Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

Selection of epitopes from self-antigens for eliciting Th2 or Th1 activity in the treatment of autoimmune disease or cancer

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Vaccines have been valuable tools in the prevention of infectious diseases, and the rapid development of new vectors against constantly mutating foreign antigens in viruses such as influenza has become a regular, seasonal exercise. Harnessing the immune response against self-antigens is not necessarily analogous or as achievable by iterative processes, and since the desired outcome includes leaving the targeted organism intact, requires some precision engineering. In vaccine-based treatment of autoimmunity and cancer, the proper selection of antigens and generation of the desired antigen-specific therapeutic immunity has been challenging. Both cases involve a threshold of existing, undesired immunity that must be overcome, and despite considerable academic and industry efforts, this challenge has proven to be largely refractory to vaccine approaches leveraging enhanced vectors, adjuvants, and administration strategies. There are in silico approaches in development for predicting the immunogenicity of self-antigen epitopes, which are being validated slowly. One simple approach showing promise is the functional screening of self-antigen epitopes for selective Th1 antitumor immunogenicity, or inversely, selective Th2 immunogenicity for treatment of autoimmune inflammation. The approach reveals the importance of confirming both Th1 and Th2 components of a vaccine immunogen; the two can confound one another if not parsed but may be used individually to modulate antigen-specific inflammation in autoimmune disease or cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig 1
Fig. 2

Similar content being viewed by others

References

  1. Disis ML, Calenoff E, McLaughlin G, Murphy AE, Chen W, Groner B, Jeschke M, Lydon N, McGlynn E, Livingston RB et al (1994) Jan 1 Existent T-cell and antibody immunity to HER-2/neu protein in patients with breast cancer. Cancer Res 54(1):16–20

    CAS  PubMed  Google Scholar 

  2. Adler MJ, Dimitrov DS (2012) Therapeutic antibodies against cancer. Hematol Oncol Clin North Am 26(3):447–481 vii

    Article  PubMed  PubMed Central  Google Scholar 

  3. Aghajanian H, Cho YK, Manderfield LJ, Herling MR, Gupta M, Ho VC, Li L, Degenhardt K, Aharonov A, Tzahor E, Epstein JA (2016) Jun 30 Coronary vasculature patterning requires a novel endothelial ErbB2 holoreceptor. Nat Commun 7:12038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Melief CJ, van Hall T, Arens R, Ossendorp F, van der Burg SH (2015) Therapeutic cancer vaccines. J Clin Invest 125(9):3401–3412

    Article  PubMed  PubMed Central  Google Scholar 

  5. Gjerstorff MF, Andersen MH, Ditzel HJ (2015) Jun 30 Oncogenic cancer/testis antigens: prime candidates for immunotherapy. Oncotarget 6(18):15772–15787

    Article  PubMed  PubMed Central  Google Scholar 

  6. Yang B, Jeang J, Yang A, Wu TC, Hung CF (2014) DNA vaccine for cancer immunotherapy. Hum Vaccin Immunother 10(11):3153–3164

    Article  PubMed  Google Scholar 

  7. Fridman WH, Pagès F, Sautès-Fridman C, Galon J (2012) Mar 15 The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer 12(4):298–306

    Article  CAS  PubMed  Google Scholar 

  8. Bernard CC, de Rosbo NK (1991) Immunopathological recognition of autoantigens in multiple sclerosis. Acta Neurol (Napoli) 13(2):171–178

    CAS  Google Scholar 

  9. Rosenthal KS, Mikecz K, Steiner HL 3rd, Glant TT, Finnegan A, Carambula RE (2015) Zimmerman DH. Rheumatoid arthritis vaccine therapies: perspectives and lessons from therapeutic ligand epitope antigen presentation system vaccines for models of rheumatoid arthritis. Expert Rev Vaccines 14(6):891–908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Reijonen H, Kwok WW, Nepom GT (2003) Detection of CD4+ autoreactive T cells in T1D using HLA class II tetramers. Ann N Y Acad Sci 1005:82–87

