cord injury by activating Nrf2 and suppressing the NF-κB signaling pathways. Neurosci Lett 683:13–18

    Article  CAS  PubMed  Google Scholar 

  142. Daverey A, Agrawal SK (2020) Curcumin protects against white matter injury through NF-κB and Nrf2 cross talk. J Neurotrauma 37(10):1255–1265

    Article  PubMed  Google Scholar 

  143. Banning A, Brigelius-Flohé R (2005) NF-kappaB, Nrf2, and HO-1 interplay in redox-regulated VCAM-1 expression. Antioxid Redox Signal 7(7–8):889–899

    Article  CAS  PubMed  Google Scholar 

  144. Grottelli S, Ferrari I, Pietrini G et al (2016) The role of cyclo(His-Pro) in neurodegeneration. Int J Mol Sci 17(8):1332

    Article  PubMed Central  PubMed  Google Scholar 

  145. Minelli A, Grottelli S, Mierla A et al (2012) Cyclo(His-Pro) exerts anti-inflammatory effects by modulating NF-κB and Nrf2 signalling. Int J Biochem Cell Biol 44(3):525–535

    Article  CAS  PubMed  Google Scholar 

  146. Liu Z, Yao X, Jiang W et al (2020) Advanced oxidation protein products induce microglia-mediated neuroinflammation via MAPKs-NF-κB signaling pathway and pyroptosis after secondary spinal cord injury. J Neuroinflammation 17(1):90

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  147. Kanno A, Ozawa T, Umezawa Y (2009) Bioluminescent imaging of MAPK function with intein-mediated reporter gene assay. Methods Mol Biol (Clifton, NJ) 574:185–192

    Article  CAS  Google Scholar 

  148. Wei J, Liu R, Hu X et al (2021) MAPK signaling pathway-targeted marine compounds in cancer therapy. J Cancer Res Clin Oncol 147(1):3–22

    Article  CAS  PubMed  Google Scholar 

  149. Bachstetter AD, Xing B, de Almeida L et al (2011) Microglial p38α MAPK is a key regulator of proinflammatory cytokine up-regulation induced by toll-like receptor (TLR) ligands or beta-amyloid (Aβ). J Neuroinflammation 8:79

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  150. Ahuja CS, Wilson JR, Nori S et al (2017) Traumatic spinal cord injury. Nat Rev Dis Primers 3(1):17018

    Article  PubMed  Google Scholar 

  151. Bode JG, Ehlting C, Häussinger D (2012) The macrophage response towards LPS and its control through the p38(MAPK)-STAT3 axis. Cell Signal 24(6):1185–1194

    Article  CAS  PubMed  Google Scholar 

  152. Huang Y, Cai G-Q, Peng J-P et al (2018) Glucocorticoids induce apoptosis and matrix metalloproteinase-13 expression in chondrocytes through the NOX4/ROS/p38 MAPK pathway. J Steroid Biochem Mol Biol 181:52–62

    Article  CAS  PubMed  Google Scholar 

  153. Fu X, Shen Y, Wang W et al (2018) MiR-30a-5p ameliorates spinal cord injury-induced inflammatory responses and oxidative stress by targeting Neurod 1 through MAPK/ERK signalling. Clin Exp Pharmacol Physiol 45(1):68–74

    Article  CAS  PubMed  Google Scholar 

  154. Luo Y, Fu C, Wang Z et al (2015) Asiaticoside attenuates the effects of spinal cord injury through antioxidant and anti-inflammatory effects, and inhibition of the p38-MAPK mechanism. Mol Med Rep 12(6):8294–8300

    Article  CAS  PubMed  Google Scholar 

  155. Kasuya Y, Umezawa H, Hatano M (2018) Stress-activated protein kinases in spinal cord injury: focus on roles of p38. Int J Mol Sci 19(3):867

