Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

Developing transgenic Anopheles mosquitoes for the sterile insect technique

  • SI-Molecular Technologies to Improve SIT
  • Published:
Genetica Aims and scope Submit manuscript

Abstract

In the last 10 years the availability of the genome sequence of Anopheles gambiae and the development of a transgenic technology for several species of Anopheles mosquitoes have, in combination, helped in enabling us to gain several insights into the biology of these mosquitoes that is relevant to their capacity as vectors of the malaria parasite. While this information is anticipated to inform many novel vector control strategies, the technique most likely to benefit in the near future from the availability of a reliable transgenic technology is the sterile insect technique (SIT), which relies on releasing large numbers of sterile insects to compete for mates in the wild, leading to population suppression. Although SIT has been proven to work reliably for many insects, the construction of suitable strains, and induction of sterility, has until now been a laborious process, combining classical genetics with radiation-induced sterility. Using transgenesis to create strains of Anopheles suitable for SIT could potentially offer several advantages over current approaches, in that the basic design of transgenic constructs designed for other insects should be rapidly transferable to mosquitoes, and induction of sterility as a product of the transgenic modification could obviate the requirement for radiation and its associated deleterious effects. In this paper the progress of different transgenic approaches in constructing tools for SIT will be reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adelman ZN, Jasinskiene N, Onal S, Juhn J, Ashikyan A, Salampessy M, MacCauley T, James AA (2007) Nanos gene control DNA mediates developmentally regulated transposition in the yellow fever mosquito Aedes aegypti. Proc Natl Acad Sci USA 104(24):9970–9975

    Article  CAS  PubMed  Google Scholar 

  • Alphey L (2002) Re-engineering the sterile insect technique. Insect Biochem Mol Biol 32(10):1243–1247

    Article  CAS  PubMed  Google Scholar 

  • Benedict MQ, Robinson AS (2003) The first releases of transgenic mosquitoes: an argument for the sterile insect technique. Trends Parasitol 19(8):349–355

    Article  PubMed  Google Scholar 

  • Calkins CO, Parker AG (2005) Sterile insect quality. In: Dyck VA, Hendrichs J, Robinson AS (eds) Sterile insect technique. Principles and practice in area-wide integrated pest management. Springer, Dordrecht, pp 269–296

    Google Scholar 

  • Catteruccia F, Nolan T, Loukeris TG, Blass C, Savakis C, Kafatos FC, Crisanti A (2000) Stable germline transformation of the malaria mosquito Anopheles stephensi. Nature 405(6789):959–962

    Article  CAS  PubMed  Google Scholar 

  • Catteruccia F, Godfray HC, Crisanti A (2003) Impact of genetic manipulation on the fitness of Anopheles stephensi mosquitoes. Science 299(5610):1225–1227

    Article  CAS  PubMed  Google Scholar 

  • Catteruccia F, Benton JP, Crisanti A (2005) An anopheles transgenic sexing strain for vector control. Nat Biotechnol 23(11):1414–1417

    Article  CAS  PubMed  Google Scholar 

  • Chen P, Nordstrom W, Gish B, Abrams JM (1996) Grim, a novel cell death gene in drosophila. Genes Dev 10(14):1773–1782

    Article  CAS  PubMed  Google Scholar 

  • Curtis CF (1978) Genetic sex separation in anopheles arabiensis and the production of sterile hybrids. Bull World Health Organ (56):453–454

  • Curtis CF (1979) Genetic sexing techniques based on translocation of insecticide resistance to the y chromosome. Bull OILB/SROP (2)

  • Curtis CF, Akiyama J, Davidson G (1976) A genetic sexing system in Anopheles gambiae species a. Mosquito News (36):492–498

  • Dame DA, Lofgren CS, Ford HR, Boston MD, Baldwin KF, Jeffery GM (1974) Release of chemosterilized males for the control of Anopheles albimanus in el salvador Ii. Methods of rearing, sterilization, and distribution. Am J Trop Med Hyg 23(2):282–287

