Thanks to visit codestin.com
Credit goes to clang.llvm.org

clang 22.0.0git
SemaDeclAttr.cpp
Go to the documentation of this file.
1//===--- SemaDeclAttr.cpp - Declaration Attribute Handling ----------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements decl-related attribute processing.
10//
11//===----------------------------------------------------------------------===//
12
13#include "clang/AST/APValue.h"
18#include "clang/AST/Decl.h"
19#include "clang/AST/DeclCXX.h"
20#include "clang/AST/DeclObjC.h"
23#include "clang/AST/Expr.h"
24#include "clang/AST/ExprCXX.h"
25#include "clang/AST/Mangle.h"
26#include "clang/AST/Type.h"
28#include "clang/Basic/Cuda.h"
36#include "clang/Sema/Attr.h"
37#include "clang/Sema/DeclSpec.h"
40#include "clang/Sema/Lookup.h"
42#include "clang/Sema/Scope.h"
44#include "clang/Sema/Sema.h"
46#include "clang/Sema/SemaARM.h"
47#include "clang/Sema/SemaAVR.h"
48#include "clang/Sema/SemaBPF.h"
49#include "clang/Sema/SemaCUDA.h"
50#include "clang/Sema/SemaHLSL.h"
51#include "clang/Sema/SemaM68k.h"
52#include "clang/Sema/SemaMIPS.h"
54#include "clang/Sema/SemaObjC.h"
58#include "clang/Sema/SemaSYCL.h"
60#include "clang/Sema/SemaWasm.h"
61#include "clang/Sema/SemaX86.h"
62#include "llvm/ADT/APSInt.h"
63#include "llvm/ADT/STLExtras.h"
64#include "llvm/ADT/StringExtras.h"
65#include "llvm/Demangle/Demangle.h"
66#include "llvm/IR/DerivedTypes.h"
67#include "llvm/MC/MCSectionMachO.h"
68#include "llvm/Support/Error.h"
69#include "llvm/Support/ErrorHandling.h"
70#include "llvm/Support/MathExtras.h"
71#include "llvm/Support/raw_ostream.h"
72#include "llvm/TargetParser/Triple.h"
73#include <optional>
74
75using namespace clang;
76using namespace sema;
77
79 enum LANG {
83 };
84} // end namespace AttributeLangSupport
85
86static unsigned getNumAttributeArgs(const ParsedAttr &AL) {
87 // FIXME: Include the type in the argument list.
88 return AL.getNumArgs() + AL.hasParsedType();
89}
90
94
95/// Wrapper around checkUInt32Argument, with an extra check to be sure
96/// that the result will fit into a regular (signed) int. All args have the same
97/// purpose as they do in checkUInt32Argument.
98template <typename AttrInfo>
99static bool checkPositiveIntArgument(Sema &S, const AttrInfo &AI, const Expr *Expr,
100 int &Val, unsigned Idx = UINT_MAX) {
101 uint32_t UVal;
102 if (!S.checkUInt32Argument(AI, Expr, UVal, Idx))
103 return false;
104
105 if (UVal > (uint32_t)std::numeric_limits<int>::max()) {
106 llvm::APSInt I(32); // for toString
107 I = UVal;
108 S.Diag(Expr->getExprLoc(), diag::err_ice_too_large)
109 << toString(I, 10, false) << 32 << /* Unsigned */ 0;
110 return false;
111 }
112
113 Val = UVal;
114 return true;
115}
116
118 const Expr *E, StringRef &Str,
119 SourceLocation *ArgLocation) {
120 const auto *Literal = dyn_cast<StringLiteral>(E->IgnoreParenCasts());
121 if (ArgLocation)
122 *ArgLocation = E->getBeginLoc();
123
124 if (!Literal || (!Literal->isUnevaluated() && !Literal->isOrdinary())) {
125 Diag(E->getBeginLoc(), diag::err_attribute_argument_type)
126 << CI << AANT_ArgumentString;
127 return false;
128 }
129
130 Str = Literal->getString();
131 return true;
132}
133
134bool Sema::checkStringLiteralArgumentAttr(const ParsedAttr &AL, unsigned ArgNum,
135 StringRef &Str,
136 SourceLocation *ArgLocation) {
137 // Look for identifiers. If we have one emit a hint to fix it to a literal.
