Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content

Advertisement

Log in

Synthesis and Fabrication of Y-Doped ZnO Nanoparticles and Their Application as a Gas Sensor for the Detection of Ammonia

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

A facile co-precipitation technique is used in the synthesis of pure ZnO and Y-doped (5, 10 and 15 wt.%) ZnO nanostructures (YZO) and fabricated by using electron beam deposition over a glass substrate. The crystal morphological features of pure ZnO and YZO nanoparticles (NPs) were characterized by XRD (x-ray diffraction), CV (cyclic voltammetry), SEM (scanning electron microscopy), UV–visible spectroscopy and PL (photoluminescence) spectroscopic techniques. Drastic change in the crystalline phase and morphology is observed as a result of Y+3 doping. The polar surface area of Zn 2+ vanished due to charge compensation Y3+ which in turn responsible for transition in morphology of pure ZnO from hexagonal to spherical shape (YZO). In comparison with pure ZnO NPs, Y-doped ZnO exhibited better ammonia gas sensing properties. The selectivity and sensitivity of 150 ppm of ammonia gas at 250 °C for 15 wt.% of YZO were comparatively higher than pure ZnO nanostructures. The response and recovery time of 15 wt.% of YZO was 58 s and 87 s, respectively. The gas sensor YZO nanostructures exhibited better selectivity toward ammonia gas compared with the other volatile gases such as methane, hydrogen sulfide, ethylene, chloroform. The selectivity and sensor features of Y-doped ZnO were experimentally analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. K. Anthony, Recent Developments in Rare-Earth Doped Materials for Optoelectronics Progress, Prog. Quant. Electron., 2002, 26(4–5), p 225–284. https://doi.org/10.1016/S0079-6727(02)00014-9

    Article  Google Scholar 

  2. L.J. Martínez-Miranda, N.R.H. Patricio, M. Ariel, and E.A. Soto-Bustamante, Semiconductor-Polymer Hybrid Materials, Adv. Poly. Sci., 2014, https://doi.org/10.1007/12_2014_295

    Article  Google Scholar 

  3. A.B. Ageeth, V.B. Rick, and M. Andries, On the Incorporation of Trivalent Rare Earth Ions in II–VI, Semiconductor Nano Crystals, Chem. Mater., 2002, 14(3), p 1121–1126. https://doi.org/10.1021/cm011195s

    Article  CAS  Google Scholar 

  4. E. Alberto, I.B. Ana, C.C. Carolina, O.N. Nuria, V.Z. Mikhail, L. Mariano, G.M. Daniel, O. Manuel, and J.P. Wolfgang, Rare earth Based Nanostructured Materials: Synthesis, Functionalization, Properties and Bioimaging and Biosensing Applications, Nano Photon., 2017, 6(5), p 881–921. https://doi.org/10.1515/nanoph-2017-0007

    Article  CAS  Google Scholar 

  5. Z.X. Yong, H. Xiduo, K. Sudip, N. Anindya, A. Nasrin, S. Samta, M. Subhas Chandra, and H. Tao, Silicon-Based Sensors for Biomedical Applications: A Review, Sensors, 2019, 19, p 2908. https://doi.org/10.3390/s19132908

    Article  CAS  Google Scholar 

  6. M. Michael, G. Matthias, S. Mareike, K. Martin, S. Bianying, and W. Klaus-Hendrik, Wearable Sensors in Healthcare and Sensor-Enhanced Health Information Systems: All Our Tomorrows?, Healthc. Inf. Res., 2012, 18(2), p 97–104. https://doi.org/10.4258/hir.2012.18.2.97

    Article  Google Scholar 

  7. B. Wilfrid, A.C. Romain, N. Jacques, and M.S. Richard, The Use of Sensor Arrays for Environmental Monitoring: Interests and Limitations, J. Environ. Monitor., 2004, 5(6), p 852–860. https://doi.org/10.1039/B307905H

    Article  Google Scholar 

  8. S. Chalasani and ChM Kumar, Toxic Gas Detection and Monitoring Utilizing Internet of Things, Int. J. Civ. Eng., 2017, 8(12), p 614–622

