Thanks to visit codestin.com
Credit goes to mathworld.wolfram.com

TOPICS
Search

Poisson Integral


There are at least two integrals called the Poisson integral. The first is also known as Bessel's second integral,

 J_n(z)=((1/2z)^n)/(Gamma(n+1/2)Gamma(1/2))int_0^picos(zcostheta)sin^(2n)thetadtheta,
(1)

where J_n(z) is a Bessel function of the first kind and Gamma(x) is a gamma function. It can be derived from Sonine's integral. With n=0, the integral becomes Parseval's integral.

In complex analysis, let u:U->R be a harmonic function on a neighborhood of the closed disk D^_(0,1), then for any point z_0 in the open disk D(0,1),

 u(z_0)=1/(2pi)int_0^(2pi)u(e^(ipsi))(1-|z_0|^2)/(|z_0-e^(ipsi)|^2)dpsi.
(2)

In polar coordinates on D^_(0,R),

 u(z_0)=1/(2pi)int_0^(2pi)K(r,theta)phi(z_0+re^(itheta))dtheta,
(3)

where R=|z_0| and K(r,theta) is the Poisson kernel. For a circle,

 u(x,y)=1/(2pi)int_0^(2pi)u(acosphi,asinphi)(a^2-R^2)/(a^2+R^2-2aRcos(theta-phi))dphi.
(4)

For a sphere,

 u(x,y,z)=1/(4pia)intint_(S)u(a^2-R^2)/((a^2+R^2-2aRcostheta)^(3/2))dS,
(5)

where

 costheta=x·xi.
(6)

See also

Bessel Function of the First Kind, Circle, Harmonic Function, Parseval's Integral, Poisson Kernel, Sonine's Integral, Sphere

Explore with Wolfram|Alpha

References

Krantz, S. G. "The Poisson Integral." §7.3.1 in Handbook of Complex Variables. Boston, MA: Birkhäuser, pp. 92-93, 1999.Morse, P. M. and Feshbach, H. Methods of Theoretical Physics, Part I. New York: McGraw-Hill, pp. 373-374, 1953.

Referenced on Wolfram|Alpha

Poisson Integral

Cite this as:

Weisstein, Eric W. "Poisson Integral." From MathWorld--A Wolfram Resource. https://mathworld.wolfram.com/PoissonIntegral.html

Subject classifications