138 if (AL.isArgIdent(ArgNum)) {
139 IdentifierLoc *Loc = AL.getArgAsIdent(ArgNum);
140 Diag(Loc->getLoc(), diag::err_attribute_argument_type)
141 << AL << AANT_ArgumentString
142 << FixItHint::CreateInsertion(Loc->getLoc(), "\"")
144 Str = Loc->getIdentifierInfo()->getName();
145 if (ArgLocation)
146 *ArgLocation = Loc->getLoc();
147 return true;
148 }
149
150 // Now check for an actual string literal.
151 Expr *ArgExpr = AL.getArgAsExpr(ArgNum);
152 const auto *Literal = dyn_cast<StringLiteral>(ArgExpr->IgnoreParenCasts());
153 if (ArgLocation)
154 *ArgLocation = ArgExpr->getBeginLoc();
155
156 if (!Literal || (!Literal->isUnevaluated() && !Literal->isOrdinary())) {
157 Diag(ArgExpr->getBeginLoc(), diag::err_attribute_argument_type)
158 << AL << AANT_ArgumentString;
159 return false;
160 }
161 Str = Literal->getString();
162 return checkStringLiteralArgumentAttr(AL, ArgExpr, Str, ArgLocation);
163}
164
165/// Check if the passed-in expression is of type int or bool.
166static bool isIntOrBool(Expr *Exp) {
167 QualType QT = Exp->getType();
168 return QT->isBooleanType() || QT->isIntegerType();
169}
170
171
172// Check to see if the type is a smart pointer of some kind. We assume
173// it's a smart pointer if it defines both operator-> and operator*.
175 auto IsOverloadedOperatorPresent = [&S](const RecordDecl *Record,
179 return !Result.empty();
180 };
181
182 bool foundStarOperator = IsOverloadedOperatorPresent(Record, OO_Star);
183 bool foundArrowOperator = IsOverloadedOperatorPresent(Record, OO_Arrow);
184 if (foundStarOperator && foundArrowOperator)
185 return true;
186
187 const CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record);
188 if (!CXXRecord)
189 return false;
190
191 for (const auto &BaseSpecifier : CXXRecord->bases()) {
192 if (!foundStarOperator)
193 foundStarOperator = IsOverloadedOperatorPresent(
194 BaseSpecifier.getType()->getAsRecordDecl(), OO_Star);
195 if (!foundArrowOperator)
196 foundArrowOperator = IsOverloadedOperatorPresent(
197 BaseSpecifier.getType()->getAsRecordDecl(), OO_Arrow);
198 }
199
200 if (foundStarOperator && foundArrowOperator)
201 return true;
202
203 return false;
204}
205
206/// Check if passed in Decl is a pointer type.
207/// Note that this function may produce an error message.
208/// \return true if the Decl is a pointer type; false otherwise
209static bool threadSafetyCheckIsPointer(Sema &S, const Decl *D,
210 const ParsedAttr &AL) {
211 const auto *VD = cast<ValueDecl>(D);
212 QualType QT = VD->getType();
213 if (QT->isAnyPointerType())
214 return true;
215
216 if (const auto *RD = QT->getAsRecordDecl()) {
217 // If it's an incomplete type, it could be a smart pointer; skip it.
218 // (We don't want to force template instantiation if we can avoid it,
219 // since that would alter the order in which templates are instantiated.)
220 if (!RD->isCompleteDefinition())
221 return true;
222
224 return true;
225 }
226
227 S.Diag(AL.getLoc(), diag::warn_thread_attribute_decl_not_pointer) << AL << QT;
228 return false;
229}
230
231/// Checks that the passed in QualType either is of RecordType or points
232/// to RecordType. Returns the relevant RecordType, null if it does not exit.
234 if (const auto *RD = QT->getAsRecordDecl())
235 return RD;
236
237 // Now check if we point to a record.
