Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

Adsorption of Lead and Cadmium from Aqueous Solution by Using Almond Shells

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

The potential of almond shells was assessed for adsorption of heavy metal ions such as Pb2+ and Cd2+ from aqueous solution. Almond shells were pretreated separately with 0.4 mol/L NaOH, 0.4 mol/L HNO3, and distilled water and their adsorption abilities were compared. Batch adsorption experiments were carried out as a function of the initial ion concentration, pH, and adsorbent dosage. Adsorption isotherms of metal ions on adsorbents were determined and correlated with common isotherm equations such as Langmuir, Freundlich, and BET models. The alkali-modified almond shells had adsorption capacities for Pb2+ from 2 to 9 mg/g and for Cd2+ from 2 to 7 mg/g, which was much higher than acid- and water-pretreated adsorbents. Experimental results showed that the best pH for adsorption was 5–6 and the adsorption values decreased with lowering pH. Isotherm models indicated the best fit for Langmuir model for alkali-modified almond shells. In comparing the parameters of the models, it was observed that the affinity of almond shells for adsorption of lead is stronger than affinity for adsorption of cadmium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

q :

amount of metal ion adsorbed per specific amount of adsorbent (milligrams per gram)

C :

residual metal ion concentration (milligrams per liter)

C 0 :

initial metal ion concentration (milligrams per liter)

q m :

amount of metal ions required to form a monolayer (milligrams per gram)

n :

Freundlich equilibrium constant indicative of bond energies between metal ion and adsorbent

K L :

Langmuir equilibrium constant related to the energy of adsorption (liters per milligram)

K B :

BET constant

K F :

Freundlich equilibrium constant related to bond strength (milligrams per gram)

C s :

solute concentration at the saturation of all layers (milligrams per liter)

m :

adsorbent mass

R 2 :

correlation coefficients

References

  • Altın, O., Özbelge, H. Ö., & Dogu, T. (1998). Use of general purpose adsorption isotherms for heavy metal–clay mineral interactions. Journal of Colloid and Interface Science, 198, 130–140. doi:10.1006/jcis.1997.5246.

    Article  Google Scholar 

  • Annaduri, G., Juang, R. S., & Lee, D. J. (2002). Adsorption of heavy metals from water using banana and orange peels. Water Science and Technology, 47, 185–190.

    Google Scholar 

  • Argun, M. E., & Dursun, S. (2008). A new approach to modification of natural adsorbent for heavy metal adsorption. Bioresource Technology, 99(7), 2516–2527. doi:10.1016/j.biortech.2007.04.037.

    Article  CAS  Google Scholar 

  • Aydin, H., Bulut, Y., & Yerlikaya, C. (2008). Removal of copper (II) from aqueous solution by adsorption onto low-cost adsorbents. Journal of Environmental Management, 87, 37–45. doi:10.1016/j.jenvman.2007.01.005.

    Article  CAS  Google Scholar 

  • Babarinde, N. A. A., Oyebamiji Babalola, J., & Adebowale Sanni, R. (2006). Biosorption of lead ions from aqueous solution by maize leaf. International Journal of Physic Science, 1, 23–26.

    Google Scholar 

  • Bailey, S. E., Olin, T. J., Bricka, R. M., & Adrian, D. D. (1999). A review of potentially low-cost sorbents for heavy metals. Water Research, 33, 2469–2479. doi:10.1016/S0043-1354(98)00475-8.

    Article  CAS  Google Scholar 

  • Bhattacharya, A. K., Mandal, S. N., & Das, S. K. (2006). Adsorption of Zn(II) from aqueous solution by using different adsorbents. Chemical Engineering Journal, 132, 43–51. doi:10.1016/j.cej.2006.06.012.

    Article  CAS  Google Scholar 

  • Brown, P. A., Brown, J. M., & Allen, S. J. (2001). The application of kudzu as a medium for the adsorption of heavy metals from dilute aqueous waste streams. Bioresource Technology, 78, 195–201. doi:10.1016/S0960-8524(00)00144-9.

    Article  CAS  Google Scholar 

  • Bulut, Y., & Tez, Z. (2003). Removal of heavy metal ions by modified sawdust of walnut. Fresen Environmental Bulletin, 12, 1499–1504.

    CAS  Google Scholar 

  • Cardoso, V. D. A., Souza, A. G. D., Sartoratto, P. P. C., & Nunes, L. M. (2004). The ionic exchange process of cobalt, nickel and copper(II) in alkaline and acid-layered titanates. Colloids and Surfaces A: Physicochemical Engineering Aspects, 248, 145–149. doi:10.1016/j.colsurfa.2004.09.012.

    Article  CAS  Google Scholar 

  • Esalah, J. O., Weber, M. E., & Vera, J. H. (2000). Removal of lead, Cadmium and Zinc from aqueous solutions by precipitation with sodium di-(n-octyl) phosphinate. Canadian Journal of Chemistry, 78, 948–954.

