Thanks to visit codestin.com
Credit goes to nilsvu.de

Computational physicist at Caltech in numerical relativity, computational astrophysics, and high-performance computing. Developing the next generation of massively parallel simulations of black holes. Also passionate about software development, design, data visualisation and teaching.

I changed my last name from Fischer to Vu in 2022.

Current position

2022 to date
Burke Prize Postdoctoral Fellow, California Institute of Technology, Pasadena, California

Sherman Fairchild Postdoctoral Scholar Research Associate in Theoretical Astrophysics

Education

2018—2022
Ph.D. in Physics, Max-Planck-Institute for Gravitational Physics Potsdam & University of Potsdam, Germany

Adviser: Prof. Harald P. Pfeiffer.

2012—2017
B.Sc. & M.Sc. in Physics, Heidelberg University

Core specialization in General Relativity and Theoretical Astrophysics.

Research grants

starting 2026
Swiss National Science Foundation (SNSF) Ambizione Grant, University of Zurich, Switzerland

Teaching

since 2025
Teaching at graduate level, Caltech
  • Computational astrophysics lecture on high-performance computing (2025)
  • Numerical relativity lectures at Caltech Relativistic Astrophysics Summer School (2025)
2019—2020
Teaching Assistant in Astrophysics, Potsdam University
  • Multi-messenger Astronomy (2020)
  • Gravitational Wave Astrophysics (2019)
2014 to date
Teaching Assistant in Theoretical Physics, Heidelberg University
  • General Relativity (2017)
  • Quantum Mechanics (2016)
  • Electrodynamics and Special Relativity (2015/16)
  • Analytical Mechanics and Thermodynamics (2015)
  • Mechanics and Mathematical Methods (2014/15)
2015—2016
Python Introductory Course, Heidelberg University
Python Introductory Course
2013-2017
Lectures on software development for iOS, Heidelberg University
Lectures on iOS App Development

Selected invited talks

2025
Southampton Gravity Seminar, University of Southampton, UK (invited talk)
2025
Mathematical-Physical Colloquium, Leibniz University Hannover, Germany (invited colloquium)
2025
Relativistic Astrophysics Summer School, Caltech (invited lecture on Numerical Relativity)
2024
UMiss gravity seminar, University of Mississippi, USA (invited talk)
2024
SXScon 2024, Providence, USA (invited lecture on initial data)
2022
Einstein Toolkit Summer School, virtual (invited lecture on initial data)
2022
Colloquium in Applied and Computational Mathematics, ETH Zurich (invited colloquium)