238 if (const auto *PT = QT->getAsCanonical<PointerType>())
239 return PT->getPointeeType()->getAsRecordDecl();
240
241 return nullptr;
242}
243
244template <typename AttrType>
245static bool checkRecordDeclForAttr(const RecordDecl *RD) {
246 // Check if the record itself has the attribute.
247 if (RD->hasAttr<AttrType>())
248 return true;
249
250 // Else check if any base classes have the attribute.
251 if (const auto *CRD = dyn_cast<CXXRecordDecl>(RD)) {
252 if (!CRD->forallBases([](const CXXRecordDecl *Base) {
253 return !Base->hasAttr<AttrType>();
254 }))
255 return true;
256 }
257 return false;
258}
259
261 const auto *RD = getRecordDecl(Ty);
262
263 if (!RD)
264 return false;
265
266 // Don't check for the capability if the class hasn't been defined yet.
267 if (!RD->isCompleteDefinition())
268 return true;
269
270 // Allow smart pointers to be used as capability objects.
271 // FIXME -- Check the type that the smart pointer points to.
273 return true;
274
276}
277
279 const auto *RD = getRecordDecl(Ty);
280
281 if (!RD)
282 return false;
283
284 // Don't check for the capability if the class hasn't been defined yet.
285 if (!RD->isCompleteDefinition())
286 return true;
287
289}
290
292 const auto *TD = Ty->getAs<TypedefType>();
293 if (!TD)
294 return false;
295
296 TypedefNameDecl *TN = TD->getDecl();
297 if (!TN)
298 return false;
299
300 return TN->hasAttr<CapabilityAttr>();
301}
302
303static bool typeHasCapability(Sema &S, QualType Ty) {
305 return true;
306
308 return true;
309
310 return false;
311}
312
313static bool isCapabilityExpr(Sema &S, const Expr *Ex) {
314 // Capability expressions are simple expressions involving the boolean logic
315 // operators &&, || or !, a simple DeclRefExpr, CastExpr or a ParenExpr. Once
316 // a DeclRefExpr is found, its type should be checked to determine whether it
317 // is a capability or not.
318
319 if (const auto *E = dyn_cast<CastExpr>(Ex))
320 return isCapabilityExpr(S, E->getSubExpr());
321 else if (const auto *E = dyn_cast<ParenExpr>(Ex))
322 return isCapabilityExpr(S, E->getSubExpr());
323 else if (const auto *E = dyn_cast<UnaryOperator>(Ex)) {
324 if (E->getOpcode() == UO_LNot || E->getOpcode() == UO_AddrOf ||
325 E->getOpcode() == UO_Deref)
326 return isCapabilityExpr(S, E->getSubExpr());
327 return false;
328 } else if (const auto *E = dyn_cast<BinaryOperator>(Ex)) {
329 if (E->getOpcode() == BO_LAnd || E->getOpcode() == BO_LOr)
330 return isCapabilityExpr(S, E->getLHS()) &&
331 isCapabilityExpr(S, E->getRHS());
332 return false;
333 }
334
335 return typeHasCapability(S, Ex->getType());
336}
337
338/// Checks that all attribute arguments, starting from Sidx, resolve to
339/// a capability object.
340/// \param Sidx The attribute argument index to start checking with.
341/// \param ParamIdxOk Whether an argument can be indexing into a function
342/// parameter list.
344 const ParsedAttr &AL,
346 unsigned Sidx = 0,
347 bool ParamIdxOk = false) {
348 if (Sidx == AL.getNumArgs()) {
349 // If we don't have any capability arguments, the attribute implicitly
350 // refers to 'this'. So we need to make sure that 'this' exists, i.e. we're
351 // a non-static method, and that the class is a (scoped) capability.
