Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

Raloxifene ameliorates detrimental enzymatic and nonenzymatic collagen cross-links and bone strength in rabbits with hyperhomocysteinemia

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

We demonstrate a reduction in enzymatic divalent immature and trivalent pyridinium cross-links and an increase in the nonenzymatic cross-link, pentosidine (Pen), in rabbits with methionine (Met)-induced hyperhomocysteinemia. Such detrimental cross-link formation in bone was ameliorated by raloxifene (RLX) treatment.

Introduction

Collagen cross-links are determinants of bone quality. Homocysteine (Hcys) interferes with collagen cross-linking. Because RLX is thought to ameliorate bone quality, we investigated whether RLX ameliorated hyperhomocysteinemia-induced cross-link abnormalities using a Met-rich diet rabbit model.

Methods

We divided New Zealand white rabbits into six groups (n = 6 per group): baseline control, sham operation, sham + 1% Met diet, ovariectomy (OVX), 1% Met diet + OVX, OVX + RLX (10 mg/kg/day), and 1% Met diet + OVX + RLX. RLX was administered for 16 weeks. We measured the amount of enzymatic immature and mature pyridinium cross-links and the nonenzymatic cross-link, Pen, and correlated the cross-link content to bone strength.

Results

Hcys levels were significantly higher in the Met diet groups than in the normal diet groups. Met-fed rabbits with or without OVX showed a significant reduction of enzymatic cross-links, whereas an increase in Pen was observed in Met-fed rabbits with OVX. The cross-link content of the RLX-treated Met-fed rabbits with OVX was restored to similar levels as the sham group, accompanied by an improvement of bone strength.

Conclusion

These results demonstrate that hyperhomocysteinemia reduced bone strength via a reduction of enzymatic cross-links and an increase of nonenzymatic cross-links. RLX may ameliorate hyperhomocysteinemia-induced detrimental cross-linking in rabbits with OVX and may improve bone strength via the amelioration of collagen cross-links.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Seeman E, Delmas PD (2006) Bone quality—the material and structural basis of bone strength and fragility. N Engl J Med 354:2250–2261

    Article  PubMed  CAS  Google Scholar 

  2. Burr DB (2002) Bone material properties and mineral matrix contributions to fracture risk or age in women and men. J Musculoskelet Neuronal Interact 2:201–204

    PubMed  CAS  Google Scholar 

  3. Paschalis EP, Shane E, Lyritis G et al (2004) Bone fragility and collagen cross-links. J Bone Miner Res 19:2000–2004

    Article  PubMed  Google Scholar 

  4. Vashishth D (2007) The role of the collagen matrix in skeletal fragility. Curr Osteoporos Rep 5:62–66

    Article  PubMed  Google Scholar 

  5. Wang X, Shen X, Li X et al (2002) Age-related changes in the collagen network and toughness of bone. Bone 31:1–7

    Article  PubMed  Google Scholar 

  6. Saito M, Fujii K, Mori Y et al (2006) Role of collagen enzymatic and glycation induced cross-links as a determinant of bone quality in spontaneously diabetic WBN/Kob rats. Osteoporos Int 17:1514–1523

    Article  PubMed  CAS  Google Scholar 

  7. Oxlund H, Mosekilde L, Ortoft G (1996) Reduced concentration of collagen reducible crosslinks in human trabecular bone with respect to age and osteoporosis. Bone 19:479–484

    Article  PubMed  CAS  Google Scholar 

  8. Banse X, Sims TJ, Bailey AJ (2002) Mechanical properties of adult vertebral cancellous bone: correlation with collagen intermolecular cross-links. J Bone Miner Res 17:1621–1628

    Article  PubMed  CAS  Google Scholar 

  9. Paschalis EP, Recker R, Dicarlo E et al (2003) Distribution of collagen cross-links in normal human trabecular bone. J Bone Miner Res 18:1942–1946

    Article  PubMed  CAS  Google Scholar 

  10. Saito M, Soshi S, Fujii K (2003) Effect of hyper- and microgravity on collagen post-translational controls of MC3T3-E1 osteoblasts. J Bone Miner Res 18:1695–1705

    Article  PubMed  CAS  Google Scholar 

  11. Uzawa K, Grzesik WJ, Nishiura T et al (1999) Differential expression of human lysyl hydroxylase genes, lysyl hydroxylation, and cross-linking of type I collagen during osteoblastic differentiation in vitro. J Bone Miner Res 14:1272–1280

