Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

Enhanced resistance to a lepidopteran pest in transgenic sugar beet plants expressing synthetic cry1Ab gene

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Two diploid sugar beet genotypes of agronomical importance were transformed using Agrobactrium tumefaciens harboring pBI35Scry containing a synthetic cry1Ab gene. Leaf blade with attached shoot bases, a highly regenerative tissue, were used as explant substratum for transformation. PCR screening with cry1Ab-specific primers showed the presence of transgene in more than 50% of the regenerated kanamycin-resistant plants after treatment with the antibiotic. A transformation rate of 8.8–12.2% (depending on genotype) was achieved as revealed by genomic DNA dot blotting. The intact integration of transgene cassette into the genome was furthermore confirmed by Southern blot analysis. The expression of the cry1Ab gene encoding a truncated endotoxin (67 kDa) at about 0.1% of total soluble protein was achieved in the leaves of transgenic plants as shown by Western blot analysis. Bioassays under in vitro conditions with Spodoptera littoralis, one of the most important pests in sugar beet fields, demonstrated enhanced resistance against this pest. The inheritance of the inserted transgene was confirmed in F1 plants obtained through crossing of T0 plants with a cytoplasmic male sterile line. Transgenic plants are currently grown in a greenhouse and will be subjected to further bioassay analyses against other lepidopteran pests of sugar beet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alinia F, Ghareyazie B, Rubia L, Bennett J, Cohen MB (2001) Expression of effect of plant age, larval age, and fertilizer treatment on resistant of a cryIAb-transformed aromatic rice to lepidopterans stem borers and foliage feeders. J Econ Entomol 93:484–493

    Article  Google Scholar 

  • Australia New Zealand Food Authority (ANZFA) (2001) Food produced from insect-protected Bt-176 corn: a safety assessment. Technical report series, No. 9. Canberra BC, Australia

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    Article  PubMed  CAS  Google Scholar 

  • Breitler JC, Vassal JM, Catala MD, Meynard D, Marfa V, Mele E et al (2004) Bt rice harbouring cry genes controlled by a constitutive or wound-inducible promoter: protection and transgene expression under Mediterranean field conditions. Plant Biotechnol J 2:417–430. doi:10.1111/j.1467-7652.2004.00086.x

    Article  PubMed  CAS  Google Scholar 

  • Cheng X, Sardana R, Kaplan H, Altosaar I (1998) Agrobacterium-transformed rice plants expressing synthetic cry1Ab and cry1Ac genes are highly toxic to striped stem borer and yellow stem borer. Proc Natl Acad Sci USA 95:2672–2772

    Google Scholar 

  • Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA mini-preparation Version II. Plant Mol Biol Rep 1:19–21. doi:10.1007/BF02712670

    Article  CAS  Google Scholar 

  • Draycott AP (2006) Sugar beet. Blackwell, London

    Google Scholar 

  • Dutton A, Klein H, Romeis J, Bigler F (2002) Uptake of Bt-toxin by herbivores feeding on transgenic maize and consequences for the predator Chrysoperla carnea. Ecol Entomol 27:441–447. doi:10.1046/j.1365-2311.2002.00436.x

    Article  Google Scholar 

  • Dutton A, Romeis J, Bigler F (2005) Effects of Bt-maize expressing Cry1Ab and Bt-spray on Spodoptera littoralis (Lepidoptera: Noctuidae). Entomol Exp Appl 114:161–170. doi:10.1111/j.1570-7458.2005.00239.x

    Article  CAS  Google Scholar 

  • Ferry N, Edwards MG, Gatehouse J, Capell T, Christou P, Gatehouse AM (2006) Transgenic plants for insect pest control: a forward looking scientific perspective. Transgenic Res 15:13–19. doi:10.1007/s11248-005-4803-x

    Article  PubMed  CAS  Google Scholar 

  • Fujimoto H, Itoh K, Yamamoto M, Kyozuka J, Shimamoto K (1993) Insect resistant rice generated by introduction of a δ-endotoxin gene of Bacillus thuringiensis. Nat Biotechnol 11:1151–1155

    CAS  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158. doi:10.1016/0014-4827(68)90403-5

    Article  PubMed  CAS  Google Scholar 

  • Ghareyazie B, Alinia F, Menguito CA, Rubia LG, Palma JM, Liwanag EL et al (1997) Enhanced resistance to two stem borers in an aromatic rice containing a synthetic cry IAb gene. Mol Breed 3:401–414. doi:10.1023/A:1009695324100

    Article  CAS  Google Scholar 

  • Hisano H, Kimoto Y, Hayakawa H, Takeichi J, Domae T, Hashimoto R et al (2004) High frequency Agrobacterium-mediated transformation and plant regeneration via direct shoot formation from leaf explants in Beta vulgaris and Beta maritima. Plant Cell Rep 22:910–918. doi:10.1007/s00299-004-0773-3

