Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

Cerium Oxide Nanoparticle Effects on Paraoxonase-1 Activity and Oxidative Toxic Stress Induced by Malathion: A Potential Antioxidant Compound, Yes or No?

  • Original Research Article
  • Published:
Indian Journal of Clinical Biochemistry Aims and scope Submit manuscript

Abstract

Cerium oxide nanoparticles (CeNPs) are one of the most widely used and important nanoparticles in addition to possessing strong antioxidative properties and inhibiting free radicals. Paraoxonase-1 (PON1) is one of the enzymes that protect the body against damage caused by oxidative stress. The purpose of this study was to investigate the effect of CeNPs on the activity of PON1 as well as biomarkers of oxidative stress in the toxicity of malathion. 48 Albino Wistar male rats with weight range of 180–250 g were randomly divided into 8 groups, Group 1: healthy control, injection of normal saline, Group 2: administration by the malathion 100 mg/kg/day, Group 3: treated with CeNPs 15 mg/kg/day, Group 4: treated with CeNPs 30 mg/kg/day, Group 5: combination of malathion with dose of 100 mg/kg/day and CeNPs 15 mg/kg, Group 6: combination of malathion with dose of 100 mg/kg/day and CeNPs 30 mg/kg for 14 days and 24 h after termination of treatment period, serum and liver tissue samples were collected from all rats. Biochemical test of PON1 activity, oxidative stress biomarkers including total antioxidant capacity (TAC), lipid peroxidation (LPO), total thiol groups (TTG), were carried out. Malathion reduced plasma TTG levels, TAC and increased LPO in malathion group. However, CeNPs increased TTG, TAC and reduced PON1 activity. Results showed that CeNPs alone had antioxidant properties while with malathion it shows different properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Eddleston M, Street JM, Self I, Thompson A, King T, Williams N, et al. A role for solvents in the toxicity of agricultural organophosphorus pesticides. Toxicology. 2012;294(2–3):94–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ranjbar A, Ghahremani MH, Sharifzadeh M, Golestani A, Ghazi-Khansari M, Baeeri M, et al. Protection by pentoxifylline of malathion-induced toxic stress and mitochondrial damage in rat brain. Hum Exp Toxicol. 2010;29(10):851–64.

    Article  CAS  PubMed  Google Scholar 

  3. Ranjbar A, Baeeri M. The effect of pentoxifylline on malathion-induced mitochondrial damage in rat liver. J Shahrekord Univ Med Sci. 2013;15(4):83–92.

    CAS  Google Scholar 

  4. Possamai F, Fortunato J, Feier G, Agostinho F, Quevedo J, Wilhelm Filho D, et al. Oxidative stress after acute and sub-chronic malathion intoxication in Wistar rats. Environ Toxicol Pharmacol. 2007;23(2):198–204.

    Article  CAS  PubMed  Google Scholar 

  5. Selmi S, El-Fazaa S, Gharbi N. Oxidative stress and alteration of biochemical markers in liver and kidney by malathion in rat pups. Toxicol Ind Health. 2015;31(9):783–8.

    Article  CAS  PubMed  Google Scholar 

  6. Ranjbar A, Solhi H, Mashayekhi FJ, Susanabdi A, Rezaie A, Abdollahi M. Oxidative stress in acute human poisoning with organophosphorus insecticides; a case control study. Environ Toxicol Pharmacol. 2005;20(1):88–91.

    Article  CAS  PubMed  Google Scholar 

  7. Lushchak VI. Free radicals, reactive oxygen species, oxidative stress and its classification. Chem Biol Interact. 2014;224:164–75.

    Article  CAS  PubMed  Google Scholar 

  8. Mohammadian A, Moradkhani S. Antioxidative and hepatoprotective effects of hydroalcoholic extract of Artemisia absinthium L. in rat. J HerbMed Pharmacol. 2016;5(1):29–32.

    Google Scholar 

  9. Kamaladevi A, Ganguli A, Kumar M, Balamurugan K. Lactobacillus casei protects malathion induced oxidative stress and macromolecular changes in Caenorhabditis elegans. Pest Biochem Physiol. 2013;105(3):213–23.

    Article  CAS  Google Scholar 

  10. Hernández AF, Gil F, Lacasaña M, Rodríguez-Barranco M, Tsatsakis AM, Requena M, et al. Pesticide exposure and genetic variation in xenobiotic-metabolizing enzymes interact to induce biochemical liver damage. Food Chem Toxicol. 2013;61:144–51.

    Article  CAS  PubMed  Google Scholar 

  11. Rahimi R, Karimi J, Khodadadi I, Tayebinia H, Kheiripour N, Hashemnia M, et al. Silymarin ameliorates expression of urotensin II (U-II) and its receptor (UTR) and attenuates toxic oxidative stress in the heart of rats with type 2 diabetes. Biomed Pharmacother. 2018;101:244–50.

    Article  CAS  PubMed  Google Scholar 

  12. Lei XG, Zhu J-H, Cheng W-H, Bao Y, Ho Y-S, Reddi AR, et al. paradoxical roles of antioxidant enzymes: basic mechanisms and health implications. Physiol Rev. 2016;96(1):307–64.

    Article  CAS  PubMed  Google Scholar 

  13. Costa C, Gangemi S, Giambò F, Rapisarda V, Caccamo D, Fenga C. Oxidative stress biomarkers and paraoxonase 1 polymorphism frequency in farmers occupationally exposed to pesticides. Mol Med Rep. 2015;12(4):6353–7.