    Article  PubMed  CAS  Google Scholar 

  12. McLean RR, Jacques PF, Selhub J et al (2004) Homocysteine as a predictive factor for hip fracture in older persons. N Engl J Med 350:2042–2049

    Article  PubMed  CAS  Google Scholar 

  13. van Meurs JB, Dhonukshe-Rutten RA, Pluijm SM et al (2004) Homocysteine levels and the risk of osteoporotic fracture. N Engl J Med 35:2033–2041

    Article  Google Scholar 

  14. McKusick VA (1966) Heritable disorders of connective tissue, 3rd edn. C.V. Mosby, St. Louis, p 155

    Google Scholar 

  15. Lubec B, Fang-Kircher S, Lubec T et al (1996) Evidence for McKusick's hypothesis of deficient collagen cross-linking in patients with homocystinuria. Biochim Biophys Acta 13:159–162

    Google Scholar 

  16. Saito M, Sohsi S, Tanaka T et al (2004) Intensity-related differences in collagen post-translational modification in MC3T3-E1 osteoblasts after exposure to low and high intensity pulsed ultrasound. Bone 35:644–655

    Article  PubMed  CAS  Google Scholar 

  17. McCarthy AD, Etcheverry SB, Bruzzone L et al (2001) Non-enzymatic glycation of a type I collagen matrix: effect on osteoblastic development and oxidative stress. BMC Cell Biol 2:16

    Article  PubMed  CAS  Google Scholar 

  18. Garnero P, Borel O, Gineyts E et al (2006) Extracellular post-translational modifications of collagen are major determinants of biomechanical properties of fetal bovine cortical bone. Bone 38:300–309

    Article  PubMed  CAS  Google Scholar 

  19. Blouin S, Thaler HW, Korninger C et al (2009) Bone matrix quality and plasma homocysteine levels. Bone 44:959–964

    Article  PubMed  CAS  Google Scholar 

  20. Saito M, Fujii K, Marumo K (2006) Degree of mineralization-related collagen crosslinking in the femoral neck cancellous bone in cases of hip fracture and controls. Calcif Tissue Int 79:160–168

    Article  PubMed  CAS  Google Scholar 

  21. Delmas PD, Li Z, Cooper C (2004) Relationship between changes in bone mineral density and fracture risk reduction with antiresorptive drugs: some issues with meta-analyses. J Bone Miner Res 19:330–337

    Article  PubMed  CAS  Google Scholar 

  22. Recker RR, Kendler D, Recknor CP et al (2007) Comparative effects of raloxifene and alendronate on fracture outcomes in post-menopausal women with low bone mass. Bone 40:843–851

    Article  PubMed  CAS  Google Scholar 

  23. Allen MR, Gynets E, Leeming DJ et al (2008) Bisphosphonates alter trabecular bone collagen cross-linking and isomerization in beagle dog vertebra. Osteoporos Int 19:329–337

    Article  PubMed  CAS  Google Scholar 

  24. Walsh BW, Paul S, Wild RA et al (2000) The effects of hormone replacement therapy and raloxifene on C-reactive protein and homocysteine in healthy postmenopausal women: a randomized, controlled trial. J Clin Endocrinol Metab 85:214–218

    Article  PubMed  CAS  Google Scholar 

  25. De Leo V, la Marca A, Morgante G et al (2001) Randomized control study of the effects of raloxifene on serum lipids and homocysteine in older women. Am J Obstet Gynecol 84:350–353

    Article  Google Scholar 

  26. Toborek M, Kopieczna-Grzebieniak E, Drozdz M et al (1995) Increases lipid peroxidation as a mechanism of methionine-induced atherosclerosis in rabbit. Atherosclerosis 115:217–224

    Article  PubMed  CAS  Google Scholar 

  27. Bjarnason NH, Haarbo J, Byrjalsen I et al (2000) Raloxifene reduces atherosclerosis: studies of optimized raloxifene doses in ovariectomized, cholesterol-fed rabbits. Clin Endocrinol 52:225–233

    Article  CAS  Google Scholar 

  28. Araki A, Sako Y (1987) Determination of free and total homocysteine in human plasma by high-performance liquid chromatography with fluorescence detection. J Chromatogr 422:43–52

    Article  PubMed  CAS  Google Scholar 

  29. Saito M, Marumo K, Fujii K et al (1997) Single column high-performance liquid chromatographic-fluorescence detection of immature, mature and senescent cross-links of collagen. Anal Biochem 253:26–32

