Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content

Advertisement

Log in

Improved gas sensing capabilities of ZnO:Er nanoparticles synthesized via co-precipitation method

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In this study, the co-precipitation method was employed to synthesize ZnO samples with varying Er concentrations (0%, 1%, 2%, & 3 wt.%). X-ray diffraction (XRD) analysis confirmed the presence of the hexagonal wurtzite structure of ZnO with increased crystallite size of 60 nm for ZnO:Er 1 wt.%. Fourier transform infrared (FT-IR) spectroscopy validated the structural coordination and identified various organic functional groups within the framework of ZnO of all the prepared samples. The morphology of the prepared ZnO:Er samples, as observed through field emission scanning electron microscopy (FESEM), revealed nanorod platelet-shaped grains with clear grain boundaries. The optical properties indicated a lower band gap of 3.25 eV for ZnO:Er1% sample. The analysis of light emission through photoluminescence (PL) spectroscopy showed distinct peaks in the range of about 325–475 nm and at 615 nm. The ZnO sample containing 1% Er exhibited a more intense orange emission peak, which indicates a higher concentration of oxygen vacancies in the material. The response of the ZnO:Er1% sensor increased with higher ammonia concentrations, ranging from 50 to 250 ppm, and exhibited excellent stability over 50 days, indicating a strong interaction with the sensor. Among the fabricated ammonia gas sensors, ZnO:Er1% showed the maximum gas response of 403 at 250 ppm of NH3, with superior response and recovery times of 7.7 s and 8.0 s, respectively, at ambient temperature. This demonstrates the high potential of ZnO:Er1% for commercial gas sensing applications.

Graphical Abstract

Highlights

  • Development of ZnO:Er NPs were synthesized for harmful NH3 gas sensing and reported

  • The optical properties indicated a lower band gap of 3.25 eV for ZnO:Er1% sample.

  • ZnO:Er1% exhibited a more intense orange emission peak, which indicates a higher concentration of oxygen vacancies in the material.

  • Amongst the fabricated ammonia gas sensors, the ZnO:Er1% sample exhibited the largest gas response of 403% and demonstrated superior response and recovery times of 7.7 and 8.0 s, respectively, at ambient temperature.

  • These outcomes indicate that the ZnO:Er1% NPs are good for commercial gas sensing applications.

  • The ZnO:Er1% NPs sample demonstrated good linearity, selectivity, stability and repeatability, which offers an efficient gas sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Data availability

Data will be made available on request

References

  1. Das S, Pal M (2020) Review—Non-Invasive Monitoring of Human Health by Exhaled Breath Analysis: A Comprehensive Review. J Electrochem Soc 167(no. 3):037562. https://doi.org/10.1149/1945-7111/ab67a6

    Article  CAS  Google Scholar 

  2. Anjana N, Amarnath A, Nair M (2018) Toxic hazards of ammonia release and population vulnerability assessment using geographical information system. J Environ Manag 210:201–209. https://doi.org/10.1016/j.jenvman.2018.01.021

    Article  CAS  Google Scholar 

  3. J Wawrzyniak, “Advancements in Improving Selectivity of Metal Oxide Semiconductor Gas Sensors Opening New Perspectives for Their Application in Food Industry,” Sensors, vol. 23, no. 23. 2023, https://doi.org/10.3390/s23239548

  4. Uma S, Shobana MK (2023) Metal oxide semiconductor gas sensors in clinical diagnosis and environmental monitoring. Sens Actuators A Phys 349:114044. https://doi.org/10.1016/j.sna.2022.114044

    Article  CAS  Google Scholar 

  5. Kang Y, Yu F, Zhang L, Wang W, Chen L, Li Y (2021) Review of ZnO-based nanomaterials in gas sensors. Solid State Ion 360:115544. https://doi.org/10.1016/j.ssi.2020.115544

    Article  CAS  Google Scholar 

  6. Dong C, Zhao R, Yao L, Ran Y, Zhang X, Wang Y (2020) A review on WO3 based gas sensors: Morphology control and enhanced sensing properties. J Alloy Compd 820:153194. https://doi.org/10.1016/j.jallcom.2019.153194