    Article  PubMed  Google Scholar 

  11. Lennon VA, Kryzer TJ, Pittock SJ, Verkman AS, Hinson SR (2005) Aug 15 IgG marker of optic-spinal multiple sclerosis binds to the aquaporin-4 water channel. J Exp Med 202(4):473–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Behan PO, Chaudhuri A (2014) EAE is not a useful model for demyelinating disease. Mult Scler Relat Disord 3(5):565–574

    Article  PubMed  Google Scholar 

  13. Ben-Nun A, Kaushansky N, Kawakami N, Krishnamoorthy G, Berer K, Liblau R, Hohlfeld R, Wekerle H (2014) From classic to spontaneous and humanized models of multiple sclerosis: impact on understanding pathogenesis and drug development. J Autoimmun 54:33–50

    Article  CAS  PubMed  Google Scholar 

  14. Rahma OE, Gammoh E, Simon RM, Khleif SN (2014) Sep 15 Is the “3 + 3” dose-escalation phase I clinical trial design suitable for therapeutic cancer vaccine development? A recommendation for alternative design. Clin Cancer Res 20(18):4758–4767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Small EJ, Schellhammer PF, Higano CS, Redfern CH, Nemunaitis JJ, Valone FH, Verjee SS, Jones LA, Hershberg RM (2006) Jul 1 Placebo-controlled phase III trial of immunologic therapy with sipuleucel-T (APC8015) in patients with metastatic, asymptomatic hormone refractory prostate cancer. J Clin Oncol 24(19):3089–3094

    Article  CAS  PubMed  Google Scholar 

  16. Le DT, Wang-Gillam A, Picozzi V, Greten TF, Crocenzi T, Springett G, Morse M, Zeh H, Cohen D, Fine RL, Onners B, Uram JN, Laheru DA, Lutz ER, Solt S, Murphy AL, Skoble J, Lemmens E, Grous J, Dubensky T Jr, Brockstedt DG, Jaffee EM (2015) Apr 20 Safety and survival with GVAX pancreas prime and listeria monocytogenes-expressing mesothelin (CRS-207) boost vaccines for metastatic pancreatic cancer. J Clin Oncol 33(12):1325–1333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Trimble CL, Morrow MP, Kraynyak KA, Shen X, Dallas M, Yan J, Edwards L, Parker RL, Denny L, Giffear M, Brown AS, Marcozzi-Pierce K, Shah D, Slager AM, Sylvester AJ, Khan A, Broderick KE, Juba RJ, Herring TA, Boyer J, Lee J, Sardesai NY, Weiner DB, Bagarazzi ML (2015) Nov 21 Safety, efficacy, and immunogenicity of VGX-3100, a therapeutic synthetic DNA vaccine targeting human papillomavirus 16 and 18 E6 and E7 proteins for cervical intraepithelial neoplasia 2/3: a randomised, double-blind, placebo-controlled phase 2b trial. Lancet 386(10008):2078–2088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Schuster J, Lai RK, Recht LD, Reardon DA, Paleologos NA, Groves MD, Mrugala MM, Jensen R, Baehring JM, Sloan A, Archer GE, Bigner DD, Cruickshank S, Green JA, Keler T, Davis TA, Heimberger AB, Sampson JH (2015) A phase II, multicenter trial of rindopepimut (CDX-110) in newly diagnosed glioblastoma: the ACT III study. Neuro-Oncology 17(6):854–861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Coveler AL, Rossi GR, Vahanian NN, Link C, Chiorean EG (2016) Algenpantucel-L immunotherapy in pancreatic adenocarcinoma. Immunotherapy 8(2):117–125

    Article  CAS  PubMed  Google Scholar 

  20. http://investors.aduro.com/phoenix.zhtml?c=242043&p=irol-newsArticle&ID=2168543

  21. Hamilton E, Blackwell K, Hobeika AC, Clay TM, Broadwater G, Ren XR, Chen W, Castro H, Lehmann F, Spector N, Wei J, Osada T, Lyerly HK, Morse MA (2012) Feb 10 Phase 1 clinical trial of HER2-specific immunotherapy with concomitant HER2 kinase inhibition [corrected]. J Transl Med 10:28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schneble EJ, Berry JS, Trappey FA, Clifton GT, Ponniah S, Mittendorf E, Peoples GE (2014) The HER2 peptide nelipepimut-S (E75) vaccine (NeuVax™) in breast cancer patients at risk for recurrence: correlation of immunologic data with clinical response. Immunotherapy 6(5):519–531