    Article  PubMed  CAS  Google Scholar 

  30. Nonaka K, Fukuda S, Aoki K et al (2006) Regional distinctions in cortical bone mineral density measured by pQCT can predict alterations in material properties at the tibial diaphysis of the Cynomolgus monkey. Bone 38:265–272

    Article  PubMed  Google Scholar 

  31. Manabe T, Mori S, Mashiba T et al (2007) Human parathyroid hormone (1–34) accelerates natural fracture healing process in the femoral osteotomy model of cynomolgus monkeys. Bone 40:1475–1482

    Article  PubMed  CAS  Google Scholar 

  32. Turner CH, Akhter MP, Heaney RP (1992) The effects of fluoridated water on bone strength. J Orthop Res 10:581–587

    Article  PubMed  CAS  Google Scholar 

  33. Castaneda S, Calvo E, Largo R et al (2008) Characterization of a new experimental model of osteoporosis in rabbits. J Bone Miner Metab 26:53–59

    Article  PubMed  CAS  Google Scholar 

  34. Shukla N, Koupparis A, Jones RA et al (2006) Penicillamine administration reverses the inhibitory effect of hyperhomocysteinaemia on endothelium-dependent relaxation and superoxide formation in the aorta of the rabbit. Eur J Pharmacol 531:201–208

    Article  PubMed  CAS  Google Scholar 

  35. Narin F, Narin N, Akcakus M et al (2002) The effect of folic acid, vitamin B6 and vitamin B12 on the homocysteine levels in rabbits fed by methionine-enriched diets. Tohoku J Exp Med 198:99–105

    Article  PubMed  CAS  Google Scholar 

  36. Saito M, Mori S, Mashiba T et al (2008) Collagen maturity, glycation induced-pentosidine, and mineralization are increased following 3-year treatment with incadronate in dogs. Osteoporos Int 19:1343–1354

    Article  PubMed  CAS  Google Scholar 

  37. Bellino FL (2000) Nonprimate animal models of menopause: workshop report. Menopause 7:14–24

    Article  PubMed  CAS  Google Scholar 

  38. Silva MJ, Brodt MD, Wopenka B et al (2006) Decreased collagen organization and content are associated with reduced strength of demineralized and intact bone in the SAMP6 mouse. J Bone Miner Res 21:78–88

    Article  PubMed  Google Scholar 

  39. Saito M, Fujii K, Soshi S et al (2006) Reductions in degree of mineralization and enzymatic collagen cross-links and increases in glycation induced pentosidine in the femoral neck cortex in cases of femoral neck fracture. Osteoporos Int 17:986–995

    Article  PubMed  CAS  Google Scholar 

  40. Shiraki M, Urano T, Kuroda T et al (2008) The synergistic effect of bone mineral density and methylenetetrahydrofolate reductase (MTHFR) polymorphism (C677T) on fracture. J Bone Miner Metab 26:595–602

    Article  PubMed  CAS  Google Scholar 

  41. Turecek C, Fratzl-Zelman N, Rumpler M (2008) Collagen cross-linking influences osteoblastic differentiation. Calcif Tissue Int 82:392–400

    Article  PubMed  CAS  Google Scholar 

  42. Ozasa H, Tominaga T, Nishimura T et al (1981) Lysyl oxidase activity in the mouse uterine cervix is physiologically regulated by estrogen. Endocrinology 109:618–621

    Article  PubMed  CAS  Google Scholar 

  43. Hak AE, Polderman KH, Westendorp IC et al (2000) Increased plasma homocysteine after menopause. Atherosclerosis 149:163–168

    Article  PubMed  CAS  Google Scholar 

  44. Russo GT, Di Benedetto A, Alessi E et al (2008) Menopause modulates homocysteine levels in diabetic and non-diabetic women. J Endocrinol Invest 31:546–551

    PubMed  CAS  Google Scholar 

  45. Herrmann M, Tami A, Wildemann B et al (2008) Hyperhomocysteinemia induces a tissue specific accumulation of homocysteine in bone by collagen binding and adversely affects bone. Bone 44:467–475

    Article  PubMed  CAS  Google Scholar 

  46. Herrmann M, Peter Schmidt J, Umanskaya N et al (2007) The role of hyperhomocysteinemia as well as folate, vitamin B(6) and B(12) deficiencies in osteoporosis: a systematic review. Clin Chem Lab Med 45:1621–1632