352 const auto *MD = dyn_cast<const CXXMethodDecl>(D);
353 if (MD && !MD->isStatic()) {
354 const CXXRecordDecl *RD = MD->getParent();
355 // FIXME -- need to check this again on template instantiation
358 S.Diag(AL.getLoc(),
359 diag::warn_thread_attribute_not_on_capability_member)
360 << AL << MD->getParent();
361 } else {
362 S.Diag(AL.getLoc(), diag::warn_thread_attribute_not_on_non_static_member)
363 << AL;
364 }
365 }
366
367 for (unsigned Idx = Sidx; Idx < AL.getNumArgs(); ++Idx) {
368 Expr *ArgExp = AL.getArgAsExpr(Idx);
369
370 if (ArgExp->isTypeDependent()) {
371 // FIXME -- need to check this again on template instantiation
372 Args.push_back(ArgExp);
373 continue;
374 }
375
376 if (const auto *StrLit = dyn_cast<StringLiteral>(ArgExp)) {
377 if (StrLit->getLength() == 0 ||
378 (StrLit->isOrdinary() && StrLit->getString() == "*")) {
379 // Pass empty strings to the analyzer without warnings.
380 // Treat "*" as the universal lock.
381 Args.push_back(ArgExp);
382 continue;
383 }
384
385 // We allow constant strings to be used as a placeholder for expressions
386 // that are not valid C++ syntax, but warn that they are ignored.
387 S.Diag(AL.getLoc(), diag::warn_thread_attribute_ignored) << AL;
388 Args.push_back(ArgExp);
389 continue;
390 }
391
392 QualType ArgTy = ArgExp->getType();
393
394 // A pointer to member expression of the form &MyClass::mu is treated
395 // specially -- we need to look at the type of the member.
396 if (const auto *UOp = dyn_cast<UnaryOperator>(ArgExp))
397 if (UOp->getOpcode() == UO_AddrOf)
398 if (const auto *DRE = dyn_cast<DeclRefExpr>(UOp->getSubExpr()))
399 if (DRE->getDecl()->isCXXInstanceMember())
400 ArgTy = DRE->getDecl()->getType();
401
402 // First see if we can just cast to record type, or pointer to record type.
403 const auto *RD = getRecordDecl(ArgTy);
404
405 // Now check if we index into a record type function param.
406 if (!RD && ParamIdxOk) {
407 const auto *FD = dyn_cast<FunctionDecl>(D);
408 const auto *IL = dyn_cast<IntegerLiteral>(ArgExp);
409 if(FD && IL) {
410 unsigned int NumParams = FD->getNumParams();
411 llvm::APInt ArgValue = IL->getValue();
412 uint64_t ParamIdxFromOne = ArgValue.getZExtValue();
413 uint64_t ParamIdxFromZero = ParamIdxFromOne - 1;
414 if (!ArgValue.isStrictlyPositive() || ParamIdxFromOne > NumParams) {
415 S.Diag(AL.getLoc(),
416 diag::err_attribute_argument_out_of_bounds_extra_info)
417 << AL << Idx + 1 << NumParams;
418 continue;
419 }
420 ArgTy = FD->getParamDecl(ParamIdxFromZero)->getType();
421 }
422 }
423
424 // If the type does not have a capability, see if the components of the
425 // expression have capabilities. This allows for writing C code where the
426 // capability may be on the type, and the expression is a capability
427 // boolean logic expression. Eg) requires_capability(A || B && !C)
428 if (!typeHasCapability(S, ArgTy) && !isCapabilityExpr(S, ArgExp))
429 S.Diag(AL.getLoc(), diag::warn_thread_attribute_argument_not_lockable)
430 << AL << ArgTy;
431
432 Args.push_back(ArgExp);
433 }
434}
435
437 const ParmVarDecl *ParamDecl,
438 const ParsedAttr &AL) {
439 QualType ParamType = ParamDecl->getType();
440 if (const auto *RefType = ParamType->getAs<ReferenceType>();
441 RefType &&
