Abstract
The potential of almond shells was assessed for adsorption of heavy metal ions such as Pb2+ and Cd2+ from aqueous solution. Almond shells were pretreated separately with 0.4 mol/L NaOH, 0.4 mol/L HNO3, and distilled water and their adsorption abilities were compared. Batch adsorption experiments were carried out as a function of the initial ion concentration, pH, and adsorbent dosage. Adsorption isotherms of metal ions on adsorbents were determined and correlated with common isotherm equations such as Langmuir, Freundlich, and BET models. The alkali-modified almond shells had adsorption capacities for Pb2+ from 2 to 9 mg/g and for Cd2+ from 2 to 7 mg/g, which was much higher than acid- and water-pretreated adsorbents. Experimental results showed that the best pH for adsorption was 5–6 and the adsorption values decreased with lowering pH. Isotherm models indicated the best fit for Langmuir model for alkali-modified almond shells. In comparing the parameters of the models, it was observed that the affinity of almond shells for adsorption of lead is stronger than affinity for adsorption of cadmium.
Similar content being viewed by others
Abbreviations
- q :
-
amount of metal ion adsorbed per specific amount of adsorbent (milligrams per gram)
- C :
-
residual metal ion concentration (milligrams per liter)
- C 0 :
-
initial metal ion concentration (milligrams per liter)
- q m :
-
amount of metal ions required to form a monolayer (milligrams per gram)
- n :
-
Freundlich equilibrium constant indicative of bond energies between metal ion and adsorbent
- K L :
-
Langmuir equilibrium constant related to the energy of adsorption (liters per milligram)
- K B :
-
BET constant
- K F :
-
Freundlich equilibrium constant related to bond strength (milligrams per gram)
- C s :
-
solute concentration at the saturation of all layers (milligrams per liter)
- m :
-
adsorbent mass
- R 2 :
-
correlation coefficients
References
Altın, O., Özbelge, H. Ö., & Dogu, T. (1998). Use of general purpose adsorption isotherms for heavy metal–clay mineral interactions. Journal of Colloid and Interface Science, 198, 130–140. doi:10.1006/jcis.1997.5246.
Annaduri, G., Juang, R. S., & Lee, D. J. (2002). Adsorption of heavy metals from water using banana and orange peels. Water Science and Technology, 47, 185–190.
Argun, M. E., & Dursun, S. (2008). A new approach to modification of natural adsorbent for heavy metal adsorption. Bioresource Technology, 99(7), 2516–2527. doi:10.1016/j.biortech.2007.04.037.
Aydin, H., Bulut, Y., & Yerlikaya, C. (2008). Removal of copper (II) from aqueous solution by adsorption onto low-cost adsorbents. Journal of Environmental Management, 87, 37–45. doi:10.1016/j.jenvman.2007.01.005.
Babarinde, N. A. A., Oyebamiji Babalola, J., & Adebowale Sanni, R. (2006). Biosorption of lead ions from aqueous solution by maize leaf. International Journal of Physic Science, 1, 23–26.
Bailey, S. E., Olin, T. J., Bricka, R. M., & Adrian, D. D. (1999). A review of potentially low-cost sorbents for heavy metals. Water Research, 33, 2469–2479. doi:10.1016/S0043-1354(98)00475-8.
Bhattacharya, A. K., Mandal, S. N., & Das, S. K. (2006). Adsorption of Zn(II) from aqueous solution by using different adsorbents. Chemical Engineering Journal, 132, 43–51. doi:10.1016/j.cej.2006.06.012.
Brown, P. A., Brown, J. M., & Allen, S. J. (2001). The application of kudzu as a medium for the adsorption of heavy metals from dilute aqueous waste streams. Bioresource Technology, 78, 195–201. doi:10.1016/S0960-8524(00)00144-9.
Bulut, Y., & Tez, Z. (2003). Removal of heavy metal ions by modified sawdust of walnut. Fresen Environmental Bulletin, 12, 1499–1504.
Cardoso, V. D. A., Souza, A. G. D., Sartoratto, P. P. C., & Nunes, L. M. (2004). The ionic exchange process of cobalt, nickel and copper(II) in alkaline and acid-layered titanates. Colloids and Surfaces A: Physicochemical Engineering Aspects, 248, 145–149. doi:10.1016/j.colsurfa.2004.09.012.
Esalah, J. O., Weber, M. E., & Vera, J. H. (2000). Removal of lead, Cadmium and Zinc from aqueous solutions by precipitation with sodium di-(n-octyl) phosphinate. Canadian Journal of Chemistry, 78, 948–954.