    Article  PubMed Central  PubMed  Google Scholar 

  156. Tanaka M, Kishimoto Y, Sasaki M et al (2018) Terminalia bellirica (Gaertn.) Roxb. extract and gallic acid attenuate lps-induced inflammation and oxidative stress via MAPK/NF-κB and Akt/AMPK/Nrf2 pathways. Oxidative Med Cell Longev 2018:9364364

    Article  Google Scholar 

  157. Wang L, Zhang X, Xiong X et al (2022) Nrf2 regulates oxidative stress and its role in cerebral ischemic stroke. Antioxidants (Basel, Switzerland) 11(12):2377

    CAS  PubMed  Google Scholar 

  158. Han MS, Barrett T, Brehm MA et al (2016) Inflammation mediated by JNK in myeloid cells promotes the development of hepatitis and hepatocellular carcinoma. Cell Rep 15(1):19–26

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  159. Zhao M, Zhu P, Fujino M et al (2016) 5-Aminolevulinic acid with sodium ferrous citrate induces autophagy and protects cardiomyocytes from hypoxia-induced cellular injury through MAPK-Nrf-2-HO-1 signaling cascade. Biochem Biophys Res Commun 479(4):663–669

    Article  CAS  PubMed  Google Scholar 

  160. Chi PL, Lin CC, Chen YW et al (2015) CO induces Nrf2-dependent heme oxygenase-1 transcription by cooperating with Sp1 and c-Jun in rat brain astrocytes. Mol Neurobiol 52(1):277–292

    Article  CAS  PubMed  Google Scholar 

  161. Liu S, Pi J, Zhang Q (2022) Signal amplification in the KEAP1-NRF2-ARE antioxidant response pathway. Redox Biol 54:102389

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  162. Xia M, Zhang Y, Wu H et al (2022) Forsythoside B attenuates neuro-inflammation and neuronal apoptosis by inhibition of NF-κB and p38-MAPK signaling pathways through activating Nrf2 post spinal cord injury. Int Immunopharmacol 111:109120

    Article  CAS  PubMed  Google Scholar 

  163. Yang W, Yang Y, Yang JY et al (2016) Treatment with bone marrow mesenchymal stem cells combined with plumbagin alleviates spinal cord injury by affecting oxidative stress, inflammation, apoptotis and the activation of the Nrf2 pathway. Int J Mol Med 37(4):1075–1082

    Article  CAS  PubMed  Google Scholar 

  164. Wang Y, Yuan Y, Gao Y et al (2019) MicroRNA-31 regulating apoptosis by mediating the phosphatidylinositol-3 kinase/protein kinase B signaling pathway in treatment of spinal cord injury. Brain Develop 41(8):649–661

    Article  Google Scholar 

  165. Zhao T, Qi Y, Li Y et al (2012) PI3 Kinase regulation of neural regeneration and muscle hypertrophy after spinal cord injury. Mol Biol Rep 39(4):3541–3547

    Article  CAS  PubMed  Google Scholar 

  166. Courtney KD, Corcoran RB, Engelman JA (2010) The PI3K pathway as drug target in human cancer. J Clin Oncol 28(6):1075–1083

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  167. He X, Li Y, Deng B et al (2022) The PI3K/AKT signalling pathway in inflammation, cell death and glial scar formation after traumatic spinal cord injury: Mechanisms and therapeutic opportunities. Cell Prolif 55(9):e13275

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  168. Xiao CL, Yin WC, Zhong YC et al (2022) The role of PI3K/Akt signalling pathway in spinal cord injury. Biomed Pharmacother 156:113881

    Article  CAS  PubMed  Google Scholar 

  169. Yao R, Ren L, Wang S et al (2021) Euxanthone inhibits traumatic spinal cord injury via anti-oxidative stress and suppression of p38 and PI3K/Akt signaling pathway in a rat model. Transl Neurosci 12(1):114–126

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  170. Li WC, Yao SP, Zhang J et al (2021) Low-dose lipopolysaccharide protects nerve cells against spinal cord injury via regulating the PI3K-AKT-Nrf2 signaling pathway. Biochem Cell Biol = Biochimie et biologie cellulaire 99(5):527–35

