Abstract
A facile co-precipitation technique is used in the synthesis of pure ZnO and Y-doped (5, 10 and 15 wt.%) ZnO nanostructures (YZO) and fabricated by using electron beam deposition over a glass substrate. The crystal morphological features of pure ZnO and YZO nanoparticles (NPs) were characterized by XRD (x-ray diffraction), CV (cyclic voltammetry), SEM (scanning electron microscopy), UV–visible spectroscopy and PL (photoluminescence) spectroscopic techniques. Drastic change in the crystalline phase and morphology is observed as a result of Y+3 doping. The polar surface area of Zn 2+ vanished due to charge compensation Y3+ which in turn responsible for transition in morphology of pure ZnO from hexagonal to spherical shape (YZO). In comparison with pure ZnO NPs, Y-doped ZnO exhibited better ammonia gas sensing properties. The selectivity and sensitivity of 150 ppm of ammonia gas at 250 °C for 15 wt.% of YZO were comparatively higher than pure ZnO nanostructures. The response and recovery time of 15 wt.% of YZO was 58 s and 87 s, respectively. The gas sensor YZO nanostructures exhibited better selectivity toward ammonia gas compared with the other volatile gases such as methane, hydrogen sulfide, ethylene, chloroform. The selectivity and sensor features of Y-doped ZnO were experimentally analyzed.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
K. Anthony, Recent Developments in Rare-Earth Doped Materials for Optoelectronics Progress, Prog. Quant. Electron., 2002, 26(4–5), p 225–284. https://doi.org/10.1016/S0079-6727(02)00014-9
L.J. Martínez-Miranda, N.R.H. Patricio, M. Ariel, and E.A. Soto-Bustamante, Semiconductor-Polymer Hybrid Materials, Adv. Poly. Sci., 2014, https://doi.org/10.1007/12_2014_295
A.B. Ageeth, V.B. Rick, and M. Andries, On the Incorporation of Trivalent Rare Earth Ions in II–VI, Semiconductor Nano Crystals, Chem. Mater., 2002, 14(3), p 1121–1126. https://doi.org/10.1021/cm011195s
E. Alberto, I.B. Ana, C.C. Carolina, O.N. Nuria, V.Z. Mikhail, L. Mariano, G.M. Daniel, O. Manuel, and J.P. Wolfgang, Rare earth Based Nanostructured Materials: Synthesis, Functionalization, Properties and Bioimaging and Biosensing Applications, Nano Photon., 2017, 6(5), p 881–921. https://doi.org/10.1515/nanoph-2017-0007
Z.X. Yong, H. Xiduo, K. Sudip, N. Anindya, A. Nasrin, S. Samta, M. Subhas Chandra, and H. Tao, Silicon-Based Sensors for Biomedical Applications: A Review, Sensors, 2019, 19, p 2908. https://doi.org/10.3390/s19132908
M. Michael, G. Matthias, S. Mareike, K. Martin, S. Bianying, and W. Klaus-Hendrik, Wearable Sensors in Healthcare and Sensor-Enhanced Health Information Systems: All Our Tomorrows?, Healthc. Inf. Res., 2012, 18(2), p 97–104. https://doi.org/10.4258/hir.2012.18.2.97
B. Wilfrid, A.C. Romain, N. Jacques, and M.S. Richard, The Use of Sensor Arrays for Environmental Monitoring: Interests and Limitations, J. Environ. Monitor., 2004, 5(6), p 852–860. https://doi.org/10.1039/B307905H
S. Chalasani and ChM Kumar, Toxic Gas Detection and Monitoring Utilizing Internet of Things, Int. J. Civ. Eng., 2017, 8(12), p 614–622
W.R. Fahrner, J. Reinhart, and W. Matthias, Sensors and Smart Electronics in Harsh Environment Applications, Microsyst. Technol., 2001, 7(4), p 138–144. https://doi.org/10.1007/s005420100089
Z. Yuan, X. Jiaqiang, X. Qun, L. Hui, P. Qingyi, and X. Pengcheng, Brush-Like Hierarchical ZnO Nanostructures: synthesis, Photoluminescence and Gas Sensor Properties, J. Phys. Chem. C, 2009, 113(9), p 3430–3435. https://doi.org/10.1021/jp8092258
A.K. Bai, A. Singh, and R.K. Bedi, Characterization and Ammonia Sensing Properties of Pure and Modified Zno Films, Appl. Phys. A, 2011, 103(2), p 497–503. https://doi.org/10.1007/s00339-010-6021-5