Ferro-García, M. A., Rivera-Utrilla, J., Rodríguez-Gordillo, J., & Bautista-Toledo, I. (1988). Adsorption of zinc, cadmium, and copper on activated carbons obtained from agricultural by-products. Carbon, 26(3), 363–373. doi:10.1016/0008-6223(88)90228-X.
Gaballah, I., Goy, D., Allia, E., Kilbertus, G., & Thauront, J. (1997). Recovery of copper through decontamination of synthetic solutions using modified barks. Metallurgical and Materials Transactions B, 28B, 13–23. doi:10.1007/s11663-997-0122-3.
Gupta, V. K., Gupta, M., & Sharma, S. (2001). Process development for the removal of lead and chromium from aqueous solutions using red mud—an aluminium industry waste. Water Research, 35, 1125–1134. doi:10.1016/S0043-1354(00)00389-4.
Gurgel, L. V. A., Junior, O. K., Gil, R. P. F., & Gil, L. F. (2008). Adsorption of Cu(II), Cd(II), and Pb(II) from aqueous single metal solution by cellulose and mercerized cellulose chemically modified with succinic anhydride. Bioresource Technology, 99, 3077–3083. doi:10.1016/j.biortech.2007.05.072.
Iqbal, M., Saeed, A., & Akhtar, N. (2002). Petular felt sheet of palm: a new biosorbent for the removal of heavy metals from contaminated water. Bioresource Technology, 81, 151–153.
Johnson, P. D., Watson, M. A., Brown, J., & Jefcoat, I. A. (2002). Peanut hull pellets as a single use sorbent for the capture of Cu(II) from wastewater. Waste Management (New York, N.Y.), 22, 471–480. doi:10.1016/S0956-053X(01)00036-8.
Karnitz Jr., O., Gurgel, L. V., de Melo, J. C., Botaro, V. R., Melo, T. M., de Freitas Gil, R. P., & Gil, L. F. (2007). Adsorption of heavy metal ion from aqueous single metal solution by chemically modified sugarcane bagasse. Bioresource Technology, 98, 1291–1297.
King, P., Srinivas, P., Kumar, Y. P., & Prasad, V. S. R. K. (2006). Sorption of copper (II) ion from aqueous solution by Tectona grandis l.f. (teak leaves powder). Journal of Hazardous Materials, 136, 560–566. doi:10.1016/j.jhazmat.2005.12.032.
Kumar, U., & Bandyopadhyay, M. (2006). Sorption of cadmium from aqueous solution using pretreated rice husk. Bioresource Technology, 97, 104–109.
Li, Q., Zhai, J., Zhang, W., Wang, M., & Zhou, J. (2006). Kinetic studies of Adsorption of Pb (II), Cr (III) and Cu (II) from aqueous solution by sawdust and modified peanut husk. Journal of Hazardous Materials, 141, 163–167. doi:10.1016/j.jhazmat.2006.06.109.
Low, K. S., Lee, C. K., & Leo, A. C. (1995). Removal of metals from electroplating wastes using banana pith. Bioresource Technology, 51, 227–231. doi:10.1016/0960-8524(94)00123-I.
Marshall, W. E., Wartelle, L. H., Boler, D. E., Johns, M. M., & Toles, C. A. (1999). Enhanced metal adsorption by soybean hulls modified with citric acid. Bioresource Technology, 69, 263–268. doi:10.1016/S0960-8524(98)00185-0.
Memon, S. Q., Memon, N., Shah, S. W., Khuhavar, M. Y., & Bhanger, M. I. (2007). Sawdust- a green and economical sorbent for removal of cadmium II ions. Journal of Hazardous Material, B 139, 116–121.
Quek, S. Y., Wase, D. A. J., & Forster, C. F. (1998). The use of sago waste for the sorption of lead and copper. Water S.A., 24, 251–256.
Raji, C., & Anirudhan, T. S. (1997). Kinetics of Pb (II) adsorption by polyacrylamide grafted sawdust. Indian Journal of Chemical Technology, 4, 157–162.
Saeed, A., Akhter, M. W., & Iqbal, M. (2005). Removal and recovery of heavy metals from aqueous solution using papaya wood as a new biosorbent. Separation and Purification Technology, 45, 25–31. doi:10.1016/j.seppur.2005.02.004.
Sciban, M., & Klasnja, M. (2004). Wood sawdust and wood originate materials as adsorbents for heavy metal ions. Holz Roh Werkst, 62, 69–73. doi:10.1007/s00107-003-0449-7.