442 checkRecordTypeForScopedCapability(S, RefType->getPointeeType()))
443 return true;
444 S.Diag(AL.getLoc(), diag::warn_thread_attribute_not_on_scoped_lockable_param)
445 << AL;
446 return false;
447}
448
449//===----------------------------------------------------------------------===//
450// Attribute Implementations
451//===----------------------------------------------------------------------===//
452
453static void handlePtGuardedVarAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
454 if (!threadSafetyCheckIsPointer(S, D, AL))
455 return;
456
457 D->addAttr(::new (S.Context) PtGuardedVarAttr(S.Context, AL));
458}
459
460static bool checkGuardedByAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL,
461 Expr *&Arg) {
463 // check that all arguments are lockable objects
464 checkAttrArgsAreCapabilityObjs(S, D, AL, Args);
465 unsigned Size = Args.size();
466 if (Size != 1)
467 return false;
468
469 Arg = Args[0];
470
471 return true;
472}
473
474static void handleGuardedByAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
475 Expr *Arg = nullptr;
476 if (!checkGuardedByAttrCommon(S, D, AL, Arg))
477 return;
478
479 D->addAttr(::new (S.Context) GuardedByAttr(S.Context, AL, Arg));
480}
481
482static void handlePtGuardedByAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
483 Expr *Arg = nullptr;
484 if (!checkGuardedByAttrCommon(S, D, AL, Arg))
485 return;
486
487 if (!threadSafetyCheckIsPointer(S, D, AL))
488 return;
489
490 D->addAttr(::new (S.Context) PtGuardedByAttr(S.Context, AL, Arg));
491}
492
493static bool checkAcquireOrderAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL,
495 if (!AL.checkAtLeastNumArgs(S, 1))
496 return false;
497
498 // Check that this attribute only applies to lockable types.
499 QualType QT = cast<ValueDecl>(D)->getType();
500 if (!QT->isDependentType() && !typeHasCapability(S, QT)) {
501 S.Diag(AL.getLoc(), diag::warn_thread_attribute_decl_not_lockable) << AL;
502 return false;
503 }
504
505 // Check that all arguments are lockable objects.
506 checkAttrArgsAreCapabilityObjs(S, D, AL, Args);
507 if (Args.empty())
508 return false;
509
510 return true;
511}
512
513static void handleAcquiredAfterAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
515 if (!checkAcquireOrderAttrCommon(S, D, AL, Args))
516 return;
517
518 Expr **StartArg = &Args[0];
519 D->addAttr(::new (S.Context)
520 AcquiredAfterAttr(S.Context, AL, StartArg, Args.size()));
521}
522
523static void handleAcquiredBeforeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
525 if (!checkAcquireOrderAttrCommon(S, D, AL, Args))
526 return;
527
528 Expr **StartArg = &Args[0];
529 D->addAttr(::new (S.Context)
530 AcquiredBeforeAttr(S.Context, AL, StartArg, Args.size()));
531}
532
533static bool checkLockFunAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL,
535 // zero or more arguments ok
536 // check that all arguments are lockable objects
537 checkAttrArgsAreCapabilityObjs(S, D, AL, Args, 0, /*ParamIdxOk=*/true);
538
539 return true;
540}
541
542/// Checks to be sure that the given parameter number is in bounds, and
543/// is an integral type. Will emit appropriate diagnostics if this returns
544/// false.
545///
546/// AttrArgNo is used to actually retrieve the argument, so it's base-0.