    CAS  PubMed  Google Scholar 

  • Franz G (2002) Recombination between homologous autosomes in medfly (Ceratitis capitata) males: type-1 recombination and the implications for the stability of genetic sexing strains. Genetica 116(1):73–84

    Article  CAS  PubMed  Google Scholar 

  • Franz G (2005) Genetic sexing strains in mediterranean fruit fly, an example for other species amenable to large-scale rearing as required for the sterile insect technique. In: Dyck VA, Hendrichs J, Robinson AS (eds) Sterile insect technique. Principles and practice in area-wide integrated pest management. Springer, Dordrecht, pp 427–451

    Google Scholar 

  • Fu G, Condon KC, Epton MJ, Gong P, Jin L, Condon GC, Morrison NI, Dafa’alla TH, Alphey L (2007) Female-specific insect lethality engineered using alternative splicing. Nat Biotechnol 25(3):353–357

    Article  CAS  PubMed  Google Scholar 

  • Gong P, Epton MJ, Fu G, Scaife S, Hiscox A, Condon KC, Condon GC, Morrison NI, Kelly DW, Dafa’alla T, Coleman PG, Alphey L (2005) A dominant lethal genetic system for autocidal control of the mediterranean fruitfly. Nat Biotechnol 23(4):453–456

    Article  CAS  PubMed  Google Scholar 

  • Gossen M, Bujard H (1992) Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci USA 89(12):5547–5551

    Article  CAS  PubMed  Google Scholar 

  • Grether ME, Abrams JM, Agapite J, White K, Steller H (1995) The head involution defective gene of drosophila melanogaster functions in programmed cell death. Genes Dev 9(14):1694–1708

    Article  CAS  PubMed  Google Scholar 

  • Grossman GL, Rafferty CS, Clayton JR, Stevens TK, Mukabayire O, Benedict MQ (2001) Germline transformation of the malaria vector, Anopheles gambiae, with the piggybac transposable element. Insect Mol Biol 10(6):597–604

    Article  CAS  PubMed  Google Scholar 

  • Handler AM, Zimowska GJ, Horn C (2004) Post-integration stabilization of a transposon vector by terminal sequence deletion in drosophila melanogaster. Nat Biotechnol 22(9):1150–1154

    Article  CAS  PubMed  Google Scholar 

  • Holt RA et al (2002) The genome sequence of the malaria mosquito Anopheles gambiae. Science 298(5591):129–149

    Article  CAS  PubMed  Google Scholar 

  • Horn C, Wimmer EA (2003) A transgene-based, embryo-specific lethality system for insect pest management. Nat Biotechnol 21(1):64–70

    Article  CAS  PubMed  Google Scholar 

  • Kaiser PE, Seawright JA, Dame DA, Joslyn DJ (1978) Development of a genetic sexing system for Anopheles albimanus. J Econ Entomol 71(5):766–771

    Google Scholar 

  • Klassen W, Curtis CF (2005) History of the sterile insect technique. In: Dyck VA, Hendrichs J, Robinson AS (eds) Sterile insect technique. Principles and practice in area-wide integrated pest management. Springer, Dordrecht, pp 3–31

    Google Scholar 

  • Lycett GJ, Kafatos FC, Loukeris TG (2004) Conditional expression in the malaria mosquito Anopheles stephensi with tet-on and tet-off systems. Genetics 167(4):1781–1790

    Google Scholar 

  • McCarthy JV, Dixit VM (1998) Apoptosis induced by drosophila reaper and grim in a human system. J Biol Chem 273(37):24009–24015

    Article  CAS  PubMed  Google Scholar 

  • Nimmo DD, Alphey L, Meredith JM, Eggleston P (2006) High efficiency site-specific genetic engineering of the mosquito genome. Insect Mol Biol 15(2):129–136