    Article  PubMed  CAS  Google Scholar 

  • Ivic-Haymes SD, Smigocki AC (2005a) Biolistic transformation of highly regenerative sugar beet (Beta vulgaris L.) leaves. Plant Cell Rep 23:699–704. doi:10.1007/s00299-004-0873-0

    Article  PubMed  CAS  Google Scholar 

  • Ivic-Haymes SD, Smigocki AC (2005b) Identification of highly regenerative plants within sugar beet (Beta vulgaris L.) breeding lines for molecular breeding. In vitro Cell Dev Biol Plant 41:483–488. doi:10.1079/IVP2005666

    Article  Google Scholar 

  • Jacq B, Lesobre O, Sangwan RS, Sangwan BS (1993) Factors influencing T-DNA transfer in Agrobacterium-mediated transformation of sugar beet. Plant Cell Rep 12:621–624. doi:10.1007/BF00232811

    Article  CAS  Google Scholar 

  • Jafari M, Tohidfar M (2007) Bt transgenic plants: safety, advantages, potential impacts in agriculture and insect pests resistance management. Iranian J Mod Genet 2:5–17

    Google Scholar 

  • James C (2007) Global status of commercialised transgenic crops (2006) ISAAA briefs No.35. ISAAA, Ithaca, New York

    Google Scholar 

  • Jansens S, Van Vliet A, Dickburt C, Buysse L, Piens C, Saey B et al (1997) Transgenic corn expressing a Cry9C insecticidal protein from Bacillus thuringiensis protected from European corn borer damage. Crop Sci 37:1616–1624

    CAS  Google Scholar 

  • Kimoto Y, Shimamoto Y (2001) Difference in toxicity to larvae of cabbage armyworm between transgenic sugar beet lines with Cry1Ab and Cry1C. Proc Jpn Soc Sugar Beet Technologists 43:20–23

    CAS  Google Scholar 

  • Kohli A, Ghareyazie B, Kim HS, Khush GS, Bennett J (1996). Cytosine methylation implicated in silencing of β-glucuronidase genes in transgenic rice, Rice Genetics III. Proceeding of the 3rd International Rice Genetics Symposium, IRRI, Manila, PH, 16–20 October 1995

  • Kooter JM, Matzke MA, Meyer P (1999) Listening to the silent genes: transgene silencing, gene regulation and pathogen control. Trends Plant Sci 4:341–347. doi:10.1016/S1360-1385(99)01467-3

    Article  Google Scholar 

  • Koziel MG, Beland GL, Bowman C, Carozzi N, Crensham R, Crossland L et al (1993) Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis. Nat Biotechnol 11:194–200. doi:10.1038/nbt0293-194

    Article  CAS  Google Scholar 

  • Lachance D, Hamel LP, Pelletier F, Valéro J, Bernier-Cardou M, Chapman K et al (2007) Expression of a Bacillus thuringiensis cry1Ab gene in transgenic white spruce and its efficacy against the spruce budworm (Choristoneura fumiferana). Tree Genet Genomes 3:153–167. doi:10.1007/s11295-006-0072-y

    Article  Google Scholar 

  • Lechtenberg B, Schuberty D, Forsbachz A, Gils M, Schmidt R (2003) Neither inverted repeat T-DNA configurations nor arrangements of tandemly repeated transgenes are sufficient to trigger transgene silencing. Plant J 34:507–551. doi:10.1046/j.1365-313X.2003.01746.x

    Article  PubMed  CAS  Google Scholar 

  • Lennefors BL, Savenkov EI, Bensefelt J, Wremerth-Weich E, Roggen P, Tuvesson S et al (2006) dsRNA-mediated resistance to Beet Necrotic Yellow Vein Virus infections in sugar beet (Beta vulgaris L.). Mol Breed 18:313–325. doi:10.1007/s11032-006-9030-5

    Article  CAS  Google Scholar 

  • Mannerlof M, Lennerfors BL, Tenning P (1996) Reduced titer of BNYVV in transgenic sugar beets expressing the BNYVV coat protein. Euphytica 90:293–299. doi:10.1007/BF00027479

    Article  Google Scholar 

  • Matzke MA, Matzke AJM (1995) How and why do plants inactivate homologous (trans)genes? Plant Physiol 107:679–685

    PubMed  CAS  Google Scholar 

  • Menzel G, Harloff HJ, Jung C (2003) Expression of bacterial poly (3-hydroxybutyrate) synthesis genes in hair root of sugar beet (Beta vulgaris L.). Appl Microbiol Biotechnol 60:57–576

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–476. doi:10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  • Norouzi P, Zamani K, Malboobi MA, Yazdi-Samadi B (2005) Using a competent tissue for efficient transformation of sugar beet (Beta vulgaris L.). In Vitro Cell Dev Biol Plant 41:11–16. doi:10.1079/IVP2004589