    Article  CAS  PubMed  Google Scholar 

  171. Li W, Tang T, Yao S et al (2024) Low-dose lipopolysaccharide alleviates spinal cord injury-induced neuronal inflammation by inhibiting microRNA-429-mediated suppression of PI3K/AKT/Nrf2 signaling. Mol Neurobiol 61(1):294–307

    Article  CAS  PubMed  Google Scholar 

  172. Wu L, Xiong X, Wu X et al (2020) Targeting oxidative stress and inflammation to prevent ischemia-reperfusion injury. Front Mol Neurosci 13:28

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  173. Hwang YP, Jeong HG (2010) Ginsenoside Rb1 protects against 6-hydroxydopamine-induced oxidative stress by increasing heme oxygenase-1 expression through an estrogen receptor-related PI3K/Akt/Nrf2-dependent pathway in human dopaminergic cells. Toxicol Appl Pharmacol 242(1):18–28

    Article  CAS  PubMed  Google Scholar 

  174. Xu S, Wang J, Zhong J et al (2021) CD73 alleviates GSDMD-mediated microglia pyroptosis in spinal cord injury through PI3K/AKT/Foxo1 signaling. Clin Transl Med 11(1):e269

    Article  CAS  PubMed  Google Scholar 

  175. Xu S, Wang J, Jiang J et al (2020) TLR4 promotes microglial pyroptosis via lncRNA-F630028O10Rik by activating PI3K/AKT pathway after spinal cord injury. Cell Death Dis 11(8):693

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  176. Kim MB, Kang H, Li Y et al (2021) Fucoxanthin inhibits lipopolysaccharide-induced inflammation and oxidative stress by activating nuclear factor E2-related factor 2 via the phosphatidylinositol 3-kinase/AKT pathway in macrophages. European J Nutr 60(6):3315–24

    Article  CAS  Google Scholar 

  177. Shang Y, Zhou Q, Wang T et al (2017) Airborne nitro-PAHs induce Nrf2/ARE defense system against oxidative stress and promote inflammatory process by activating PI3K/Akt pathway in A549 cells. Toxicol In Vitro 44:66–73

    Article  CAS  PubMed  Google Scholar 

  178. Mercer BA, D’Armiento JM (2006) Emerging role of MAP kinase pathways as therapeutic targets in COPD. Int J Chron Obstruct Pulmon Dis 1(2):137–150

    CAS  PubMed Central  PubMed  Google Scholar 

  179. Shao Z, Lu J, Zhang C et al (2020) Stachydrine ameliorates the progression of intervertebral disc degeneration via the PI3K/Akt/NF-κB signaling pathway: in vitro and in vivo studies. Food Funct 11(12):10864–10875

    Article  CAS  PubMed  Google Scholar 

  180. Bai X, Guo X, Zhang F et al (2021) Resveratrol combined with 17β-estradiol prevents IL-1β induced apoptosis in human nucleus pulposus via the PI3K/AKT/Mtor and PI3K/AKT/GSK-3β pathway. J Invest Surg 34(8):904–911

    Article  PubMed  Google Scholar 

  181. Buss H, Dörrie A, Schmitz ML et al (2004) Phosphorylation of serine 468 by GSK-3beta negatively regulates basal p65 NF-kappaB activity. J Biol Chem 279(48):49571–49574

    Article  CAS  PubMed  Google Scholar 

  182. Chandran R, Mehta SL, Vemuganti R (2017) Non-coding RNAs and neuroprotection after acute CNS injuries. Neurochem Int 111:12–22

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  183. Ding Y, Chen Q (2023) The NF-κB pathway: a focus on inflammatory responses in spinal cord injury. Mol Neurobiol 60(9):5292–5308

    Article  CAS  PubMed  Google Scholar 

  184. Guo XD, He XG, Yang FG et al (2021) Research progress on the regulatory role of microRNAs in spinal cord injury. Regen Med 16(5):465–476