    Article  CAS  PubMed  Google Scholar 

  • Papathanos PA, Windbichler N, Menichelli M, Burt A, Crisanti A (2009) The vasa regulatory region mediates germline expression and maternal transmission of proteins in the malaria mosquito Anopheles gambiae: a versatile tool for genetic control strategies. BMC Mol Biol 10:65

    Article  PubMed  Google Scholar 

  • Perera OP, Harrell IR, Handler AM (2002) Germ-line transformation of the South American malaria vector, Anopheles albimanus, with a piggybac/egfp transposon vector is routine and highly efficient. Insect Mol Biol 11(4):291–297

    Article  CAS  PubMed  Google Scholar 

  • Rendon P, McInnis D, Lance D, Stewart J (2004) Medfly (diptera: Tephritidae) genetic sexing: large-scale field comparison of males-only and bisexual sterile fly releases in guatemala. J Econ Entomol 97(5):1547–1553

    Article  CAS  PubMed  Google Scholar 

  • Saccone G, Pane A, Polito LC (2002) Sex determination in flies, fruitflies and butterflies. Genetica 116(1):15–23

    Article  CAS  PubMed  Google Scholar 

  • Scali C, Nolan T, Sharakhov I, Sharakhova M, Crisanti A, Catteruccia F (2007) Post-integration behavior of a minos transposon in the malaria mosquito Anopheles stephensi. Mol Genet Genomics 278(5):575–584

    Article  CAS  PubMed  Google Scholar 

  • Schetelig MF, Horn C, Handler AM, Wimmer EA (2007) Development of an embryonic lethality system in mediterranean fruit fly Ceratitis capitata. In: Vreysen MJB, Robinson AS, Hendrichs J (eds) Area-wide control of insect pest, from research to field implementation. Springer, pp 85–94

    Chapter  Google Scholar 

  • Schetelig MF, Caceres C, Zacharopoulou A, Franz G, Wimmer EA (2009) Conditional embryonic lethality to improve the sterile insect technique in Ceratitis capitata (diptera: Tephritidae). BMC Biol 7:4

    Article  PubMed  Google Scholar 

  • Scott MJ, Heinrich JC, Li X (2004) Progress towards the development of a transgenic strain of the Australian sheep blowfly (Lucilia cuprina) suitable for a male-only sterile release program. Insect Biochem Mol Biol 34(2):185–192

    Article  CAS  PubMed  Google Scholar 

  • Telonis-Scott M, Kopp A, Wayne ML, Nuzhdin SV, McIntyre LM (2009) Sex-specific splicing in drosophila: widespread occurrence, tissue specificity and evolutionary conservation. Genetics 181(2):421–434

    Article  CAS  PubMed  Google Scholar 

  • Thomas DD, Donnelly CA, Wood RJ, Alphey LS (2000) Insect population control using a dominant, repressible, lethal genetic system. Science 287(5462):2474–2476

    Article  CAS  PubMed  Google Scholar 

  • White K, Tahaoglu E, Steller H (1996) Cell killing by the drosophila gene reaper. Science 271(5250):805–807

    Article  CAS  PubMed  Google Scholar 

  • Wilson R, Orsetti J, Klocko AD, Aluvihare C, Peckham E, Atkinson PW, Lehane MJ, O’Brochta DA (2003) Post-integration behavior of a mos1 mariner gene vector in Aedes aegypti. Insect Biochem Mol Biol 33(9):853–863

    Article  CAS  PubMed  Google Scholar 

  • Windbichler N, Papathanos PA, Crisanti A (2008) Targeting the x chromosome during spermatogenesis induces y chromosome transmission ratio distortion and early dominant embryo lethality in Anopheles gambiae. PLoS Genet 4(12):e1000291

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Crisanti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nolan, T., Papathanos, P., Windbichler, N. et al. Developing transgenic Anopheles mosquitoes for the sterile insect technique. Genetica 139, 33–39 (2011). https://doi.org/10.1007/s10709-010-9482-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s10709-010-9482-8

Keywords

Profiles

  1. Tony Nolan
  2. Nikolai Windbichler