S.K. Youn, N. Ramgir, C. Wang, K. Subannajui, V. Cimalla, and M. Zacharias, Catalyst-Free Growth of ZnO Nanowires Based on Topographical Confinement and Preferential Chemisorption and Their use for Room Temperature CO Detection, J. Phys. Chem. C, 2010, 114(22), p 10092–10100. https://doi.org/10.1021/jp100446r
S.K. Mishra, R.K. Srivastava, S.G. Prakash, R.S. Yadav, and A.C. Pandey, Direct Acceleration of an Electron in Infinite Vacuum by a Pulsed Radially-Polarized Laser Beam, Opto-Electron. Rev., 2010, 18(4), p 467–473. https://doi.org/10.2478/s11772-010-0037-4
R. Kaur, A.V. Singh, K. Sehrawat, N.C. Mehra, and R.M. Mehra, Sol-Gel Derived Yttrium Doped ZnO Nanostructures, J. Non-Cryst. Solids, 2006, 352, p 2565–2568. https://doi.org/10.1016/j.jnoncrysol.2006.03.011
P. Yu, J. Wang, H. Du, P. Yao, Y. Hao, and X. Li, Y-Doped ZnO Nanorods by Hydrothermal Method and their Acetone Gas Sensitivity, J. Nanomater, 2013, https://doi.org/10.1155/2013/751826
X.B. Li, Q.Q. Zhang, S.Y. Ma, G.X. Wan, F.M. Li, and X.L. Xu, Microstructure Optimization and Gas Sensing Improvement of Zno spherical Structure Through Yttrium Doping, Sens. Actuators B, 2014, 195, p 526–533. https://doi.org/10.1016/j.snb.2014.01.087
R.C. Pawara, J.S. Shaikha, A.V. Moholkarb, S.M. Pawarb, J.H. Kimb, J.Y. Patil, S.S. Suryavanshi, and P.S. Patil, Surfactant Assisted Low Temperature Synthesis of Nano Crystalline ZnO and Its Gas Sensing Properties, Sens. Actuators B, 2010, 151, p 212–218. https://doi.org/10.1016/j.snb.2010.09.019
N. Sinha, S. Goel, A.J. Joseph, H. Yadav, K. Batra, M.K. Gupta, and B. Kumar, Y-Doped ZnO Nano Sheets: Gigantic Piezoelectric Response for an Ultra-Sensitive Flexible Piezoelectric Nano Generator, Ceram. Int., 2018, 44(7), p 8582–8590. https://doi.org/10.1016/j.ceramint.2018.02.066
N. Kaur, S.K. Sharma, and D.Y. Kim, Stress Relaxation and Transitions in Optical Band Gap of Yttrium Doped Zinc Oxide (YZO) Thin Films, Curr. Appl. Phys., 2016, 16(3), p 231–239. https://doi.org/10.1016/j.cap.2015.12.004
P. Michal, K. Jaromir, B. Monika, and M. Petr, Energy Harvesting Sources, Storage Devices and System Topologies for Environmental Wireless Sensor Networks: A Review, Sensors, 2018, 18(8), p 2446. https://doi.org/10.3390/s18082446
J. Anderson and G.V.W. Chris, Fundamentals of Zinc Oxide as a Semiconductor, Rep. Prog. Phys., 2009, 72(12), p 126501. https://doi.org/10.1088/0034-4885/72/12/126501
L. David, Recent Advances in ZnO Materials and Devices, Mat. Sci. Eng. B, 2001, 80(1–3), p 383–387. https://doi.org/10.1016/S0921-5107(00)00604-8
H. Babar, A. Aasma, M.K. Taj, C. Michael, and Z. Bahman, Electron Affinity and Bandgap Optimization of Zinc Oxide for Improved Performance of ZnO/Si Heterojunction Solar Cell Using PC1D Simulations, Electronics, 2019, 8, p 238. https://doi.org/10.3390/electronics8020238
M.H. Talaat, J.K. Salem, and G.H. Roger, Synthesis, Characterization, and Optical Properties of Y-Doped Zno Nanoparticles, Nano, 2009, 4(4), p 225–232. https://doi.org/10.1142/S1793292009001691
J. Taehwan, S. Keunkyu, J. Yangho, J. Sunho, and M. Jooho, Bias Stress Stable Aqueous Solution Derived Y-Doped ZnO Thin Film Transistors, J. Mater. Chem., 2011, 21, p 13524–13529. https://doi.org/10.1039/C1jm11586c
Y. Peng, W. Jing, D. Hai-Ying, Y. Peng-Jun, H. Yuwen, and L. Xiao-Gan, Y-Doped Zno Nanorods By Hydrothermal Method and their Acetone Gas Sensitivity, J Nanomater, 2013, https://doi.org/10.1155/2013/751826
S. Goel, N. Sinha, H. Yadav et al., 2nd Porous Nanosheets of Y-Doped ZnO For Dielectric And Ferroelectric Applications, J. Mater Sci. Mater., 2018, 29, p 13818–13832. https://doi.org/10.1007/S10854-018-9513-2
N. Sinha, S. Goel, A.J. Joseph, H. Yadav, K. Batra, M.K. Gupta, and B. Kumar, Y-Doped Zno Nanosheets: Gigantic Piezoelectric Response For An Ultra-Sensitive Flexible Piezoelectric Nanogenerator, Ceram. Int., 2018, 44(7), p 85828590. https://doi.org/10.1016/j.ceramint.2018.02.066