    Article  CAS  Google Scholar 

  7. Wu Z et al. (2019) Ultrafast Response/Recovery and High Selectivity of the H2S Gas Sensor Based on α-Fe2O3 Nano-Ellipsoids from One-Step Hydrothermal Synthesis. ACS Appl Mater Interfaces 11(13):12761–12769. https://doi.org/10.1021/acsami.8b22517

    Article  CAS  PubMed  Google Scholar 

  8. Kong Y et al. (2022) SnO2 nanostructured materials used as gas sensors for the detection of hazardous and flammable gases: A review. Nano Mater Sci 4(4):339–350. https://doi.org/10.1016/j.nanoms.2021.05.006

    Article  CAS  Google Scholar 

  9. Tian X et al. (2021) Gas sensors based on TiO2 nanostructured materials for the detection of hazardous gases: A review. Nano Mater Sci 3(4):390–403. https://doi.org/10.1016/j.nanoms.2021.05.011

    Article  CAS  Google Scholar 

  10. V Gurylev and T Perng, “Defect Engineering of ZnO: Review on Oxygen and Zinc Vacancies,” J Eur Ceram Soc vol. 41, Mar. 2021, https://doi.org/10.1016/j.jeurceramsoc.2021.03.031

  11. Choudhary K, Saini R, Upadhyay GK, Rana VS, Purohit LP (2021) Wrinkle type nanostructured Y-doped ZnO thin films for oxygen gas sensing at lower operating temperature. Mater Res Bull 141:111342. https://doi.org/10.1016/j.materresbull.2021.111342

    Article  CAS  Google Scholar 

  12. Nie S et al. (2021) Gas-sensing selectivity of n-ZnO/p-Co3O4 sensors for homogeneous reducing gas. J Phys Chem Solids 150:109864. https://doi.org/10.1016/j.jpcs.2020.109864

    Article  CAS  Google Scholar 

  13. Zhao S et al. (2021) Effects of rare earth elements doping on gas sensing properties of ZnO nanowires. Ceram Int 47(17):24218–24226. https://doi.org/10.1016/j.ceramint.2021.05.133

    Article  CAS  Google Scholar 

  14. Hastir A, Kohli N, Singh RC (2017) Comparative study on gas sensing properties of rare earth (Tb, Dy and Er) doped ZnO sensor. J Phys Chem Solids 105:23–34. https://doi.org/10.1016/j.jpcs.2017.02.004

    Article  CAS  Google Scholar 

  15. Kasirajan K, Bruno Chandrasekar L, Maheswari S, Karunakaran M, Shunmuga Sundaram P (2021) A comparative study of different rare-earth (Gd, Nd, and Sm) metals doped ZnO thin films and its room temperature ammonia gas sensor activity: Synthesis, characterization, and investigation on the impact of dopant. Opt Mater (Amst) 121:111554. https://doi.org/10.1016/j.optmat.2021.111554

    Article  CAS  Google Scholar 

  16. Srivathsa M, Kumar P, Goutam UK, Rajendra BV (2023) Enhancement in the Transport and Optoelectrical Properties of Spray Coated ZnO Thin Films by Nd Dopant. Electron Mater Lett 19(no. 2):138–160. https://doi.org/10.1007/s13391-022-00381-5

    Article  CAS  Google Scholar 

  17. Çolak H, Karaköse E (2022) Gadolinium(III)-doped ZnO nanorods and gas sensing properties. Mater. Sci. Semicond. Process. 139:106329. https://doi.org/10.1016/j.mssp.2021.106329

  18. Mokrushin AS et al. (2022) Gas-sensitive nanostructured ZnO films praseodymium and europium doped: Electrical conductivity, selectivity, influence of UV irradiation and humidity. Appl Surf Sci 589:152974. https://doi.org/10.1016/j.apsusc.2022.152974

    Article  CAS  Google Scholar 

  19. Arun Kumar KD et al. (2020) Effect of Er doping on the ammonia sensing properties of ZnO thin films prepared by a nebulizer spray technique. J Phys Chem Solids 144:109513. https://doi.org/10.1016/j.jpcs.2020.109513