    Article  CAS  PubMed  Google Scholar 

  23. Vansteenkiste JF, Cho BC, Vanakesa T, De Pas T, Zielinski M, Kim MS, Jassem J, Yoshimura M, Dahabreh J, Nakayama H, Havel L, Kondo H, Mitsudomi T, Zarogoulidis K, Gladkov OA, Udud K, Tada H, Hoffman H, Bugge A, Taylor P, Gonzalez EE, Liao ML, He J, Pujol JL, Louahed J, Debois M, Brichard V, Debruyne C, Therasse P, Altorki N (2016) Efficacy of the MAGE-A3 cancer immunotherapeutic as adjuvant therapy in patients with resected MAGE-A3-positive non-small-cell lung cancer (MAGRIT): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol 17(6):822–835

    Article  CAS  PubMed  Google Scholar 

  24. Wurz GT, Kao CJ, Wolf M, DeGregorio MW (2014) Tecemotide: an antigen-specific cancer immunotherapy. Hum Vaccin Immunother 10(11):3383–3393

    Article  PubMed  Google Scholar 

  25. Goldman B, DeFrancesco L (2009) The cancer vaccine roller coaster. Nat Biotechnol 27(2):129–139

    Article  CAS  PubMed  Google Scholar 

  26. Qian F, Gnjatic S, Jäger E, Santiago D, Jungbluth A, Grande C, Schneider S, Keitz B, Driscoll D, Ritter G, Lele S, Sood A, Old LJ, Odunsi K (2004) Nov 3 Th1/Th2 CD4+ T cell responses against NY-ESO-1 in HLA-DPB1*0401/0402 patients with epithelial ovarian cancer. Cancer Immun 4:12

    PubMed  Google Scholar 

  27. Zarour HM, Maillere B, Brusic V, Coval K, Williams E, Pouvelle-Moratille S, Castelli F, Land S, Bennouna J, Logan T, Kirkwood JM (2002) Jan 1 NY-ESO-1 119-143 is a promiscuous major histocompatibility complex class II T-helper epitope recognized by Th1- and Th2-type tumor-reactive CD4+ T cells. Cancer Res 62(1):213–218

    CAS  PubMed  Google Scholar 

  28. Mandic M, Castelli F, Janjic B, Almunia C, Andrade P, Gillet D, Brusic V, Kirkwood JM, Maillere B, Zarour HM (2005) Feb 1 One NY-ESO-1-derived epitope that promiscuously binds to multiple HLA-DR and HLA-DP4 molecules and stimulates autologous CD4+ T cells from patients with NY-ESO-1-expressing melanoma. J Immunol 174(3):1751–1759

    Article  CAS  PubMed  Google Scholar 

  29. Tsuji K, Hamada T, Uenaka A, Wada H, Sato E, Isobe M, Asagoe K, Yamasaki O, Shiku H, Ritter G, Murphy R, Hoffman EW, Old LJ, Nakayama E, Iwatsuki K (2008) Induction of immune response against NY-ESO-1 by CHP-NY-ESO-1 vaccination and immune regulation in a melanoma patient. Cancer Immunol Immunother 57(10):1429–1437

    Article  PubMed  Google Scholar 

  30. Gnjatic S, Altorki NK, Tang DN, Tu SM, Kundra V, Ritter G, Old LJ, Logothetis CJ, Sharma P (2009) Mar 15 NY-ESO-1 DNA vaccine induces T-cell responses that are suppressed by regulatory T cells. Clin Cancer Res 15(6):2130–2139