    Article  CAS  Google Scholar 

  • Ferro-García, M. A., Rivera-Utrilla, J., Rodríguez-Gordillo, J., & Bautista-Toledo, I. (1988). Adsorption of zinc, cadmium, and copper on activated carbons obtained from agricultural by-products. Carbon, 26(3), 363–373. doi:10.1016/0008-6223(88)90228-X.

    Article  Google Scholar 

  • Gaballah, I., Goy, D., Allia, E., Kilbertus, G., & Thauront, J. (1997). Recovery of copper through decontamination of synthetic solutions using modified barks. Metallurgical and Materials Transactions B, 28B, 13–23. doi:10.1007/s11663-997-0122-3.

    Article  CAS  Google Scholar 

  • Gupta, V. K., Gupta, M., & Sharma, S. (2001). Process development for the removal of lead and chromium from aqueous solutions using red mud—an aluminium industry waste. Water Research, 35, 1125–1134. doi:10.1016/S0043-1354(00)00389-4.

    Article  CAS  Google Scholar 

  • Gurgel, L. V. A., Junior, O. K., Gil, R. P. F., & Gil, L. F. (2008). Adsorption of Cu(II), Cd(II), and Pb(II) from aqueous single metal solution by cellulose and mercerized cellulose chemically modified with succinic anhydride. Bioresource Technology, 99, 3077–3083. doi:10.1016/j.biortech.2007.05.072.

    Article  CAS  Google Scholar 

  • Iqbal, M., Saeed, A., & Akhtar, N. (2002). Petular felt sheet of palm: a new biosorbent for the removal of heavy metals from contaminated water. Bioresource Technology, 81, 151–153.

    Article  CAS  Google Scholar 

  • Johnson, P. D., Watson, M. A., Brown, J., & Jefcoat, I. A. (2002). Peanut hull pellets as a single use sorbent for the capture of Cu(II) from wastewater. Waste Management (New York, N.Y.), 22, 471–480. doi:10.1016/S0956-053X(01)00036-8.

    CAS  Google Scholar 

  • Karnitz Jr., O., Gurgel, L. V., de Melo, J. C., Botaro, V. R., Melo, T. M., de Freitas Gil, R. P., & Gil, L. F. (2007). Adsorption of heavy metal ion from aqueous single metal solution by chemically modified sugarcane bagasse. Bioresource Technology, 98, 1291–1297.

    Article  CAS  Google Scholar 

  • King, P., Srinivas, P., Kumar, Y. P., & Prasad, V. S. R. K. (2006). Sorption of copper (II) ion from aqueous solution by Tectona grandis l.f. (teak leaves powder). Journal of Hazardous Materials, 136, 560–566. doi:10.1016/j.jhazmat.2005.12.032.

    Article  CAS  Google Scholar 

  • Kumar, U., & Bandyopadhyay, M. (2006). Sorption of cadmium from aqueous solution using pretreated rice husk. Bioresource Technology, 97, 104–109.

    Article  CAS  Google Scholar 

  • Li, Q., Zhai, J., Zhang, W., Wang, M., & Zhou, J. (2006). Kinetic studies of Adsorption of Pb (II), Cr (III) and Cu (II) from aqueous solution by sawdust and modified peanut husk. Journal of Hazardous Materials, 141, 163–167. doi:10.1016/j.jhazmat.2006.06.109.

    Article  CAS  Google Scholar 

  • Low, K. S., Lee, C. K., & Leo, A. C. (1995). Removal of metals from electroplating wastes using banana pith. Bioresource Technology, 51, 227–231. doi:10.1016/0960-8524(94)00123-I.

    Article  CAS  Google Scholar 

  • Marshall, W. E., Wartelle, L. H., Boler, D. E., Johns, M. M., & Toles, C. A. (1999). Enhanced metal adsorption by soybean hulls modified with citric acid. Bioresource Technology, 69, 263–268. doi:10.1016/S0960-8524(98)00185-0.

    Article  CAS  Google Scholar 

  • Memon, S. Q., Memon, N., Shah, S. W., Khuhavar, M. Y., & Bhanger, M. I. (2007). Sawdust- a green and economical sorbent for removal of cadmium II ions. Journal of Hazardous Material, B 139, 116–121.

    Article  CAS  Google Scholar 

  • Quek, S. Y., Wase, D. A. J., & Forster, C. F. (1998). The use of sago waste for the sorption of lead and copper. Water S.A., 24, 251–256.

    CAS  Google Scholar 

  • Raji, C., & Anirudhan, T. S. (1997). Kinetics of Pb (II) adsorption by polyacrylamide grafted sawdust. Indian Journal of Chemical Technology, 4, 157–162.

    CAS  Google Scholar 

  • Saeed, A., Akhter, M. W., & Iqbal, M. (2005). Removal and recovery of heavy metals from aqueous solution using papaya wood as a new biosorbent. Separation and Purification Technology, 45, 25–31. doi:10.1016/j.seppur.2005.02.004.