    Article  CAS  Google Scholar 

  20. Zhang X-H, Chen J, Wu Y, Xie Z, Kang J, Zheng L (2011) A simple route to fabricate high sensibility gas sensors based on erbium doped ZnO nanocrystals. Colloids Surf A Physicochem Eng Asp 384(1):580–584. https://doi.org/10.1016/j.colsurfa.2011.05.013

    Article  CAS  Google Scholar 

  21. Benamara M et al. (2023) Enhanced detection of low concentration volatile organic compounds using advanced doped zinc oxide sensors. RSC Adv 13(43):30230–30242. https://doi.org/10.1039/D3RA03143H

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Benamara M et al. (2023) Selective and rapid detection of acetone using aluminum-doped zno-based sensors. J Sol-Gel Sci Technol 108(1):13–27. https://doi.org/10.1007/s10971-023-06197-5

    Article  CAS  Google Scholar 

  23. Benamara M et al. (2021) Study of room temperature NO2 sensing performances of ZnO1-x (x = 0, 0.05, 0.10). Appl Phys A 128(1):31. https://doi.org/10.1007/s00339-021-05172-7

    Article  CAS  Google Scholar 

  24. Vanalakar SA et al. (2015) Controlled growth of ZnO nanorod arrays via wet chemical route for NO2 gas sensor applications. Sens Actuators, B Chem 221(2):1195–1201. https://doi.org/10.1016/j.snb.2015.07.084

    Article  CAS  Google Scholar 

  25. Patil VL, Vanalakar SA, Kamble AS, Shendage SS, Kim JH, Patil PS (2016) Farming of maize-like zinc oxide via a modified SILAR technique as a selective and sensitive nitrogen dioxide gas sensor. RSC Adv 6(93):90916–90922. https://doi.org/10.1039/C6RA06346B

    Article  CAS  Google Scholar 

  26. Patil MS et al. (2019) Gas Sensing Properties of Hydrothermally Synthesized Button Rose-Like WO3 Thin Films. J Electron Mater 48(1):526–535. https://doi.org/10.1007/s11664-018-6756-x

    Article  CAS  Google Scholar 

  27. Thomas D, Prakash J, Sadasivuni KK, Deshmukh K, Edakkara AJ (2019) Surface Modified Zinc Oxide Nanoparticles as Smart UV Sensors. J Electron Mater 48(7):4726–4732. https://doi.org/10.1007/s11664-019-07260-0

    Article  CAS  Google Scholar 

  28. Jagadale SB et al. (2018) Nanorods to nanosheets structural evolution of NixZn1-xO for NO2 gas sensing application. J Alloy Compd 766:941–951. https://doi.org/10.1016/j.jallcom.2018.07.040

    Article  CAS  Google Scholar 

  29. Bujaldón R, Benamara M, Dhahri R, Gómez E, Serrà A (2024) Attuning doped ZnO-based composites for an effective light-driven mineralization of pharmaceuticals via PMS activation. Chemosphere 357:142127. https://doi.org/10.1016/j.chemosphere.2024.142127

    Article  CAS  PubMed  Google Scholar 

  30. Benamara M et al. (2024) Visible light-driven removal of Rhodamine B using indium-doped zinc oxide prepared by sol–gel method. J Sol-Gel Sci Technol 111(2):553–565. https://doi.org/10.1007/s10971-024-06471-0

    Article  CAS  Google Scholar 

  31. Vanalakar SA, Patil SM, Patil VL, Vhanalkar SA, Patil PS, Kim JH (2018) Simplistic eco-friendly preparation of nanostructured Cu2FeSnS4 powder for solar photocatalytic degradation. Mater Sci Eng B 229:135–143. https://doi.org/10.1016/j.mseb.2017.12.034

    Article  CAS  Google Scholar 

  32. Adhyapak PV, Bharatula LD, Rathi A, Jang S, Kim T, Amalnerkar D (2017) Influence of Erbium Doping on Hydrothermally Synthesized ZnO Nanostructures and Their Enhanced Gas Sensing Properties. Curr Smart Mater 2(2):146–152. https://doi.org/10.2174/2405465802666170517150820

    Article  Google Scholar 

  33. Mahmood NB, Saeed FR, Gbashi KR, Mahmood U-S (2022) Synthesis and characterization of zinc oxide nanoparticles via oxalate co-precipitation method. Mater Lett X 13:100126. https://doi.org/10.1016/j.mlblux.2022.100126

    Article  CAS  Google Scholar 

  34. R Nandi and S Major, “The mechanism of growth of ZnO nanorods by reactive sputtering,” Appl Surf Sci vol. 399, Dec. 2016, https://doi.org/10.1016/j.apsusc.2016.12.097.