    Article  CAS  PubMed  Google Scholar 

  31. Ebert LM, MacRaild SE, Zanker D, Davis ID, Cebon J, Chen W (2012) A cancer vaccine induces expansion of NY-ESO-1-specific regulatory T cells in patients with advanced melanoma. PLoS One 7(10):e48424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chakraborty NG, Li L, Sporn JR, Kurtzman SH, Ergin MT, Mukherji B (1999) May 1 Emergence of regulatory CD4+ T cell response to repetitive stimulation with antigen-presenting cells in vitro: implications in designing antigen-presenting cell-based tumor vaccines. J Immunol 162(9):5576–5583

    CAS  PubMed  Google Scholar 

  33. Chakraborty NG, Chattopadhyay S, Mehrotra S, Chhabra A, Mukherji B (2004) Regulatory T-cell response and tumor vaccine-induced cytotoxic T lymphocytes in human melanoma. Hum Immunol 65(8):794–802

    Article  CAS  PubMed  Google Scholar 

  34. Disis ML (2011) Immunologic biomarkers as correlates of clinical response to cancer immunotherapy. Cancer Immunol Immunother 60(3):433–442

    Article  CAS  PubMed  Google Scholar 

  35. Ribas A, Timmerman JM, Butterfield LH, Economou JS (2003) Determinant spreading and tumor responses after peptide-based cancer immunotherapy. Trends Immunol 24(2):58–61

    Article  CAS  PubMed  Google Scholar 

  36. Disis ML, Wallace DR, Gooley TA, Dang Y, Slota M, Lu H, Coveler AL, Childs JS, Higgins DM, Fintak PA, Dela Rosa C, Tietje K, link J, Waisman J, Salazar LG (2009) Concurrent trastuzumab and HER2/neu-specific vaccination in patients with metastatic breast cancer. J Clin Oncol 27(28):4685–4692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Disis ML, Gooley TA, Rinn K, Davis D, Piepkorn M, Cheever MA, Knutson KL, Schiffman K (2002) Jun 1 Generation of T-cell immunity to the HER-2/neu protein after active immunization with HER-2/neu peptide-based vaccines. J Clin Oncol 20(11):2624–2632

    Article  CAS  PubMed  Google Scholar 

  38. GuhaThakurta D, Sheikh NA, Fan LQ, Kandadi H, Meagher TC, Hall SJ, Kantoff PW, Higano CS, Small EJ, Gardner TA, Bailey K, Vu T, DeVries T, Whitmore JB, Frohlich MW, Trager JB, Drake CG (2015) Aug 15 Humoral immune response against nontargeted tumor antigens after treatment with sipuleucel-T and its association with improved clinical outcome. Clin Cancer Res 21(16):3619–3630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Corbière V, Chapiro J, Stroobant V, Ma W, Lurquin C, Lethé B, van Baren N, Van den Eynde BJ, Boon T, Coulie PG (2011) Feb 15 Antigen spreading contributes to MAGE vaccination-induced regression of melanoma metastases. Cancer Res 71(4):1253–1262

    Article  PubMed  Google Scholar 

  40. Salazar LG, Fikes J, Southwood S, Ishioka G, Knutson KL, Gooley TA, Schiffman K, Disis ML (2003) Nov 15 Immunization of cancer patients with HER-2/neu-derived peptides demonstrating high-affinity binding to multiple class II alleles. Clin Cancer Res 9(15):5559–5565