    Article  CAS  Google Scholar 

  • Sciban, M., & Klasnja, M. (2004). Wood sawdust and wood originate materials as adsorbents for heavy metal ions. Holz Roh Werkst, 62, 69–73. doi:10.1007/s00107-003-0449-7.

    Article  CAS  Google Scholar 

  • Sciban, M., Klasnja, M., & Skrbic, B. (2006). Modified softwood sawdust as adsorbent of heavy metal ions from water. Journal of Hazardous Materials, 136, 266–271. doi:10.1016/j.jhazmat.2005.12.009.

    Article  CAS  Google Scholar 

  • Sciban, M., Radetic, B., Kevresan, Z., & Klasnja, M. (2007). Adsorption of heavy metals from electroplating wastewater by wood sawdust. Bioresource Technology, 98, 402–409. doi:10.1016/j.biortech.2005.12.014.

    Article  CAS  Google Scholar 

  • Shukla, S. R., & Pai, R. S. (2005). Adsorption of Cu (II), Ni (II) and Zn (II) on modified jute fibers. Bioresource Technology, 96, 1430–1438. doi:10.1016/j.biortech.2004.12.010.

    Article  CAS  Google Scholar 

  • Sud, D., Mahajan, G., & Kaur, M. P. (2008). Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions—a review. Bioresource Technology, 99, 6017–6027. doi:10.1016/j.biortech.2007.11.064.

    Article  CAS  Google Scholar 

  • Tarley, C. R. T., Ferreira, S. L. C., & Arruda, M. A. Z. (2004). Use of modified rice husks as a natural solid adsorbent of trace metals: characterization and development of an on-line preconcentration system for cadmium and lead determination by FAAS. Microchemical Journal, 77, 163–175. doi:10.1016/j.microc.2004.02.019.

    Article  CAS  Google Scholar 

  • Taty, V. C., Costodes Fauduet, H., Porte, C., & Delacroix, A. (2003). Removal of Cd(II) and Pb(II) ions, from aqueous solutions, by adsorption onto sawdust of Pinus sylvestris. Journal of Hazardous Materials, 105, 121–142. doi:10.1016/j.jhazmat.2003.07.009.

    Article  CAS  Google Scholar 

  • Tiemann, K. J., Gamez, G., Dokken, K., Parsons, J. G., & Gardea-Torresdey, J. L. (2002). Chemical modification and X-ray absorption studies for lead (II) binding by Medicago sativa biomass. Microchemical Journal, 71, 287–293. doi:10.1016/S0026-265X(02)00021-8.

    Article  CAS  Google Scholar 

  • Toles, C. A., Marshall, W. E., Johns, M. M., Wartelle, L. H., & McAloon, A. (2000a). Acid-activated carbons from almond shells: physical, chemical and adsorptive properties and estimated cost of production. Bioresource Technology, 71, 87–92. doi:10.1016/S0960-8524(99)00029-2.

    Article  CAS  Google Scholar 

  • Toles, C. A., Marshall, W. E., Wartelle, L. H., & McAloon, A. (2000b). Steam- or carbon dioxide-activated carbons from almond shells: physical, chemical and adsorptive properties and estimated cost of production. Bioresource Technology, 75, 197–203. doi:10.1016/S0960-8524(00)00058-4.

    Article  CAS  Google Scholar 

  • Weirich, D. B., Hari, R., Xue, H., Behra, P., & Sigg, L. (2002). Adsorption of Cu, Cd, and Ni on goethite in the presence of natural groundwater ligands. Environmental Technology, 36, 328–336. doi:10.1021/es010892i.

    Article  CAS  Google Scholar 

  • Williams, C. G., Aderhold, D., & Edyvean, R. G. J. (1998). Comparison between biosorbents for the removal of metal ions from aqueous solution. Water Research, 32, 216–224. doi:10.1016/S0043-1354(97)00179-6.

    Article  CAS  Google Scholar 

  • Zhou, D., Zhang, L., Zhou, J., & Guo, S. (2004). Cellulose/chitin beads for adsorption of heavy metals in aqueous solution. Water Research, 38, 2643–2650. doi:10.1016/j.watres.2004.03.026.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully thank the Research Deputy of Zanjan University of Medical Sciences for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Mehrasbi.

Glossary

Adsorption

accumulation of a substance at the interface between two phases, such as a liquid and a solid.

Adsorbent

a solid or liquid that adsorbs other substances.

Adsorbate

a solid, gas or liquid which is adsorbed by adsorbent.

Modification or pretreatment of adsorbent

a physical or chemical change in adsorbent in order to improve efficiency and operational effectiveness.

Almond

the seed of almond tree that is classified into two categories: sweet (Punus amigdalu var. dulcis) and bitter (Punus amigdalu var. amaras).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mehrasbi, M.R., Farahmandkia, Z., Taghibeigloo, B. et al. Adsorption of Lead and Cadmium from Aqueous Solution by Using Almond Shells. Water Air Soil Pollut 199, 343–351 (2009). https://doi.org/10.1007/s11270-008-9883-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s11270-008-9883-9

Keywords