547template <typename AttrInfo>
548static bool checkParamIsIntegerType(Sema &S, const Decl *D, const AttrInfo &AI,
549 unsigned AttrArgNo) {
550 assert(AI.isArgExpr(AttrArgNo) && "Expected expression argument");
551 Expr *AttrArg = AI.getArgAsExpr(AttrArgNo);
552 ParamIdx Idx;
553 if (!S.checkFunctionOrMethodParameterIndex(D, AI, AttrArgNo + 1, AttrArg,
554 Idx))
555 return false;
556
558 if (!ParamTy->isIntegerType() && !ParamTy->isCharType()) {
559 SourceLocation SrcLoc = AttrArg->getBeginLoc();
560 S.Diag(SrcLoc, diag::err_attribute_integers_only)
562 return false;
563 }
564 return true;
565}
566
567static void handleAllocSizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
568 if (!AL.checkAtLeastNumArgs(S, 1) || !AL.checkAtMostNumArgs(S, 2))
569 return;
570
572
574 if (!RetTy->isPointerType()) {
575 S.Diag(AL.getLoc(), diag::warn_attribute_return_pointers_only) << AL;
576 return;
577 }
578
579 const Expr *SizeExpr = AL.getArgAsExpr(0);
580 int SizeArgNoVal;
581 // Parameter indices are 1-indexed, hence Index=1
582 if (!checkPositiveIntArgument(S, AL, SizeExpr, SizeArgNoVal, /*Idx=*/1))
583 return;
584 if (!checkParamIsIntegerType(S, D, AL, /*AttrArgNo=*/0))
585 return;
586 ParamIdx SizeArgNo(SizeArgNoVal, D);
587
588 ParamIdx NumberArgNo;
589 if (AL.getNumArgs() == 2) {
590 const Expr *NumberExpr = AL.getArgAsExpr(1);
591 int Val;
592 // Parameter indices are 1-based, hence Index=2
593 if (!checkPositiveIntArgument(S, AL, NumberExpr, Val, /*Idx=*/2))
594 return;
595 if (!checkParamIsIntegerType(S, D, AL, /*AttrArgNo=*/1))
596 return;
597 NumberArgNo = ParamIdx(Val, D);
598 }
599
600 D->addAttr(::new (S.Context)
601 AllocSizeAttr(S.Context, AL, SizeArgNo, NumberArgNo));
602}
603
604static bool checkTryLockFunAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL,
606 if (!AL.checkAtLeastNumArgs(S, 1))
607 return false;
608
609 if (!isIntOrBool(AL.getArgAsExpr(0))) {
610 S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
611 << AL << 1 << AANT_ArgumentIntOrBool;
612 return false;
613 }
614
615 // check that all arguments are lockable objects
616 checkAttrArgsAreCapabilityObjs(S, D, AL, Args, 1);
617
618 return true;
619}
620
621static void handleLockReturnedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
622 // check that the argument is lockable object
624 checkAttrArgsAreCapabilityObjs(S, D, AL, Args);
625 unsigned Size = Args.size();
626 if (Size == 0)
627 return;
628
629 D->addAttr(::new (S.Context) LockReturnedAttr(S.Context, AL, Args[0]));
630}
631
632static void handleLocksExcludedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
633 if (const auto *ParmDecl = dyn_cast<ParmVarDecl>(D);
634 ParmDecl && !checkFunParamsAreScopedLockable(S, ParmDecl, AL))
635 return;
636
637 if (!AL.checkAtLeastNumArgs(S, 1))
638 return;
639
640 // check that all arguments are lockable objects
642 checkAttrArgsAreCapabilityObjs(S, D, AL, Args);
643 unsigned Size = Args.size();
644 if (Size == 0)
645 return;
646 Expr **StartArg = &Args[0];
647
648 D->addAttr(::new (S.Context)
649 LocksExcludedAttr(S.Context, AL, StartArg, Size));
650}
651
652static bool checkFunctionConditionAttr(Sema &S, Decl *D, const ParsedAttr &AL,
653 Expr *&Cond, StringRef &Msg) {
654 Cond = AL.getArgAsExpr(0);
655 if (!Cond->isTypeDependent()) {
657 if (Converted.isInvalid())
658 return false;
659 Cond = Converted.get();
660 }
661
662 if (!S.checkStringLiteralArgumentAttr(AL, 1, Msg))
663 return false;
664
665 if (Msg.empty())
666 Msg = "<no message provided>";
667
669 if (isa<FunctionDecl>(D) && !Cond->isValueDependent() &&
671 Diags)) {
672 S.Diag(AL.getLoc(), diag::err_attr_cond_never_constant_expr) << AL;
673 for (const PartialDiagnosticAt &PDiag : Diags)
674 S.Diag(PDiag.first, PDiag.second);
675 return false;
676 }
677 return true;
678}
679
680static void handleEnableIfAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
681 S.Diag(AL.getLoc(), diag::ext_clang_enable_if);
682
683 Expr *Cond;
684 StringRef Msg;
685 if (checkFunctionConditionAttr(S, D, AL, Cond, Msg))
686 D->addAttr(::new (S.Context) EnableIfAttr(S.Context, AL, Cond, Msg));
687}
688
689static void handleErrorAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
690 StringRef NewUserDiagnostic;
691 if (!S.checkStringLiteralArgumentAttr(AL, 0, NewUserDiagnostic))
692 return;
693 if (ErrorAttr *EA = S.mergeErrorAttr(D, AL, NewUserDiagnostic))
694 D->addAttr(EA);
695}
696
698 const ParsedAttr &AL) {
699 const auto *PD = isa<CXXRecordDecl>(D)
702 if (const auto *RD = dyn_cast<CXXRecordDecl>(PD); RD && RD->isLocalClass()) {
703 S.Diag(AL.getLoc(),
704 diag::warn_attribute_exclude_from_explicit_instantiation_local_class)
705 << AL << /*IsMember=*/!isa<CXXRecordDecl>(D);
706 return;
707 }
708 D->addAttr(::new (S.Context)
709 ExcludeFromExplicitInstantiationAttr(S.Context, AL));
710}
711
712namespace {
713/// Determines if a given Expr references any of the given function's
714/// ParmVarDecls, or the function's implicit `this` parameter (if applicable).