    CAS  PubMed  Google Scholar 

  41. Park KH, Gad E, Goodell V, Dang Y, Wild T, Higgins D, Fintak P, Childs J, Dela Rosa C, Disis ML (2008) Oct 15 Insulin-like growth factor-binding protein-2 is a target for the immunomodulation of breast cancer. Cancer Res 68(20):8400–8409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cecil DL, Holt GE, Park KH, Gad E, Rastetter L, Childs J, Higgins D, Disis ML (2014) May 15 Elimination of IL-10-inducing T-helper epitopes from an IGFBP-2 vaccine ensures potent antitumor activity. Cancer Res 74(10):2710–2718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Guenova E, Watanabe R, Teague JE, Desimone JA, Jiang Y, Dowlatshahi M, Schlapbach C, Schaekel K, Rook AH, Tawa M, Fisher DC, Kupper TS, Clark RA (2013) Jul 15 TH2 cytokines from malignant cells suppress TH1 responses and enforce a global TH2 bias in leukemic cutaneous T-cell lymphoma. Clin Cancer Res 19(14):3755–3763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Milich DR, McLachlan A, Raney AK, Houghten R, Thornton GB, Maruyama T, Hughes JL, Jones JE (1991) May 15 Autoantibody production in hepatitis B e antigen transgenic mice elicited with a self T-cell peptide and inhibited with nonself peptides. Proc Natl Acad Sci U S A 88(10):4348–4352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cibotti R, Kanellopoulos JM, Cabaniols JP, Halle-Panenko O, Kosmatopoulos K, Sercarz E, Kourilsky P (1992) Jan 1 Tolerance to a self-protein involves its immunodominant but does not involve its subdominant determinants. Proc Natl Acad Sci U S A 89(1):416–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cabaniols JP, Cibotti R, Kourilsky P, Kosmatopoulos K, Kanellopoulos JM (1994) Dose-dependent T cell tolerance to an immunodominant self peptide. Eur J Immunol 24(8):1743–1749

    Article  CAS  PubMed  Google Scholar 

  47. Nielen MM, van Schaardenburg D, Reesink HW, van de Stadt RJ, van der Horst-Bruinsma IE, de Koning MH, Habibuw MR, Vandenbroucke JP, Dijkmans BA (2004) Specific autoantibodies precede the symptoms of rheumatoid arthritis: a study of serial measurements in blood donors. Arthritis Rheum 50(2):380–386

    Article  PubMed  Google Scholar 

  48. Meyer O, Labarre C, Dougados M, Goupille P, Cantagrel A, Dubois A, Nicaise-Roland P, Sibilia J, Combe B (2003) Anticitrullinated protein/peptide antibody assays in early rheumatoid arthritis for predicting five year radiographic damage. Ann Rheum Dis 62(2):120–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Simon M, Girbal E, Sebbag M, Gomès-Daudrix V, Vincent C, Salama G, Serre G (1993) The cytokeratin filament-aggregating protein filaggrin is the target of the so-called “antikeratin antibodies,” autoantibodies specific for rheumatoid arthritis. J Clin Invest 92(3):1387–1393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Turunen S, Koivula MK, Melkko J, Alasaarela E, Lehenkari P, Risteli J (2013) Sep 23 Different amounts of protein-bound citrulline and homocitrulline in foot joint tissues of a patient with anti-citrullinated protein antibody positive erosive rheumatoid arthritis. J Transl Med 11:224

    Article  PubMed  PubMed Central  Google Scholar 

  51. Gertel S, Serre G, Shoenfeld Y, Amital H (2015) Jun 15 Immune tolerance induction with multiepitope peptide derived from citrullinated autoantigens attenuates arthritis manifestations in adjuvant arthritis rats. J Immunol 194(12):5674–5680

    Article  CAS  PubMed  Google Scholar 

  52. Benham H, Nel HJ, Law SC, Mehdi AM, Street S, Ramnoruth N, Pahau H, Lee BT, Ng J, Brunck ME, Hyde C, Trouw LA, Dudek NL, Purcell AW, O’Sullivan BJ, Connolly JE, Paul SK, Lê Cao KA, Thomas R (2015) Citrullinated peptide dendritic cell immunotherapy in HLA risk genotype-positive rheumatoid arthritis patients. Sci Transl Med 7(290):290ra87

    Article  PubMed  Google Scholar 

  53. Yeste A, Takenaka MC, Mascanfroni ID, Nadeau M, Kenison JE, Patel B, Tukpah AM, Babon JA, DeNicola M, Kent SC, Pozo D, Quintana FJ (2016) Tolerogenic nanoparticles inhibit T cell-mediated autoimmunity through SOCS2. Sci Signal 9(433):ra61

    Article  PubMed  Google Scholar 

  54. Streeter HB, Rigden R, Martin KF, Scolding NJ, Wraith DC (2015) Mar 12 Preclinical development and first-in-human study of ATX-MS-1467 for immunotherapy of MS. Neurol Neuroimmunol Neuroinflamm 2(3):e93