    Article  CAS  PubMed  Google Scholar 

  185. Zhao S, Mao L, Wang SG et al (2017) MicroRNA-200a activates Nrf2 signaling to protect osteoblasts from dexamethasone. Oncotarget 8(62):104867–104876

    Article  PubMed Central  PubMed  Google Scholar 

  186. Wang X, Ye L, Zhang K et al (2020) Upregulation of microRNA-200a in bone marrow mesenchymal stem cells enhances the repair of spinal cord injury in rats by reducing oxidative stress and regulating Keap1/Nrf2 pathway. Artif Organs 44(7):744–752

    Article  CAS  PubMed  Google Scholar 

  187. Xia P, Gao X, Duan L et al (2018) Mulberrin (Mul) reduces spinal cord injury (SCI)-induced apoptosis, inflammation and oxidative stress in rats via miroRNA-337 by targeting Nrf-2. Biomed Pharmacother 107:1480–1487

    Article  CAS  PubMed  Google Scholar 

  188. Iyer MK, Niknafs YS, Malik R et al (2015) The landscape of long noncoding RNAs in the human transcriptome. Nat Genet 47(3):199–208

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  189. Li JA, Shi MP, Cong L et al (2023) Circulating exosomal lncRNA contributes to the pathogenesis of spinal cord injury in rats. Neural Regen Res 18(4):889–894

    Article  CAS  PubMed  Google Scholar 

  190. Guan C, Wang Y (2021) LncRNA CASC9 attenuates lactate dehydrogenase-mediated oxidative stress and inflammation in spinal cord injury via sponging miR-383-5p. Inflammation 44(3):923–933

    Article  CAS  PubMed  Google Scholar 

  191. Chen X, He F, Zhong DY et al (2015) Acoustic-frequency vibratory stimulation regulates the balance between osteogenesis and adipogenesis of human bone marrow-derived mesenchymal stem cells. Biomed Res Int 2015:540731

    PubMed Central  PubMed  Google Scholar 

  192. Yang W, Yang Y, Yang J-Y et al (2016) Treatment with bone marrow mesenchymal stem cells combined with plumbagin alleviates spinal cord injury by affecting oxidative stress, inflammation, apoptotis and the activation of the Nrf2 pathway. Int J Mol Med 37(4):1075–82

    Article  CAS  PubMed  Google Scholar 

  193.  Zhang C (2024) Exosomes derived from mesenchymal stem cells: therapeutic opportunities for spinal cord injury. Bull Exp Biol Med 176(6):716–721. https://doi.org/10.1007/s10517-024-06095-y

  194. Wang T, Jian Z, Baskys A et al (2020) MSC-derived exosomes protect against oxidative stress-induced skin injury via adaptive regulation of the NRF2 defense system. Biomaterials 257:120264

    Article  CAS  PubMed  Google Scholar 

  195. Wang J, Chen S, Bihl J (2020) Exosome-mediated transfer of ACE2 (angiotensin-converting enzyme 2) from endothelial progenitor cells promotes survival and function of endothelial cell. Oxid Med Cell Longev 2020:4213541

    PubMed Central  PubMed  Google Scholar 

  196. Peng W, Wan L, Luo Z et al (2021) Microglia-derived exosomes improve spinal cord functional recovery after injury via inhibiting oxidative stress and promoting the survival and function of endothelia cells. Oxid Med Cell Longev 2021:1695087

    Article  PubMed Central  PubMed  Google Scholar 

  197. Hassanpour Golakani M, Mohammad MG, Li H et al (2019) MIC-1/GDF15 overexpression is associated with increased functional recovery in traumatic spinal cord injury. J Neurotrauma 36(24):3410–3421

    Article  PubMed  Google Scholar 

  198. Xia M, Zhang Q, Zhang Y et al (2022) Growth differentiation factor 15 regulates oxidative stress-dependent ferroptosis post spinal cord injury by stabilizing the p62-Keap1-Nrf2 signaling pathway. Front Aging Neurosci 14:905115