Sciban, M., Klasnja, M., & Skrbic, B. (2006). Modified softwood sawdust as adsorbent of heavy metal ions from water. Journal of Hazardous Materials, 136, 266–271. doi:10.1016/j.jhazmat.2005.12.009.
Sciban, M., Radetic, B., Kevresan, Z., & Klasnja, M. (2007). Adsorption of heavy metals from electroplating wastewater by wood sawdust. Bioresource Technology, 98, 402–409. doi:10.1016/j.biortech.2005.12.014.
Shukla, S. R., & Pai, R. S. (2005). Adsorption of Cu (II), Ni (II) and Zn (II) on modified jute fibers. Bioresource Technology, 96, 1430–1438. doi:10.1016/j.biortech.2004.12.010.
Sud, D., Mahajan, G., & Kaur, M. P. (2008). Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions—a review. Bioresource Technology, 99, 6017–6027. doi:10.1016/j.biortech.2007.11.064.
Tarley, C. R. T., Ferreira, S. L. C., & Arruda, M. A. Z. (2004). Use of modified rice husks as a natural solid adsorbent of trace metals: characterization and development of an on-line preconcentration system for cadmium and lead determination by FAAS. Microchemical Journal, 77, 163–175. doi:10.1016/j.microc.2004.02.019.
Taty, V. C., Costodes Fauduet, H., Porte, C., & Delacroix, A. (2003). Removal of Cd(II) and Pb(II) ions, from aqueous solutions, by adsorption onto sawdust of Pinus sylvestris. Journal of Hazardous Materials, 105, 121–142. doi:10.1016/j.jhazmat.2003.07.009.
Tiemann, K. J., Gamez, G., Dokken, K., Parsons, J. G., & Gardea-Torresdey, J. L. (2002). Chemical modification and X-ray absorption studies for lead (II) binding by Medicago sativa biomass. Microchemical Journal, 71, 287–293. doi:10.1016/S0026-265X(02)00021-8.
Toles, C. A., Marshall, W. E., Johns, M. M., Wartelle, L. H., & McAloon, A. (2000a). Acid-activated carbons from almond shells: physical, chemical and adsorptive properties and estimated cost of production. Bioresource Technology, 71, 87–92. doi:10.1016/S0960-8524(99)00029-2.
Toles, C. A., Marshall, W. E., Wartelle, L. H., & McAloon, A. (2000b). Steam- or carbon dioxide-activated carbons from almond shells: physical, chemical and adsorptive properties and estimated cost of production. Bioresource Technology, 75, 197–203. doi:10.1016/S0960-8524(00)00058-4.
Weirich, D. B., Hari, R., Xue, H., Behra, P., & Sigg, L. (2002). Adsorption of Cu, Cd, and Ni on goethite in the presence of natural groundwater ligands. Environmental Technology, 36, 328–336. doi:10.1021/es010892i.
Williams, C. G., Aderhold, D., & Edyvean, R. G. J. (1998). Comparison between biosorbents for the removal of metal ions from aqueous solution. Water Research, 32, 216–224. doi:10.1016/S0043-1354(97)00179-6.
Zhou, D., Zhang, L., Zhou, J., & Guo, S. (2004). Cellulose/chitin beads for adsorption of heavy metals in aqueous solution. Water Research, 38, 2643–2650. doi:10.1016/j.watres.2004.03.026.
Acknowledgments
The authors gratefully thank the Research Deputy of Zanjan University of Medical Sciences for the financial support.
Author information
Authors and Affiliations
Corresponding author
Glossary
- Adsorption
-
accumulation of a substance at the interface between two phases, such as a liquid and a solid.
- Adsorbent
-
a solid or liquid that adsorbs other substances.
- Adsorbate
-
a solid, gas or liquid which is adsorbed by adsorbent.
- Modification or pretreatment of adsorbent
-
a physical or chemical change in adsorbent in order to improve efficiency and operational effectiveness.
- Almond
-
the seed of almond tree that is classified into two categories: sweet (Punus amigdalu var. dulcis) and bitter (Punus amigdalu var. amaras).
Rights and permissions
About this article
Cite this article
Mehrasbi, M.R., Farahmandkia, Z., Taghibeigloo, B. et al. Adsorption of Lead and Cadmium from Aqueous Solution by Using Almond Shells. Water Air Soil Pollut 199, 343–351 (2009). https://doi.org/10.1007/s11270-008-9883-9
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1007/s11270-008-9883-9