Publications

  1. Habib et al. +Vu (2025). Error quantification and comparison of binary neutron star gravitational waveforms from numerical relativity codes. Submitted to Phys. Rev. D. arXiv:2509.23028.
  2. Mendes et al. +Vu (2025). Parameter control for binary black hole initial data. Phys. Rev. D 112, 12, p. 124049. arXiv:2509.07291.
  3. Nelli et al. +Vu (2025). Horizon tracking for asynchronous parallel black hole simulations. Submitted to Phys. Rev. D. arXiv:2508.08408.
  4. Lara et al. +Vu (2025). Signatures from metastable oppositely-charged black hole binaries in scalar Gauss-Bonnet gravity. Submitted to Phys. Rev. Lett. arXiv:2505.14785.
  5. Scheel et al. +Vu (2025). The SXS collaboration’s third catalog of binary black hole simulations. Class. Quant. Grav. 42, 19, p. 195017. arXiv:2505.13378.
  6. Da Re et al. +Vu (2025). Modeling the BMS transformation induced by a binary black hole merger. Phys. Rev. D 111, 12, p. 124019. arXiv:2503.09569.
  7. Mitman et al. +Vu (2025). Probing the ringdown perturbation in binary black hole coalescences with an improved quasinormal mode extraction algorithm. Phys. Rev. D 112, 6, p. 064016. arXiv:2503.09678.
  8. Deppe et al. +Vu (2025). Signatures of quantum gravity in gravitational wave memory. Phys. Rev. D 112, 2, p. 024016. arXiv:2502.20584.
  9. Gao et al. +Vu (2025). Robustness of extracting quasinormal mode information from black hole merger simulations. Phys. Rev. D 112, 2, p. 024025. arXiv:2502.15921.
  10. Amicis et al. +Vu (2025). Late-Time Tails in Nonlinear Evolutions of Merging Black Holes. Phys. Rev. Lett. 135, 17, p. 171401. arXiv:2412.06887.
  11. Ma et al. +Vu (2025). Merging black holes with Cauchy-characteristic matching: Computation of late-time tails. Phys. Rev. D 112, 2, p. 024003. arXiv:2412.06906.
  12. Giesler et al. +Vu (2025). Overtones and nonlinearities in binary black hole ringdowns. Phys. Rev. D 111, 8, p. 084041. arXiv:2411.11269.
  13. Deppe et al. +Vu (2025). Echoes from beyond: Detecting gravitational-wave quantum imprints with LISA. Phys. Rev. D 111, 12, p. 124035. arXiv:2411.05645.
  14. Wittek et al. +Vu (2025). Relieving Scale Disparity in Binary Black Hole Simulations. Phys. Rev. Lett. 134, 25, p. 251402. arXiv:2410.22290.
  15. Lovelace et al. +Vu (2025). Simulating binary black hole mergers using discontinuous Galerkin methods. Class. Quant. Grav. 42, 3, p. 035001. arXiv:2410.00265.
  16. Ma et al. +Vu (2025). Einstein-Klein-Gordon system via Cauchy-characteristic evolution: Computation of memory and ringdown tail. Class. Quant. Grav. 42, 5, p. 055006. arXiv:2409.06141.
  17. Zertuche et al. +Vu (2025). High-precision ringdown surrogate model for nonprecessing binary black holes. Phys. Rev. D 112, 2, p. 024077. arXiv:2408.05300.
  18. Deppe et al. +Vu (2024). Binary neutron star mergers using a discontinuous Galerkin-finite difference hybrid method. Class. Quant. Grav. 41, 24, p. 245002. arXiv:2406.19038.
  19. Nee, Lara, Pfeiffer, and Vu (2025). Quasistationary hair for binary black hole initial data in scalar Gauss-Bonnet gravity. Phys. Rev. D 111, 2, p. 024061. arXiv:2406.08410.
  20. Mitman et al. +Vu (2024). A Review of Gravitational Memory and BMS Frame Fixing in Numerical Relativity. Class. Quant. Grav. 41, 22, p. 223001. arXiv:2405.08868.
  21. Chen et al. +Vu (2024). Improved frequency spectra of gravitational waves with memory in a binary-black-hole simulation. Phys. Rev. D 110, 6, p. 064049. arXiv:2405.06197.
  22. Vu (2024). Discontinuous Galerkin scheme for elliptic equations on extremely stretched grids. Phys. Rev. D 110, 8, p. 084062. arXiv:2405.06120.
  23. Lara et al. +Vu (2024). Scalarization of isolated black holes in scalar Gauss-Bonnet theory in the fixing-the-equations approach. Phys. Rev. D 110, 2, p. 024033. arXiv:2403.08705.
  24. Clarke et al. +Vu (2024). Toward a self-consistent framework for measuring black hole ringdowns. Phys. Rev. D 109, 12, p. 124030. arXiv:2402.02819.
  25. Zhu et al. +Vu (2024). Nonlinear effects in black hole ringdown from scattering experiments: Spin and initial data dependence of quadratic mode coupling. Phys. Rev. D 109, 10, p. 104050. arXiv:2401.00805.