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  199. Jin W, Ming X, Hou X et al (2014) Protective effects of erythropoietin in traumatic spinal cord injury by inducing the Nrf2 signaling pathway activation. J Trauma Acute Care Surg 76(5):1228–1234

    Article  CAS  PubMed  Google Scholar 

  200. Fan C, Feng J, Tang C et al (2020) Melatonin suppresses ER stress-dependent proapoptotic effects via AMPK in bone mesenchymal stem cells during mitochondrial oxidative damage. Stem Cell Res Ther 11(1):442

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  201. Arioz BI, Tastan B, Tarakcioglu E et al (2019) Melatonin attenuates LPS-induced acute depressive-like behaviors and microglial NLRP3 inflammasome activation through the SIRT1/Nrf2 pathway. Front Immunol 10:1511

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  202. Ahmadi Z, Ashrafizadeh M (2020) Melatonin as a potential modulator of Nrf2. Fundam Clin Pharmacol 34(1):11–19

    Article  CAS  PubMed  Google Scholar 

  203. Kasai S, Shimizu S, Tatara Y et al (2020) Regulation of Nrf2 by mitochondrial reactive oxygen species in physiology and pathology. Biomolecules 10(2):320

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  204. Wang H, Wang H, Huang H et al (2022) Melatonin attenuates spinal cord injury in mice by activating the Nrf2/ARE signaling pathway to inhibit the NLRP3 inflammasome. Cells 11(18):2809

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  205. Beck DB, Oda H, Shen SS et al (2012) PR-Set7 and H4K20me1: at the crossroads of genome integrity, cell cycle, chromosome condensation, and transcription. Genes Dev 26(4):325–337

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  206. Chen X, Qi J, Wu Q et al (2020) High glucose inhibits vascular endothelial Keap1/Nrf2/ARE signal pathway via downregulation of monomethyltransferase SET8 expression. ABBS 52(5):506–16

    Article  CAS  PubMed  Google Scholar 

  207. Li X, Qian Y, Shen W et al (2023) Mechanism of SET8 activates the Nrf2-KEAP1-ARE signaling pathway to promote the recovery of motor function after spinal cord injury. Mediators Inflamm 2023:4420592

    Article  PubMed Central  PubMed  Google Scholar 

  208. Zhang H, Gong W, Wu S et al (2022) Hsp70 in redox homeostasis. Cells 11(5):829

    Article  PubMed Central  PubMed  Google Scholar 

  209. Deng B, He X, Wang Z, et al (2024) HSP70 protects PC12 cells against TBHP-induced apoptosis and oxidative stress by activating the Nrf2/HO-1 signaling pathway. In Vitro Cell Dev Biol Anim. https://doi.org/10.1007/s11626-024-00924-0

  210. Yang X, Chen S, Shao Z et al (2018) Apolipoprotein E deficiency exacerbates spinal cord injury in mice: inflammatory response and oxidative stress mediated by NF-κB signaling pathway. Front Cell Neurosci 12:142

    Article  PubMed Central  PubMed  Google Scholar 

  211. Ai G, Xiong M, Deng L et al (2024) Research progress on the inhibition of oxidative stress by teriparatide in spinal cord injury. Front Neurol 15:1358414

    Article  PubMed Central  PubMed  Google Scholar 

  212. Hochhaus A, Saglio G, Hughes TP et al (2016) Long-term benefits and risks of frontline nilotinib vs imatinib for chronic myeloid leukemia in chronic phase: 5-year update of the randomized ENESTnd trial. Leukemia 30(5):1044–54

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  213. Liu L, Zhou J, Wang Y et al (2020) Imatinib inhibits oxidative stress response in spinal cord injury rats by activating Nrf2/HO-1 signaling pathway. Exp Ther Med 19(1):597–602

    CAS  PubMed  Google Scholar 

  214. Morales AI, Detaille D, Prieto M et al (2010) Metformin prevents experimental gentamicin-induced nephropathy by a mitochondria-dependent pathway. Kidney Int 77(10):861–869