    Article  CAS  PubMed  Google Scholar 

  14. Zhang J, Ju X, Wu Z, Liu T, Hu T, Xie Y, et al. Structural characteristics of cerium oxide nanocrystals prepared by the microemulsion method. Chem Mater. 2001;13(11):4192–7.

    Article  CAS  Google Scholar 

  15. Kubsh JE, Rieck JS, Spencer ND. Cerium oxide stabilization: physical property and three-way activity considerations. In: Crucq A, editor. Studies in surface science and catalysis, vol. 71. Amsterdam: Elsevier; 1991. p. 125–38.

    Google Scholar 

  16. Zhang F, Chan S-W, Spanier JE, Apak E, Jin Q, Robinson RD, et al. Cerium oxide nanoparticles: size-selective formation and structure analysis. Appl Phys Lett. 2002;80(1):127–9.

    Article  CAS  Google Scholar 

  17. Trevisan R, Uliano-Silva M, Pandolfo P, Franco JL, Brocardo PS, Santos AR, et al. Antioxidant and acetylcholinesterase response to repeated malathion exposure in rat cerebral cortex and hippocampus. Basic Clin Pharmacol Toxicol. 2008;102(4):365–9.

    Article  CAS  PubMed  Google Scholar 

  18. Zarrinkalam E, Ranjbar K, Salehi I, Kheiripour N, Komaki A. Resistance training and hawthorn extract ameliorate cognitive deficits in streptozotocin-induced diabetic rats. Biomed Pharmacother. 2018;97:503–10.

    Article  PubMed  Google Scholar 

  19. Zanganeh N, Siahpoushi E, Kheiripour N, Kazemi S, Goodarzi MT, Alikhani MY. Brucellosis causes alteration in trace elements and oxidative stress factors. Biol Trace Elem Res. 2017;182(2):1–5.

    Google Scholar 

  20. Ramadan R, Tawdy A, Abdel Hay R, Rashed L, Tawfik D. The antioxidant role of paraoxonase 1 and vitamin E in three autoimmune diseases. Skin Pharmacol Physiol. 2013;26(1):2–7.

    Article  CAS  PubMed  Google Scholar 

  21. Flehi-Slim I, Chargui I, Boughattas S, El Mabrouk A, Belaïd-Nouira Y, Neffati F, et al. Malathion-induced hepatotoxicity in male Wistar rats: biochemical and histopathological studies. Environ Sci Pollut Res Int. 2015;22(22):17828–38.

    Article  CAS  PubMed  Google Scholar 

  22. Soleimani E, Moghadam RH, Ranjbar A. Occupational exposure to chemicals and oxidative toxic stress. Toxicol Environ Health Sci. 2015;7(1):1–24.

    Article  Google Scholar 

  23. Lasram MM, Lamine AJ, Dhouib IB, Bouzid K, Annabi A, Belhadjhmida N, et al. Antioxidant and anti-inflammatory effects of N-acetylcysteine against malathion-induced liver damages and immunotoxicity in rats. Life Sci. 2014;107(1):50–8.

    Article  CAS  PubMed  Google Scholar 

  24. Rezg R, Mornagui B, Sopkova-de Oliveira Santos J, Dulin F, El-Fazaa S, El-haj NB, et al. Protective effects of caffeic acid against hypothalamic neuropeptides alterations induced by malathion in rat. Environ Sci Pollut Res Int. 2015;22(8):6198–207.

    Article  CAS  PubMed  Google Scholar 

  25. Kotb GA, Gh FA, Ramadan KS, Farid HE. Protective role of garlic against malathion induced oxidative stress in male albino rats. Indian J Anim Res. 2016;50(3):324–29.

    Article  Google Scholar 

  26. Pulido-Reyes G, Rodea-Palomares I, Das S, Sakthivel TS, Leganes F, Rosal R, et al. Untangling the biological effects of cerium oxide nanoparticles: the role of surface valence states. Sci Rep. 2015;5:15613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Popov AL, Popova NR, Selezneva II, Akkizov AY, Ivanov VK. Cerium oxide nanoparticles stimulate proliferation of primary mouse embryonic fibroblasts in vitro. Mater Sci Eng C. 2016;68:406–13.

    Article  CAS  Google Scholar 

  28. Al-Othman AM, Al-Numair KS, El-Desoky GE, Yusuf K, Al Othman ZA, Aboul-Soud MA, et al. Protection of α-tocopherol and selenium against acute effects of malathion on liver and kidney of rats. Afr J Pharm Pharmacol. 2011;5(10):1263–71.

    Article  CAS  Google Scholar 

  29. Dhouib IE-B, Lasram MM, Annabi A, Gharbi N, El-Fazaa S. A comparative study on toxicity induced by carbosulfan and malathion in Wistar rat liver and spleen. Pestic Biochem Physiol. 2015;124:21–8.

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by a Grant (No: 920321924) from the Vice Chancellor of Research, Hamadan University of Medical Sciences for financial support. The results described in this article are an MSc thesis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akram Ranjbar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseini, S.A., Saidijam, M., Karimi, J. et al. Cerium Oxide Nanoparticle Effects on Paraoxonase-1 Activity and Oxidative Toxic Stress Induced by Malathion: A Potential Antioxidant Compound, Yes or No?. Ind J Clin Biochem 34, 336–341 (2019). https://doi.org/10.1007/s12291-018-0760-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s12291-018-0760-z

Keywords