  35. Wanotayan T, Panpranot J, Qin J, Boonyongmaneerat Y (2018) Microstructures and photocatalytic properties of ZnO films fabricated by Zn electrodeposition and heat treatment. Mater Sci Semicond Process 74:232–237. https://doi.org/10.1016/j.mssp.2017.10.025

    Article  CAS  Google Scholar 

  36. Kaluza S, Schröter M, Naumann d’Alnoncourt R, Reinecke T, Muhler M (2008) “High Surface Area ZnO Nanoparticles via a Novel Continuous Precipitation Route,”. Adv Funct Mater 18:3670–3677. https://doi.org/10.1002/adfm.200800457

    Article  CAS  Google Scholar 

  37. Wang Z et al. (2023) Advances in reactive co-precipitation technology for preparing high-performance cathodes. Green Carbon 1(2):193–209. https://doi.org/10.1016/j.greenca.2023.12.001

    Article  CAS  Google Scholar 

  38. OA Zelekew et al. “Green synthesis of Co-doped ZnO via the accumulation of cobalt ion onto Eichhornia crassipes plant tissue and the photocatalytic degradation efficiency under visible light,” Mater. Res. Express, vol. 8, Feb. 2021, https://doi.org/10.1088/2053-1591/abe2d6

  39. Kumar R, Mishra SK (2022) Enhancement in the luminescence of green-emission from emissive surface defects of Dy3+doped ZnO nanoluminophores: A simple, mass-scale productive approach for optoelectronic devices. Appl Surf Sci Adv 9:100256. https://doi.org/10.1016/j.apsadv.2022.100256

    Article  Google Scholar 

  40. K Yu, J Shi, Z Zhang, Y Liang, and W Liu, “Synthesis, Characterization, and Photocatalysis of ZnO and Er-Doped ZnO,” J Nanomater, vol. 2013, Aug. 2013, https://doi.org/10.1155/2013/372951

  41. Xin M (2018) Effect of Eu doping on the structure, morphology and luminescence properties of ZnO submicron rod for white LED applications. J Theor Appl Phys 12(3):177–182. https://doi.org/10.1007/s40094-018-0304-1

    Article  Google Scholar 

  42. Anujency M, Mohamed Ibrahim M, Vinoth S, Ganesh V, Ade R (2024) Enhancing the properties of ZnO nanorods by Ni doping via the hydrothermal method for photosensor applications. J Photochem Photobiol A Chem 449:115379. https://doi.org/10.1016/j.jphotochem.2023.115379. no. October 2023

    Article  CAS  Google Scholar 

  43. Ahmad I (2019) Inexpensive and quick photocatalytic activity of rare earth (Er, Yb) co-doped ZnO nanoparticles for degradation of methyl orange dye. Sep Purif Technol 227:115726. https://doi.org/10.1016/j.seppur.2019.115726

    Article  CAS  Google Scholar 

  44. Habib IY, Zain NM, Lim CM, Usman A, Kumara NTRN, Mahadi AH (2021) Effect of Doping Rare-Earth Element on the Structural, Morphological, Optical and Photocatalytic Properties of ZnO Nanoparticles in the Degradation of Methylene Blue Dye. IOP Conf Ser Mater Sci Eng 1127(1):012004. https://doi.org/10.1088/1757-899x/1127/1/012004

    Article  CAS  Google Scholar 

  45. Dhir R (2020) Photocatalytic degradation of methyl orange dye under UV irradiation in the presence of synthesized PVP capped pure and gadolinium doped ZnO nanoparticles. Chem Phys Lett 746:137302. https://doi.org/10.1016/j.cplett.2020.137302