    Article  CAS  PubMed  Google Scholar 

  215. Wang H, Zheng Z, Han W et al (2020) Metformin promotes axon regeneration after spinal cord injury through inhibiting oxidative stress and stabilizing microtubule. Oxid Med Cell Longev 2020:9741369

    PubMed Central  PubMed  Google Scholar 

  216. Huo K, Sun Y, Li H et al (2012) Lithium reduced neural progenitor apoptosis in the hippocampus and ameliorated functional deficits after irradiation to the immature mouse brain. Mol Cell Neurosci 51(1–2):32–42

    Article  CAS  PubMed  Google Scholar 

  217. Abdanipour A, Moradi F, Fakheri F et al (2019) The effect of lithium chloride on BDNF, NT3, and their receptor mRNA levels in the spinal contusion rat models. Neurol Res 41(6):577–83

    Article  CAS  PubMed  Google Scholar 

  218. Wang F, Zhou C, Gao Z-C et al (2018) Depressant effect of lithium on apoptosis of nerve cells of adult rats after spinal cord injury. Zhongguo gu Shang = China J Orthop Traumatol 31(4):379–85

  219. Zhao Y-J, Qiao H, Liu D-F et al (2022) Lithium promotes recovery after spinal cord injury. Neural Regen Res 17(6):1324–33

    Article  CAS  PubMed  Google Scholar 

  220. Li W-C, Yao S-P, Zhang J et al (2021) Low-dose lipopolysaccharide protects nerve cells against spinal cord injury via regulating the PI3K–AKT–Nrf2 signaling pathway. Biochem Cell Biol 99(5):527–35

    Article  CAS  PubMed  Google Scholar 

  221. Rong W, Li H, Yang H, et al (2023) Ezetimibe attenuates functional impairment via inhibition of oxidative stress and inflammation in traumatic spinal cord injury. Cell Mol Biol (Noisy-le-Grand, France) 69(6):175–80

  222. Luo X, Chen T, Kang G et al (2020) Dexmedetomidine promotes spinal cord injury repairing via activating Nrf2/HO-1 signaling pathway. J Neurosurg Sci 64(6):583–585

    PubMed  Google Scholar 

  223. Kesherwani V, Nelson KS, Agrawal SK (2013) Effect of sodium hydrosulphide after acute compression injury of spinal cord. Brain Res 1527:222–229

    Article  CAS  PubMed  Google Scholar 

  224. Rao S, Lin Y, Lin R et al (2022) Traditional Chinese medicine active ingredients-based selenium nanoparticles regulate antioxidant selenoproteins for spinal cord injury treatment. J Nanobiotechnol 20(1):278

    Article  CAS  Google Scholar 

  225. Chen L, Lan Z, Lin Q et al (2013) Polydatin ameliorates renal injury by attenuating oxidative stress-related inflammatory responses in fructose-induced urate nephropathic mice. Food Chem Toxicol 52:28–35

    Article  CAS  PubMed  Google Scholar 

  226. Jiang X, Liu W, Deng J et al (2013) Polydatin protects cardiac function against burn injury by inhibiting sarcoplasmic reticulum Ca2+ leak by reducing oxidative modification of ryanodine receptors. Free Radical Biol Med 60:292–299

    Article  CAS  Google Scholar 

  227. Lv R, Du L, Zhang L et al (2019) Polydatin attenuates spinal cord injury in rats by inhibiting oxidative stress and microglia apoptosis via Nrf2/HO-1 pathway. Life Sci 217:119–127

    Article  CAS  PubMed  Google Scholar 

  228. Menon VP, Sudheer AR (2007) Antioxidant and anti-inflammatory properties of curcumin. Adv Exp Med Biol 595:105–125

    Article  PubMed  Google Scholar 

  229. Gokce EC, Kahveci R, Gokce A et al (2016) Curcumin attenuates inflammation, oxidative stress, and ultrastructural damage induced by spinal cord ischemia-reperfusion injury in rats. J Stroke Cerebrovasc Dis 25(5):1196–1207