    Article  Google Scholar 

  • Opabode JT (2006) Agrobacterium-mediated transformation of plants: emerging factors that influence efficiency. Bio Mol Biol Rev 1:12–20

    Google Scholar 

  • Owens LD, Heutte TM (1997) A single amino acid substitution in the antimicrobial defense protein cecropin B is associated with diminished degradation by leaf intercellular fluid. Mol Plant Microbe Interact 10:525–528. doi:10.1094/MPMI.1997.10.4.525

    Article  PubMed  CAS  Google Scholar 

  • Peferoen M (1997) Progress and prospects for field use of Bt genes in crops. Trends Biotechnol 15:173–177. doi:10.1016/S0167-7799(97)01018-4

    Article  CAS  Google Scholar 

  • Regev A, Keller M, Strizhov N, Sneh B, Prudovsky E, Chet I et al (1996) Synergistic activity of a Bacillus thuringiensis δ-endotoxin and a bacterial endochitinase against Spodoptera littoralis larvae. Appl Environ Microbiol 62:3581–3586

    PubMed  CAS  Google Scholar 

  • Romeis J, Meissle M, Bigler F (2006) Transgenic crops expressing Bacillus thuringiensis toxins and biological control. Nat Biotechnol 24:63–71. doi:10.1038/nbt1180

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • SAS Institute (1992) SAS/STAT user’s guide. SAS Institute Inc., Cary, NC

    Google Scholar 

  • Smigocki A, Ivic SD, Wilson D, Wozniak CA, Campbell L, Dregseth R, et al (2003) Molcular approaches for control of the sugarbeet root maggot, 1st joint IIRB-ASSBT Congress, San Antonio, USA, 26th Feb–1st March 2003, pp 419–428

  • Snyder GW, Ingersoll JC, Smigocki AC (1999) Introduction of pathogen defense genes and a cytokinin biosynthesis gene into sugar beet (Beta vulgaris L.) by Agrobacterium or Particle bombardment. Plant Cell Rep 18:829–834. doi:10.1007/s002990050669

    Article  CAS  Google Scholar 

  • Tu J, Zhang G, Datta K, Xu C, He Y, Zhang Q et al (2000) Field performance of transgenic elite commercial hybrid rice expressing Bacillus thuringiensis δ-endotoxin. Nat Biotechnol 18:1101–1104. doi:10.1038/80310

    Article  PubMed  CAS  Google Scholar 

  • Vaeck M, Reynaerts A, Höfte H, Jansens S, De Beuckeleer M, Dean C et al (1987) Transgenic plants protected from insect attack. Nature 328:33–37. doi:10.1038/328033a0

    Article  CAS  Google Scholar 

  • Vigers AJ, Wiedemann S, Roberts WK, Legrand M, Selitrennikoff CP, Fritig B (1992) Thaumatin-like pathogenesis-related proteins are antifungal. Plant Sci 83:155–161. doi:10.1016/0168-9452(92)90074-V

    Article  CAS  Google Scholar 

  • Wilhite SE, Elden TC, Puizdar V, Armstrong S, Smigocki AC (2000) Inhibition of aspartyl and serine proteinases in midgut of sugar beet root maggot with proteinase inhibitors. Entomol Exp Appl 97:229–233. doi:10.1023/A:1004009110120

    Article  CAS  Google Scholar 

  • Wu G, Cui H, Ye G, Xia Y, Sardana R, Cheng X et al (2002) Inheritance and expression of the cry1Ab gene in Bt (Bacillus thuringiensis) transgenic rice. Theor Appl Genet 104:727–734. doi:10.1007/s001220100689

    Article  PubMed  CAS  Google Scholar 

  • Yin Z, Plader W, Malepszy S (2004) Transgene inheritance in plants. J Appl Genet 45(2):127–144

    PubMed  Google Scholar 

  • Zhu B, Chen THH, Li PH (1995) Activation of two osmotin-like genes by abiotic stimuli and fungal pathogen in transgenic potato plants. Plant Physiol 108:929–937. doi:10.1104/pp.108.3.929

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This research was jointly funded by Agricultural Biotechnology Research Institute of Iran (ABRII) and Sugar Beet Seed Institute of Iran (SBSI). We wish to appreciate Dr. AA Habashi (ABRII) for his great supports. We would like to thank Dr. SE Mortazavi (ABRII) for his technical advice as well. Authors wish to acknowledge Dr. N Amman, Technical University of Delft, Netherlands and Dr. A Rajabi, Sugar Beet Seed Institute of Iran, for the critical review and their suggestions for the improvement of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peyman Norouzi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jafari, M., Norouzi, P., Malboobi, M.A. et al. Enhanced resistance to a lepidopteran pest in transgenic sugar beet plants expressing synthetic cry1Ab gene. Euphytica 165, 333–344 (2009). https://doi.org/10.1007/s10681-008-9792-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s10681-008-9792-4

Keywords

Profiles

  1. Peyman Norouzi