715class ArgumentDependenceChecker : public DynamicRecursiveASTVisitor {
716#ifndef NDEBUG
717 const CXXRecordDecl *ClassType;
718#endif
719 llvm::SmallPtrSet<const ParmVarDecl *, 16> Parms;
720 bool Result;
721
722public:
723 ArgumentDependenceChecker(const FunctionDecl *FD) {
724#ifndef NDEBUG
725 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
726 ClassType = MD->getParent();
727 else
728 ClassType = nullptr;
729#endif
730 Parms.insert(FD->param_begin(), FD->param_end());
731 }
732
733 bool referencesArgs(Expr *E) {
734 Result = false;
735 TraverseStmt(E);
736 return Result;
737 }
738
739 bool VisitCXXThisExpr(CXXThisExpr *E) override {
740 assert(E->getType()->getPointeeCXXRecordDecl() == ClassType &&
741 "`this` doesn't refer to the enclosing class?");
742 Result = true;
743 return false;
744 }
745
746 bool VisitDeclRefExpr(DeclRefExpr *DRE) override {
747 if (const auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl()))
748 if (Parms.count(PVD)) {
749 Result = true;
750 return false;
751 }
752 return true;
753 }
754};
755}
756
758 const ParsedAttr &AL) {
759 const auto *DeclFD = cast<FunctionDecl>(D);
760
761 if (const auto *MethodDecl = dyn_cast<CXXMethodDecl>(DeclFD))
762 if (!MethodDecl->isStatic()) {
763 S.Diag(AL.getLoc(), diag::err_attribute_no_member_function) << AL;
764 return;
765 }
766
767 auto DiagnoseType = [&](unsigned Index, AttributeArgumentNType T) {
768 SourceLocation Loc = [&]() {
769 auto Union = AL.getArg(Index - 1);
770 if (auto *E = dyn_cast<Expr *>(Union))
771 return E->getBeginLoc();
772 return cast<IdentifierLoc *>(Union)->getLoc();
773 }();
774
775 S.Diag(Loc, diag::err_attribute_argument_n_type) << AL << Index << T;
776 };
777
778 FunctionDecl *AttrFD = [&]() -> FunctionDecl * {
779 if (!AL.isArgExpr(0))
780 return nullptr;
781 auto *F = dyn_cast_if_present<DeclRefExpr>(AL.getArgAsExpr(0));
782 if (!F)
783 return nullptr;
784 return dyn_cast_if_present<FunctionDecl>(F->getFoundDecl());
785 }();
786
787 if (!AttrFD || !AttrFD->getBuiltinID(true)) {
788 DiagnoseType(1, AANT_ArgumentBuiltinFunction);
789 return;
790 }
791
792 if (AttrFD->getNumParams() != AL.getNumArgs() - 1) {
793 S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments_for)
794 << AL << AttrFD << AttrFD->getNumParams();
795 return;
796 }
797
799
800 for (unsigned I = 1; I < AL.getNumArgs(); ++I) {
801 if (!AL.isArgExpr(I)) {
802 DiagnoseType(I + 1, AANT_ArgumentIntegerConstant);
803 return;
804 }
805
806 const Expr *IndexExpr = AL.getArgAsExpr(I);
807 uint32_t Index;
808
809 if (!S.checkUInt32Argument(AL, IndexExpr, Index, I + 1, false))
810 return;
811
812 if (Index > DeclFD->getNumParams()) {
813 S.Diag(AL.getLoc(), diag::err_attribute_bounds_for_function)
