Thanks to visit codestin.com
Credit goes to mathworld.wolfram.com

TOPICS
Search

Series Reversion


Series reversion is the computation of the coefficients of the inverse function given those of the forward function. For a function expressed in a series with no constant term (i.e., a_0=0) as

 y=a_1x+a_2x^2+a_3x^3+...,
(1)

the series expansion of the inverse series is given by

 x=A_1y+A_2y^2+A_3y^3+....
(2)

By plugging (2) into (1), the following equation is obtained

 y=a_1A_1y+(a_2A_1^2+a_1A_2)y^2+(a_3A_1^3+2a_2A_1A_2+a_1A_3)y^3+(3a_3A_1^2A_2+a_2A_2^2+a_2A_1A_3)+....
(3)

Equating coefficients then gives

A_1=a_1^(-1)
(4)
A_2=-a_1^(-3)a_2
(5)
A_3=a_1^(-5)(2a_2^2-a_1a_3)
(6)
A_4=a_1^(-7)(5a_1a_2a_3-a_1^2a_4-5a_2^3)
(7)
A_5=a_1^(-9)(6a_1^2a_2a_4+3a_1^2a_3^2+14a_2^4-a_1^3a_5-21a_1a_2^2a_3)
(8)
A_6=a_1^(-11)(7a_1^3a_2a_5+7a_1^3a_3a_4+84a_1a_2^3a_3-a_1^4a_6-28a_1^2a_2a_3^2-42a_2^5-28a_1^2a_2^2a_4)
(9)
A_7=a_1^(-13)(8a_1^4a_2a_6+8a_1^4a_3a_5+4a_1^4a_4^2+120a_1^2a_2^3a_4+180a_1^2a_2^2a_3^2+132a_2^6-a_1^5a_7-36a_1^3a_2^2a_5-72a_1^3a_2a_3a_4-12a_1^3a_3^3-330a_1a_2^4a_3)
(10)

(Dwight 1961, Abramowitz and Stegun 1972, p. 16).

Series reversion is implemented in the Wolfram Language as InverseSeries[s, x], where s is given as a SeriesData object. For example, to obtain the terms shown above,

  With[{n = 7},
    CoefficientList[
      InverseSeries[SeriesData[x, 0, Array[a, n],
        1, n + 1, 1]],
    x]
  ]

A derivation of the explicit formula for the nth term is given by Morse and Feshbach (1953),

 A_n=1/(na_1^n)sum_(s,t,u,...)(-1)^(s+t+u+...)(n(n+1)...(n-1+s+t+u+...))/(s!t!u!...)((a_2)/(a_1))^s((a_3)/(a_1))^t...,
(11)

where

 s+2t+3u+...=n-1.
(12)

See also

Power Series, Series

Explore with Wolfram|Alpha

References

Abramowitz, M. and Stegun, I. A. (Eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, 1972.Arfken, G. Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, pp. 316-317, 1985.Beyer, W. H. CRC Standard Mathematical Tables, 28th ed. Boca Raton, FL: CRC Press, p. 297, 1987.Dwight, H. B. Table of Integrals and Other Mathematical Data, 4th ed. New York: Macmillan, 1961.Morse, P. M. and Feshbach, H. Methods of Theoretical Physics, Part I. New York: McGraw-Hill, pp. 411-413, 1953.Sloane, N. J. A. and Plouffe, S. The Encyclopedia of Integer Sequences. San Diego, CA: Academic Press, p. 22, 1995.

Referenced on Wolfram|Alpha

Series Reversion

Cite this as:

Weisstein, Eric W. "Series Reversion." From MathWorld--A Wolfram Resource. https://mathworld.wolfram.com/SeriesReversion.html

Subject classifications