    Google Scholar 

  9. W.R. Fahrner, J. Reinhart, and W. Matthias, Sensors and Smart Electronics in Harsh Environment Applications, Microsyst. Technol., 2001, 7(4), p 138–144. https://doi.org/10.1007/s005420100089

    Article  Google Scholar 

  10. Z. Yuan, X. Jiaqiang, X. Qun, L. Hui, P. Qingyi, and X. Pengcheng, Brush-Like Hierarchical ZnO Nanostructures: synthesis, Photoluminescence and Gas Sensor Properties, J. Phys. Chem. C, 2009, 113(9), p 3430–3435. https://doi.org/10.1021/jp8092258

    Article  CAS  Google Scholar 

  11. A.K. Bai, A. Singh, and R.K. Bedi, Characterization and Ammonia Sensing Properties of Pure and Modified Zno Films, Appl. Phys. A, 2011, 103(2), p 497–503. https://doi.org/10.1007/s00339-010-6021-5

    Article  CAS  Google Scholar 

  12. S.K. Youn, N. Ramgir, C. Wang, K. Subannajui, V. Cimalla, and M. Zacharias, Catalyst-Free Growth of ZnO Nanowires Based on Topographical Confinement and Preferential Chemisorption and Their use for Room Temperature CO Detection, J. Phys. Chem. C, 2010, 114(22), p 10092–10100. https://doi.org/10.1021/jp100446r

    Article  CAS  Google Scholar 

  13. S.K. Mishra, R.K. Srivastava, S.G. Prakash, R.S. Yadav, and A.C. Pandey, Direct Acceleration of an Electron in Infinite Vacuum by a Pulsed Radially-Polarized Laser Beam, Opto-Electron. Rev., 2010, 18(4), p 467–473. https://doi.org/10.2478/s11772-010-0037-4

    Article  CAS  Google Scholar 

  14. R. Kaur, A.V. Singh, K. Sehrawat, N.C. Mehra, and R.M. Mehra, Sol-Gel Derived Yttrium Doped ZnO Nanostructures, J. Non-Cryst. Solids, 2006, 352, p 2565–2568. https://doi.org/10.1016/j.jnoncrysol.2006.03.011

    Article  CAS  Google Scholar 

  15. P. Yu, J. Wang, H. Du, P. Yao, Y. Hao, and X. Li, Y-Doped ZnO Nanorods by Hydrothermal Method and their Acetone Gas Sensitivity, J. Nanomater, 2013, https://doi.org/10.1155/2013/751826

    Article  Google Scholar 

  16. X.B. Li, Q.Q. Zhang, S.Y. Ma, G.X. Wan, F.M. Li, and X.L. Xu, Microstructure Optimization and Gas Sensing Improvement of Zno spherical Structure Through Yttrium Doping, Sens. Actuators B, 2014, 195, p 526–533. https://doi.org/10.1016/j.snb.2014.01.087

    Article  CAS  Google Scholar 

  17. R.C. Pawara, J.S. Shaikha, A.V. Moholkarb, S.M. Pawarb, J.H. Kimb, J.Y. Patil, S.S. Suryavanshi, and P.S. Patil, Surfactant Assisted Low Temperature Synthesis of Nano Crystalline ZnO and Its Gas Sensing Properties, Sens. Actuators B, 2010, 151, p 212–218. https://doi.org/10.1016/j.snb.2010.09.019

    Article  CAS  Google Scholar 

  18. N. Sinha, S. Goel, A.J. Joseph, H. Yadav, K. Batra, M.K. Gupta, and B. Kumar, Y-Doped ZnO Nano Sheets: Gigantic Piezoelectric Response for an Ultra-Sensitive Flexible Piezoelectric Nano Generator, Ceram. Int., 2018, 44(7), p 8582–8590. https://doi.org/10.1016/j.ceramint.2018.02.066

    Article  CAS  Google Scholar 

  19. N. Kaur, S.K. Sharma, and D.Y. Kim, Stress Relaxation and Transitions in Optical Band Gap of Yttrium Doped Zinc Oxide (YZO) Thin Films, Curr. Appl. Phys., 2016, 16(3), p 231–239. https://doi.org/10.1016/j.cap.2015.12.004

    Article  Google Scholar 

  20. P. Michal, K. Jaromir, B. Monika, and M. Petr, Energy Harvesting Sources, Storage Devices and System Topologies for Environmental Wireless Sensor Networks: A Review, Sensors, 2018, 18(8), p 2446. https://doi.org/10.3390/s18082446