  26. Zhu et al. +Vu (2025). Black Hole Spectroscopy for Precessing Binary Black Hole Coalescences. Phys. Rev. D 111, 6, p. 064052. arXiv:2312.08588.
  27. Ma et al. +Vu (2024). Fully relativistic three-dimensional Cauchy-characteristic matching for physical degrees of freedom. Phys. Rev. D 109, 12, p. 124027. arXiv:2308.10361.
  28. Boschini et al. +Vu (2023). Extending black-hole remnant surrogate models to extreme mass ratios. Phys. Rev. D 108, 8, p. 084015. arXiv:2307.03435.
  29. Deppe et al. +Vu (2023). A positivity-preserving adaptive-order finite-difference scheme for GRMHD. Class. Quantum Grav. 40, p. 245014. arXiv:2306.04755.
  30. Yoo et al. +Vu (2023). Numerical relativity surrogate model with memory effects and post-Newtonian hybridization. Phys. Rev. D 108, 6, p. 064027. arXiv:2306.03148.
  31. Wittek et al. +Vu (2023). Worldtube excision method for intermediate-mass-ratio inspirals: scalar-field model in 3+1 dimensions. Phys. Rev. D 108, 2, p. 024041. arXiv:2304.05329.
  32. Pompili et al. +Vu (2023). Laying the foundation of the effective-one-body waveform models SEOBNRv5: improved accuracy and efficiency for spinning non-precessing binary black holes. Phys. Rev. D 108, 12, p. 124035. arXiv:2303.18039.
  33. Mitman et al. +Vu (2023). Nonlinearities in black hole ringdowns. Phys. Rev. Lett. 130, 8, p. 081402. arXiv:2208.07380.
  34. Vu et al. (2023). High-accuracy numerical models of Brownian thermal noise in thin mirror coatings. Class. Quantum Grav. 40, p. 025015. arXiv:2111.06893.
  35. Mitman et al. +Vu (2022). Fixing the BMS frame of numerical relativity waveforms with BMS charges. Phys. Rev. D 106, 8, p. 084029. arXiv:2208.04356.
  36. Ma et al. +Vu (2022). Quasinormal-mode filters: A new approach to analyze the gravitational-wave ringdown of binary black-hole mergers. Phys. Rev. D 106, 8, p. 084036. arXiv:2207.10870.
  37. Ma et al. +Vu (2022). Gravitational-wave echoes from numerical-relativity waveforms via spacetime construction near merging compact objects. Phys. Rev. D 105, 10, p. 104007. arXiv:2203.03174.
  38. Vu (2022). A task-based parallel elliptic solver for numerical relativity with discontinuous Galerkin methods. PhD thesis. Universität Potsdam:10.25932/publishup-56226.
  39. Vu et al. (2022). A scalable elliptic solver with task-based parallelism for the SpECTRE numerical relativity code. Phys. Rev. D 105, 8, p. 084027. arXiv:2111.06767.
  40. Zertuche et al. +Vu (2022). High Precision Ringdown Modeling: Multimode fits and BMS frames. Phys. Rev. D 105, 10, p. 104015. arXiv:2110.15922.
  41. Deppe et al. +Vu (2022). Simulating magnetized neutron stars with discontinuous Galerkin methods. Phys. Rev. D 105, 12, p. 123031. arXiv:2109.12033.
  42. Moxon et al. +Vu (2023). SpECTRE Cauchy-characteristic evolution system for rapid, precise waveform extraction. Phys. Rev. D 107, 6, p. 064013. arXiv:2110.08635.
  43. Fischer and Pfeiffer (2022). Unified discontinuous Galerkin scheme for a large class of elliptic equations. Note: My last name changed from Fischer to Vu in 2022. Phys. Rev. D 105, 2, p. 024034. arXiv:2108.05826.
  44. Vincent, Pfeiffer, and Fischer (2019). hp-adaptive discontinuous Galerkin solver for elliptic equations in numerical relativity. Phys. Rev. D 100, 8. arXiv:1907.01572.
  45. Boyle et al. +Vu (2019). The SXS collaboration catalog of binary black hole simulations. Class. Quantum Grav. 36, 19, p. 195006. arXiv:1904.04831.
  46. Düll, Fischer, Schaefer, and Schuller (2020). Symmetric gravitational closure. arXiv:2003.07109.
  47. Kuznetsov, Fischer, and Guo (2018). The Archive Solution for Distributed Workflow Management Agents of the CMS Experiment at LHC. Computing and Software for Big Science 2, 1. arXiv:1801.03872.

Codes

  1. Deppe, Throwe, Kidder, Vu, Hébert, Moxon, Armaza, Bonilla, Kumar, Lovelace, O’Shea, Pfeiffer, Scheel, Teukolsky, et al. SpECTRE. sxs-collaboration/spectre. Zenodo:10.5281/zenodo.4290404.
  2. Vu. dgpy. nilsvu/dgpy. Zenodo:10.5281/zenodo.5086180.
  3. Vu. gwpv. nilsvu/gwpv.