M.R.A. Bhuiyana and M.K. Rahmana, Synthesis and Characterization of Ni Doped Zno Nanoparticles, Eng. Manuf., 2014, 1, p 10–17. https://doi.org/10.5815/Ijem.2014.01.02
M. Talaat, M. Hammad, J.K. Salem, and R.G. Harrison, Synthesis, Characterization, and Optical Properties of Y-Doped Zno Nanoparticles, Nano, 2009, 04(04), p 225–232. https://doi.org/10.1142/S1793292009001691
T.M. Hammad and J.K. Salem, Synthesis and Characterization of Mg-Doped Zno Hollow Spheres, J. Nanopart. Res., 2011, 13, p 2205–2212. https://doi.org/10.1007/S11051-010-9978-2
H. Ghaffarian, M. Saiedi, M. Sayyadnejad, and A. Rashidi, Synthesis of ZnO Nanoparticles by Spray Pyrolysis Method, Iran. J. Chem. Chem. Eng., 2011, 30(1), p 1–6
L. Marco and C. Valentina, Porous Zinc Oxide Thin Films: Synthesis Approaches and Applications, Coatings, 2018, 8, p 67. https://doi.org/10.3390/coatings8020067
A.B. Djurišić, A.M.C. Ng, and X. Chen, ZnO Nanostructures for Optoelectronics: Material Properties and Device Applications, July 2010, Prog. Quantum Electron., 2010, 34(4), p 191–259. https://doi.org/10.1016/j.pquantelec.2010.04.001
K.S. Ashok, L.W. Zhong, D.L. Polla, and A. Mehdi, ZnO Nanostructures for Optoelectronic Applications, Optoelectron. Dev. Prop., 2011, https://doi.org/10.5772/16202
M.A. Borysiewicz, ZnO as a Functional Material, A Review, Crystals, 2019, 9(505), p 2–29. https://doi.org/10.3390/cryst9100505
S. Roy and B. Sukumar, Improved Zinc Oxide Film for Gas Sensor Applications, Bull. Mater. Sci., 2002, 25(6), p 513–515. https://doi.org/10.1007/bf02710540
G.L. Salvatore, Two-Dimensional Zinc Oxide Nanostructures for Gas Sensor Applications, Chemosensors, 2017, 5(17), p 2–28. https://doi.org/10.3390/chemosensors5020017
Ö. Ümit, H. Daniel, and H. Morkoç, ZnO Devices and Applications: A Review of Current Status and Future Prospects, Proc. IEEE, 2010, 98(7), p 1255–1268. https://doi.org/10.1109/JPROC.2010.2044550
M.J. Robles-Águila, J.A. Luna-López, D.H. Álvaro, J. Martínez-Juárez, and M.E. Rabanal, Synthesis and Characterization of Nano crystalline ZnO Doped with Al3+ and Ni2+ by a Sol-Gel Method Coupled with Ultrasound Irradiation, Crystals, 2018, 8(11), p 406. https://doi.org/10.3390/cryst8110406
S. Nora, V. Portillo, and B. Monserrat, Sprayed Pyrolyzed ZnO Films with Nanoflake and Nanorod Morphologies and their Photocatalytic Activity, J. Nanomater., 2016, https://doi.org/10.1155/2016/5981562
Q. Wan, Q.H. Li, Y.J. Chen et al., Fabrication and Ethanol Sensing Characteristics of Zno Nanowire Gas Sensors, Appl. Phys. Lett., 2004, 84(18), p 3654–3656. https://doi.org/10.1063/1.1738932
Y. Shimizu, S. Kai, Y. Takao, T. Hyodo, and M. Egashira, Correlation Between Methylmercaptan Gas-Sensing Properties and Its Surface Chemistry of SnO2-Based Sensor Materials, Sens. Actuators B, 2000, 65(1), p 349–357. https://doi.org/10.1016/S0925-4005(99)00438-4
M. Takata, D. Tsubone, and H. Yanagida, Dependence of Electrical Conductivity of Zno on Degree of Sintering, J. Am. Ceram. Soc., 1976, 59(1–2), p 4–8. https://doi.org/10.1111/j.1151-2916.1976.tb09374.x
Acknowledgment
All the authors are thankful to Ramaiah Institute of Technology, Bangalore, India, CENSE, IISc, Bangalore, Karnataka, India, Shivaji University, Kholapur, Karnataka, India for their unavailing support for characterization and carrying out the necessary experimentations.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
All the authors declare that they do not have any conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Adimule, V., Revaigh, M.G. & Adarsha, H.J. Synthesis and Fabrication of Y-Doped ZnO Nanoparticles and Their Application as a Gas Sensor for the Detection of Ammonia. J. of Materi Eng and Perform 29, 4586–4596 (2020). https://doi.org/10.1007/s11665-020-04979-4
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11665-020-04979-4