    Article  CAS  Google Scholar 

  21. J. Anderson and G.V.W. Chris, Fundamentals of Zinc Oxide as a Semiconductor, Rep. Prog. Phys., 2009, 72(12), p 126501. https://doi.org/10.1088/0034-4885/72/12/126501

    Article  CAS  Google Scholar 

  22. L. David, Recent Advances in ZnO Materials and Devices, Mat. Sci. Eng. B, 2001, 80(1–3), p 383–387. https://doi.org/10.1016/S0921-5107(00)00604-8

    Article  Google Scholar 

  23. H. Babar, A. Aasma, M.K. Taj, C. Michael, and Z. Bahman, Electron Affinity and Bandgap Optimization of Zinc Oxide for Improved Performance of ZnO/Si Heterojunction Solar Cell Using PC1D Simulations, Electronics, 2019, 8, p 238. https://doi.org/10.3390/electronics8020238

    Article  CAS  Google Scholar 

  24. M.H. Talaat, J.K. Salem, and G.H. Roger, Synthesis, Characterization, and Optical Properties of Y-Doped Zno Nanoparticles, Nano, 2009, 4(4), p 225–232. https://doi.org/10.1142/S1793292009001691

    Article  Google Scholar 

  25. J. Taehwan, S. Keunkyu, J. Yangho, J. Sunho, and M. Jooho, Bias Stress Stable Aqueous Solution Derived Y-Doped ZnO Thin Film Transistors, J. Mater. Chem., 2011, 21, p 13524–13529. https://doi.org/10.1039/C1jm11586c

    Article  Google Scholar 

  26. Y. Peng, W. Jing, D. Hai-Ying, Y. Peng-Jun, H. Yuwen, and L. Xiao-Gan, Y-Doped Zno Nanorods By Hydrothermal Method and their Acetone Gas Sensitivity, J Nanomater, 2013, https://doi.org/10.1155/2013/751826

    Article  Google Scholar 

  27. S. Goel, N. Sinha, H. Yadav et al., 2nd Porous Nanosheets of Y-Doped ZnO For Dielectric And Ferroelectric Applications, J. Mater Sci. Mater., 2018, 29, p 13818–13832. https://doi.org/10.1007/S10854-018-9513-2

    Article  CAS  Google Scholar 

  28. N. Sinha, S. Goel, A.J. Joseph, H. Yadav, K. Batra, M.K. Gupta, and B. Kumar, Y-Doped Zno Nanosheets: Gigantic Piezoelectric Response For An Ultra-Sensitive Flexible Piezoelectric Nanogenerator, Ceram. Int., 2018, 44(7), p 85828590. https://doi.org/10.1016/j.ceramint.2018.02.066

    Article  CAS  Google Scholar 

  29. M.R.A. Bhuiyana and M.K. Rahmana, Synthesis and Characterization of Ni Doped Zno Nanoparticles, Eng. Manuf., 2014, 1, p 10–17. https://doi.org/10.5815/Ijem.2014.01.02

    Article  Google Scholar 

  30. M. Talaat, M. Hammad, J.K. Salem, and R.G. Harrison, Synthesis, Characterization, and Optical Properties of Y-Doped Zno Nanoparticles, Nano, 2009, 04(04), p 225–232. https://doi.org/10.1142/S1793292009001691

    Article  Google Scholar 

  31. T.M. Hammad and J.K. Salem, Synthesis and Characterization of Mg-Doped Zno Hollow Spheres, J. Nanopart. Res., 2011, 13, p 2205–2212. https://doi.org/10.1007/S11051-010-9978-2

    Article  CAS  Google Scholar 

  32. H. Ghaffarian, M. Saiedi, M. Sayyadnejad, and A. Rashidi, Synthesis of ZnO Nanoparticles by Spray Pyrolysis Method, Iran. J. Chem. Chem. Eng., 2011, 30(1), p 1–6

    CAS  Google Scholar 

  33. L. Marco and C. Valentina, Porous Zinc Oxide Thin Films: Synthesis Approaches and Applications, Coatings, 2018, 8, p 67. https://doi.org/10.3390/coatings8020067