    Article  PubMed  Google Scholar 

  230. Jin W, Botchway BOA, Liu X (2021) Curcumin can activate the Nrf2/HO-1 signaling pathway and scavenge free radicals in spinal cord injury treatment. Neurorehabil Neural Repair 35(7):576–584

    Article  PubMed  Google Scholar 

  231. Zhang LX, Li CX, Kakar MU et al (2021) Resveratrol (RV): a pharmacological review and call for further research. Biomed Pharmacother 143:112164

    Article  CAS  PubMed  Google Scholar 

  232. Tang S, Botchway BOA, Zhang Y et al (2023) Resveratrol can improve spinal cord injury by activating Nrf2/HO-1 signaling pathway. Ann Anat = Anatomischer Anzeiger 251:152180

    Article  PubMed  Google Scholar 

  233. Anwar-Mohamed A, El-Kadi AO (2007) Induction of cytochrome P450 1a1 by the food flavoring agent, maltol. Toxicol In Vitro 21(4):685–690

    Article  CAS  PubMed  Google Scholar 

  234. Sha JY, Zhou YD, Yang JY et al (2019) Maltol (3-hydroxy-2-methyl-4-pyrone) slows d-galactose-induced brain aging process by damping the Nrf2/HO-1-mediated oxidative stress in mice. J Agric Food Chem 67(37):10342–10351

    Article  CAS  PubMed  Google Scholar 

  235. Mao Y, Du J, Chen X et al (2022) Maltol promotes mitophagy and inhibits oxidative stress via the Nrf2/PINK1/Parkin pathway after spinal cord injury. Oxid Med Cell Longev 2022:1337630

    Article  PubMed Central  PubMed  Google Scholar 

  236. Zhang L, Zhang W, Zheng B et al (2019) Sinomenine attenuates traumatic spinal cord injury by suppressing oxidative stress and inflammation via Nrf2 pathway. Neurochem Res 44(4):763–775

    Article  CAS  PubMed  Google Scholar 

  237. Luo H, Bao Z, Zhou M et al (2022) Notoginsenoside R1 alleviates spinal cord injury by inhibiting oxidative stress, neuronal apoptosis, and inflammation via activating the nuclear factor erythroid 2 related factor 2/heme oxygenase-1 signaling pathway. NeuroReport 33(11):451–462

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  238. Zhang W, Cheng L, Hou Y et al (2015) Plumbagin protects against spinal cord injury-induced oxidative stress and inflammation in wistar rats through Nrf-2 upregulation. Drug Research 65(9):495–499

    CAS  PubMed  Google Scholar 

  239. Zeng HH, Huang YR, Li ZJ et al (2018) Effects of emodin on oxidative stress and inflammatory response in rats with acute spinal cord injury. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China J Chinese Materia Medica 43(9):1886–93

    Google Scholar 

  240. Sheng S, Wang X, Liu X et al (2022) The role of resveratrol on rheumatoid arthritis: from bench to bedside. Front Pharmacol 13:829677

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Funding

This work is supported by funding of the Science and Technology planning project of Jiangxi provincial health commission, China (No.202310747).

Author information

Authors and Affiliations

Authors

Contributions

Chun-lin Xiao drafted the manuscript; Chun-lin Xiao and Hong-tong Lai wrote the manuscript; Min Zhao and Kai Zhao conceived and designed the review; Jiang-jun Zhou and Wu-yang Liu assisted in the preparation of the charts and tables. All authors read the manuscript and approved the submitted version.

Corresponding authors

Correspondence to Min Zhao or Kai Zhao.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests. 

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Cl., Lai, Ht., Zhou, Jj. et al. Nrf2 Signaling Pathway: Focus on Oxidative Stress in Spinal Cord Injury. Mol Neurobiol 62, 2230–2249 (2025). https://doi.org/10.1007/s12035-024-04394-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s12035-024-04394-z

Keywords