    Article  CAS  Google Scholar 

  46. Zhang R, Xu Z, Zhou T, Fei T, Wang R, Zhang T (2019) Improvement of gas sensing performance for tin dioxide sensor through construction of nanostructures. J Colloid Interface Sci 557:673–682. https://doi.org/10.1016/j.jcis.2019.09.073

    Article  CAS  PubMed  Google Scholar 

  47. Prakash T, Jayaprakash R, Neri G, Kumar S (2013) Synthesis of ZnO Nanostructures by Microwave Irradiation Using Albumen as a Template. J Nanopart 2013:1–8. https://doi.org/10.1155/2013/274894

    Article  CAS  Google Scholar 

  48. Jayarambabu N, Kumari, Rao K, Prabhu Y (2015) “Beneficial role of zinc oxide nanoparticles on green crop production,”. Int J Multidiscip Adv Res TRENDS 2:2349–7408. pp.Feb.

    Google Scholar 

  49. Bashir S et al. (2022) In-vivo (Albino Mice) and in-vitro Assimilation and Toxicity of Zinc Oxide Nanoparticles in Food Materials. Int J Nanomed 17:4073–4085. https://doi.org/10.2147/IJN.S372343

    Article  CAS  Google Scholar 

  50. Muhammad W, Ullah N, Haroon M, Abbasi BH (2019) Optical, morphological and biological analysis of zinc oxide nanoparticles (ZnO NPs) using: Papaver somniferum L. RSC Adv 9(51):29541–29548. https://doi.org/10.1039/c9ra04424h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. da Silva-Neto ML et al. (2019) UV random laser emission from flexible ZnO-Ag-enriched electrospun cellulose acetate fiber matrix. Sci Rep. 9(1):1–10. https://doi.org/10.1038/s41598-019-48056-w

    Article  CAS  Google Scholar 

  52. V Ganesh et al., “Impact of Mo-Doping on the Structural, Optical, and Electrocatalytic Degradation of ZnO Nanoparticles: Novel Approach,” Crystals, vol. 12, no. 9. 2022, https://doi.org/10.3390/cryst12091239

  53. Hari Prasad K, Vinoth S, Ganesh V, Ade R, Yahia IS (2024) Enhanced photo-sensing activity of In-doped ZnO nanoparticles synthesized by wet chemical method. Phys B Condens Matter 678:415710. https://doi.org/10.1016/j.physb.2024.415710

    Article  CAS  Google Scholar 

  54. Lal M, Sharma P, Ram C (2023) Optical, structural properties and photocatalytic potential of Nd-ZnO nanoparticles synthesized by hydrothermal method. Results Opt 10:100371. https://doi.org/10.1016/j.rio.2023.100371

    Article  Google Scholar 

  55. Bhatia S, Verma N, Kumar R (2017) Morphologically-dependent photocatalytic and gas sensing application of Dy-doped ZnO nanoparticles. J Alloy Compd 726:1274–1285. https://doi.org/10.1016/j.jallcom.2017.08.048

    Article  CAS  Google Scholar 

  56. S Demirözü Şenol, “Hydrothermal derived nanostructure rare earth (Er, Yb)-doped ZnO: structural, optical and electrical properties,” J. Mater. Sci. Mater. Electron., vol. 27, Aug. 2016, https://doi.org/10.1007/s10854-016-4765-1

  57. Thangeeswari T, Parthipan G, Shanmugan S, Raju (2021) Synthesize of gadolinium-doped ZnO nano particles for energy applications by enhance its optoelectronic properties. Mater Today Proc 34:448–452. https://doi.org/10.1016/j.matpr.2020.02.662

    Article  CAS  Google Scholar 

  58. MCR Silva et al., “Green Synthesis of Er-Doped ZnO Nanoparticles: An Investigation on the Methylene Blue, Eosin, and Ibuprofen Removal by Photodegradation,” Molecules, vol. 29, no. 2. 2024, https://doi.org/10.3390/molecules29020391

  59. Ali Fatima A, Devadason S, Mahalingam T (2014) Structural, luminescence and magnetic properties of Mn doped ZnO thin films using spin coating technique. J Mater Sci Mater Electron 25(8):3466–3472. https://doi.org/10.1007/s10854-014-2040-x