    Article  PubMed  PubMed Central  Google Scholar 

  55. Anderton SM, Viner NJ, Matharu P, Lowrey PA, Wraith DC (2002) Influence of a dominant cryptic epitope on autoimmune T cell tolerance. Nat Immunol 3(2):175–181

    Article  CAS  PubMed  Google Scholar 

  56. Santambrogio L, Sato AK, Fischer FR, Dorf ME, Stern LJ (1999) Dec 21 Abundant empty class II MHC molecules on the surface of immature dendritic cells. Proc Natl Acad Sci U S A 96(26):15050–15055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Burkhart C, Liu GY, Anderton SM, Metzler B, Wraith DC (1999) Peptide-induced T cell regulation of experimental autoimmune encephalomyelitis: a role for IL-10. Int Immunol 11(10):1625–1634

    Article  CAS  PubMed  Google Scholar 

  58. Gabrysová L, Nicolson KS, Streeter HB, Verhagen J, Sabatos-Peyton CA, Morgan DJ, Wraith DC (2009) Aug 3 Negative feedback control of the autoimmune response through antigen-induced differentiation of IL-10-secreting Th1 cells. J Exp Med 206(8):1755–1767

    Article  PubMed  PubMed Central  Google Scholar 

  59. Bar-Or A, Vollmer T, Antel J, Arnold DL, Bodner CA, Campagnolo D, Gianettoni J, Jalili F, Kachuck N, Lapierre Y, Niino M, Oger J, Price M, Rhodes S, Robinson WH, Shi FD, Utz PJ, Valone F, Weiner L, Steinman L, Garren H (2007) Induction of antigen-specific tolerance in multiple sclerosis after immunization with DNA encoding myelin basic protein in a randomized, placebo-controlled phase 1/2 trial. Arch Neurol 64(10):1407–1415

    Article  PubMed  Google Scholar 

  60. Garren H, Robinson WH, Krasulová E, Havrdová E, Nadj C, Selmaj K, Losy J, Nadj I, Radue EW, Kidd BA, Gianettoni J, Tersini K, Utz PJ, Valone F (2008) Steinman L; BHT-3009 study group. Phase 2 trial of a DNA vaccine encoding myelin basic protein for multiple sclerosis. Ann Neurol 63(5):611–620

    Article  CAS  PubMed  Google Scholar 

  61. Liu R, Moise L, Tassone R, Gutierrez AH, Terry FE, Sangare K, Ardito MT, Martin WD, De Groot AS (2015) H7N9 T-cell epitopes that mimic human sequences are less immunogenic and may induce Treg-mediated tolerance. Hum Vaccin Immunother. 11(9):2241–2252

    Article  PubMed  PubMed Central  Google Scholar 

  62. Cousens LP, Moise L, De Groot AS. Novel methods for addressing immunogenicity in therapeutic enzymes. In A. Rosenberg, B. Demeule (eds) Biobetters, AAPS Advances. American Association of Pharmaceutical Scientists 2015 in the Pharmaceutical Sciences Series 9

  63. Losikoff PT, Mishra S, Terry F, Gutierrez A, Ardito MT, Fast L, Nevola M, Martin WD, Bailey-Kellogg C, De Groot AS, Gregory SH (2015) HCV epitope, homologous to multiple human protein sequences, induces a regulatory T cell response in infected patients. J Hepatol 62(1):48–55

    Article  CAS  PubMed  Google Scholar 

  64. De Groot AS, Moise L, Liu R, Gutierrez AH, Tassone R, Bailey-Kellogg C, Martin W (2014) Immune camouflage: relevance to vaccines and human immunology. Hum Vaccin Immunother 10(12):3570–3575

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary L. Disis.

Additional information

This article is a contribution to the special issue on Cancer and Autoimmunity - Guest Editor: Mads Hald Andersen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Watt, W.C., Cecil, D.L. & Disis, M.L. Selection of epitopes from self-antigens for eliciting Th2 or Th1 activity in the treatment of autoimmune disease or cancer. Semin Immunopathol 39, 245–253 (2017). https://doi.org/10.1007/s00281-016-0596-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s00281-016-0596-7

Keywords