    Article  CAS  Google Scholar 

  34. A.B. Djurišić, A.M.C. Ng, and X. Chen, ZnO Nanostructures for Optoelectronics: Material Properties and Device Applications, July 2010, Prog. Quantum Electron., 2010, 34(4), p 191–259. https://doi.org/10.1016/j.pquantelec.2010.04.001

    Article  CAS  Google Scholar 

  35. K.S. Ashok, L.W. Zhong, D.L. Polla, and A. Mehdi, ZnO Nanostructures for Optoelectronic Applications, Optoelectron. Dev. Prop., 2011, https://doi.org/10.5772/16202

    Article  Google Scholar 

  36. M.A. Borysiewicz, ZnO as a Functional Material, A Review, Crystals, 2019, 9(505), p 2–29. https://doi.org/10.3390/cryst9100505

    Article  CAS  Google Scholar 

  37. S. Roy and B. Sukumar, Improved Zinc Oxide Film for Gas Sensor Applications, Bull. Mater. Sci., 2002, 25(6), p 513–515. https://doi.org/10.1007/bf02710540

    Article  CAS  Google Scholar 

  38. G.L. Salvatore, Two-Dimensional Zinc Oxide Nanostructures for Gas Sensor Applications, Chemosensors, 2017, 5(17), p 2–28. https://doi.org/10.3390/chemosensors5020017

    Article  CAS  Google Scholar 

  39. Ö. Ümit, H. Daniel, and H. Morkoç, ZnO Devices and Applications: A Review of Current Status and Future Prospects, Proc. IEEE, 2010, 98(7), p 1255–1268. https://doi.org/10.1109/JPROC.2010.2044550

    Article  CAS  Google Scholar 

  40. M.J. Robles-Águila, J.A. Luna-López, D.H. Álvaro, J. Martínez-Juárez, and M.E. Rabanal, Synthesis and Characterization of Nano crystalline ZnO Doped with Al3+ and Ni2+ by a Sol-Gel Method Coupled with Ultrasound Irradiation, Crystals, 2018, 8(11), p 406. https://doi.org/10.3390/cryst8110406

    Article  CAS  Google Scholar 

  41. S. Nora, V. Portillo, and B. Monserrat, Sprayed Pyrolyzed ZnO Films with Nanoflake and Nanorod Morphologies and their Photocatalytic Activity, J. Nanomater., 2016, https://doi.org/10.1155/2016/5981562

    Article  Google Scholar 

  42. Q. Wan, Q.H. Li, Y.J. Chen et al., Fabrication and Ethanol Sensing Characteristics of Zno Nanowire Gas Sensors, Appl. Phys. Lett., 2004, 84(18), p 3654–3656. https://doi.org/10.1063/1.1738932

    Article  CAS  Google Scholar 

  43. Y. Shimizu, S. Kai, Y. Takao, T. Hyodo, and M. Egashira, Correlation Between Methylmercaptan Gas-Sensing Properties and Its Surface Chemistry of SnO2-Based Sensor Materials, Sens. Actuators B, 2000, 65(1), p 349–357. https://doi.org/10.1016/S0925-4005(99)00438-4

    Article  CAS  Google Scholar 

  44. M. Takata, D. Tsubone, and H. Yanagida, Dependence of Electrical Conductivity of Zno on Degree of Sintering, J. Am. Ceram. Soc., 1976, 59(1–2), p 4–8. https://doi.org/10.1111/j.1151-2916.1976.tb09374.x

    Article  CAS  Google Scholar 

Download references

Acknowledgment

All the authors are thankful to Ramaiah Institute of Technology, Bangalore, India, CENSE, IISc, Bangalore, Karnataka, India, Shivaji University, Kholapur, Karnataka, India for their unavailing support for characterization and carrying out the necessary experimentations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinayak Adimule.

Ethics declarations

Conflict of interest

All the authors declare that they do not have any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adimule, V., Revaigh, M.G. & Adarsha, H.J. Synthesis and Fabrication of Y-Doped ZnO Nanoparticles and Their Application as a Gas Sensor for the Detection of Ammonia. J. of Materi Eng and Perform 29, 4586–4596 (2020). https://doi.org/10.1007/s11665-020-04979-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04979-4

Keywords