    Article  CAS  Google Scholar 

  60. Wong KM et al. (2011) Assorted analytical and spectroscopic techniques for the optimization of the defect-related properties in size-controlled ZnO nanowires. Nanoscale 3(11):4830–4839,. https://doi.org/10.1039/c1nr10806a

    Article  CAS  PubMed  Google Scholar 

  61. Kumar V et al. (2017) Role of silver doping on the defects related photoluminescence and antibacterial behaviour of zinc oxide nanoparticles. Colloids Surf B Biointerfaces 159:191–199. https://doi.org/10.1016/j.colsurfb.2017.07.071

    Article  CAS  PubMed  Google Scholar 

  62. Ahn C, Kim Y, Kim D, Mohanta S, Cho H (2009) A comparative analysis of deep level emission in ZnO layers deposited by various methods. J Appl Phys 105:13502. https://doi.org/10.1063/1.3054175

    Article  CAS  Google Scholar 

  63. T-J Hsueh and R-Y Ding, “A Room Temperature ZnO-NPs/MEMS Ammonia Gas Sensor,” Nanomaterials, vol. 12, no. 19. 2022, https://doi.org/10.3390/nano12193287

  64. Patil D, Patil L, Patil P (2007) Cr2O3-activated ZnO thick film resistors for ammonia gas sensing operable at room temperature. Sens Actuators B Chem 126:368–374. https://doi.org/10.1016/j.snb.2007.03.028

    Article  CAS  Google Scholar 

  65. Sankar Ganesh R et al. (2017) Low temperature ammonia gas sensor based on Mn-doped ZnO nanoparticle decorated microspheres. J Alloy Compd 721:182–190. https://doi.org/10.1016/j.jallcom.2017.05.315

    Article  CAS  Google Scholar 

  66. Ravichandran K, Santhosam AJ, Aldossary OM, Ubaidullah M (2021) Enhanced ammonia sensing of ZnO thin films through Yttrium doping by cost-effective nebulizer spray pyrolysis method. Phys Scr 96(no. 12):125825. https://doi.org/10.1088/1402-4896/ac2545

    Article  Google Scholar 

  67. Sarf F, Karaduman Er I, Yakar E, Acar S (2020) The role of rare-earth metal (Y, Ru and Cs)-doped ZnO thin films in NH3 gas sensing performances at room temperature. J Mater Sci Mater Electron 31(no. 13):10084–10095. https://doi.org/10.1007/s10854-020-03554-w

    Article  CAS  Google Scholar 

  68. Poul Raj IL et al. (2021) Improved ammonia vapor sensing properties of Al-doped ZnO nanoparticles prepared by sol-gel process. Phys Scr 96(no. 8):85802. https://doi.org/10.1088/1402-4896/abfb22

    Article  Google Scholar 

  69. Chandak VS, Kumbhar MB, Kathwate LH, Mote VD, Kulal PM (2024) Ultrasensitive and selective detection of ammonia gas at room temperature of La-doped ZnO thin films. Appl Phys A 130(9):611. https://doi.org/10.1007/s00339-024-07774-3

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2024R1), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia. The authors from KKU extend their appreciation to the Deanship of Research and Graduate Studies at King Khalid University for funding through Large Research Project under grant number RGP.2/561/45.

Funding

The funding of this research was done by Princess Nourah bint Abdulrahman University under grant number PNURSP2024R1. This research also funded by King Khalid University under project number RGP2/561/45.

Author information

Authors and Affiliations

Authors

Contributions

R. Balaji, Pandurangan Mohan:- wrote the main manuscript S. Vinoth, Ashwani Kumar:- Review and re-write some parts and also helps in managing figures and tables. Thamraa Alshahrani, Mohd. Shkir:- validate the manuscript with thorough study and also help in experimental work.

Corresponding author

Correspondence to Thamraa Alshahrani.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balaji, R., Mohan, P., Vinoth, S. et al. Improved gas sensing capabilities of ZnO:Er nanoparticles synthesized via co-precipitation method. J Sol-Gel Sci Technol 113, 790–803 (2025). https://doi.org/10.1007/s10971-024-06623-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-024-06623-2

Keywords

Profiles

  1. Ashwani Kumar