    Article  PubMed  CAS  Google Scholar 

  47. Raposo B, Rodriguez C, Martinez-Gonzalez J et al (2004) High levels of homocysteine inhibit lysyl oxidase (LOX) and down regulate LOX expression in vascular endothelial cells. Atherosclerosis 177:1–8

    Article  PubMed  CAS  Google Scholar 

  48. Kang HA, Trelstad RL (1973) A collagen defect in homocystinuria. J Clin Invest 52:2571–2578

    Article  PubMed  CAS  Google Scholar 

  49. Reiser KM (1991) Nonenzymatic glycation of collagen in aging and diabetes. Proc Soc Exp Biol Med 196:17–29

    PubMed  CAS  Google Scholar 

  50. Eberhardt RT, Forgione MA, Cap A et al (2000) Endothelial dysfunction in a murine model of mild hyper homocyst(e) inemia. J Clin Invest 106:483–491

    Article  PubMed  CAS  Google Scholar 

  51. Castelo-Branco C, Sanjuan A, Casals E et al (2004) Raloxifene inhibits cholesterol aortic content but not atherosclerotic plaque size in oophorectomised cholesterol-fed rabbits. J Obstet Gynaecol 24:47–51

    Article  PubMed  CAS  Google Scholar 

  52. Khastgir G, Studd J, Holland N et al (2001) Anabolic effect of long-term estrogen replacement on bone collagen in elderly postmenopausal women with osteoporosis. Osteoporos Int 12:465–470

    Article  PubMed  CAS  Google Scholar 

  53. Paschalis EP, Boskey AL, Kassem M et al (2003) Effect of hormone replacement therapy on bone quality in early postmenopausal women. J Bone Miner Res 18:955–959

    Article  PubMed  CAS  Google Scholar 

  54. Faibish D, Ott SM, Bosky AL (2006) Mineral changes in osteoporosis—a review. Clin Orthop Relat Res 443:28–38

    Article  PubMed  Google Scholar 

  55. Yang NN, Bryant HU, Hardikar S et al (1996) Estrogen and raloxifene stimulate transforming growth factor-beta 3 gene expression in rat bone: a potential mechanism for estrogen- or raloxifene-mediated bone maintenance. Endocrinology 137:2075–2084

    Article  PubMed  CAS  Google Scholar 

  56. Feres-Filho EJ, Choi YJ, Han X et al (1995) Pre- and post-translational regulation of lysyl oxidase by transforming growth factor-beta 1 in osteoblastic MC3T3-E1 cells. J Biol Chem 270:30797–30803

    Article  PubMed  CAS  Google Scholar 

  57. Shibata Y, Abiko Y, Moriya Y et al (1993) Effects of transforming growth factor-beta on collagen gene expression and collagen synthesis level in mineralizing cultures of osteoblast-like cell line, MC3T3-E1. Int J Biochem 25:239–245

    Article  PubMed  CAS  Google Scholar 

  58. Helvering LM, Liu R, Kulkarni N et al (2005) Expression profiling of rat femur revealed suppression of bone formation genes by treatment with alendronate and estrogen but not raloxifene. Mol Pharmacol 68:1225–1238

    Article  PubMed  CAS  Google Scholar 

  59. Mann V, Huber C, Kogianni G et al (2007) The antioxidant effect of estrogen and selective estrogen receptor modulators in the inhibition of osteocyte apoptosis in vitro. Bone 40:674–684

    Article  PubMed  CAS  Google Scholar 

  60. Brady JD, Robins SP (2001) Structural characterization of pyrrolic cross-links in collagen using a biotinylated Ehrlich's reagent. J Biol Chem 276:18812–18818

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. Azusa Seki, DVM (Hamri, Japan), Ms. Mika Imamura, and Ms. Kazumi Hirakawa (Research Assistants, Jikei University School of Medicine, Japan) for aiding in the specimen preparation and testing. This study was funded by a competitive research foundation grant from the Osteoporosis Society, Japan and The Nakatomi Foundation, Japan.

Conflicts of interest

None.

Author information

Authors and Affiliations

Corresponding author

Correspondence to M. Saito.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saito, M., Marumo, K., Soshi, S. et al. Raloxifene ameliorates detrimental enzymatic and nonenzymatic collagen cross-links and bone strength in rabbits with hyperhomocysteinemia. Osteoporos Int 21, 655–666 (2010). https://doi.org/10.1007/s00198-009-0980-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s00198-009-0980-4

Keywords