814 << AL << Index << DeclFD << DeclFD->getNumParams();
815 return;
816 }
817
818 QualType T1 = AttrFD->getParamDecl(I - 1)->getType();
819 QualType T2 = DeclFD->getParamDecl(Index - 1)->getType();
820
823 S.Diag(IndexExpr->getBeginLoc(), diag::err_attribute_parameter_types)
824 << AL << Index << DeclFD << T2 << I << AttrFD << T1;
825 return;
826 }
827
828 Indices.push_back(Index - 1);
829 }
830
831 D->addAttr(::new (S.Context) DiagnoseAsBuiltinAttr(
832 S.Context, AL, AttrFD, Indices.data(), Indices.size()));
833}
834
835static void handleDiagnoseIfAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
836 S.Diag(AL.getLoc(), diag::ext_clang_diagnose_if);
837
838 Expr *Cond;
839 StringRef Msg;
840 if (!checkFunctionConditionAttr(S, D, AL, Cond, Msg))
841 return;
842
843 StringRef DefaultSevStr;
844 if (!S.checkStringLiteralArgumentAttr(AL, 2, DefaultSevStr))
845 return;
846
847 DiagnoseIfAttr::DefaultSeverity DefaultSev;
848 if (!DiagnoseIfAttr::ConvertStrToDefaultSeverity(DefaultSevStr, DefaultSev)) {
849 S.Diag(AL.getArgAsExpr(2)->getBeginLoc(),
850 diag::err_diagnose_if_invalid_diagnostic_type);
851 return;
852 }
853
854 StringRef WarningGroup;
855 if (AL.getNumArgs() > 3) {
856 if (!S.checkStringLiteralArgumentAttr(AL, 3, WarningGroup))
857 return;
858 if (WarningGroup.empty() ||
859 !S.getDiagnostics().getDiagnosticIDs()->getGroupForWarningOption(
860 WarningGroup)) {
861 S.Diag(AL.getArgAsExpr(3)->getBeginLoc(),
862 diag::err_diagnose_if_unknown_warning)
863 << WarningGroup;
864 return;
865 }
866 }
867
868 bool ArgDependent = false;
869 if (const auto *FD = dyn_cast<FunctionDecl>(D))
870 ArgDependent = ArgumentDependenceChecker(FD).referencesArgs(Cond);
871 D->addAttr(::new (S.Context) DiagnoseIfAttr(
872 S.Context, AL, Cond, Msg, DefaultSev, WarningGroup, ArgDependent,
873 cast<NamedDecl>(D)));
874}
875
877 const ParsedAttr &Attrs) {
878 if (hasDeclarator(D))
879 return;
880
881 if (!isa<ObjCMethodDecl>(D)) {
882 S.Diag(Attrs.getLoc(), diag::warn_attribute_wrong_decl_type)
883 << Attrs << Attrs.isRegularKeywordAttribute()
885 return;
886 }
887
888 D->addAttr(::new (S.Context) CFIUncheckedCalleeAttr(S.Context, Attrs));
889}
890
891static void handleNoBuiltinAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
892 static constexpr const StringRef kWildcard = "*";
893
895 bool HasWildcard = false;
896
897 const auto AddBuiltinName = [&Names, &HasWildcard](StringRef Name) {
898 if (Name == kWildcard)
899 HasWildcard = true;
900 Names.push_back(Name);
901 };
902
903 // Add previously defined attributes.
904 if (const auto *NBA = D->getAttr<NoBuiltinAttr>())
905 for (StringRef BuiltinName : NBA->builtinNames())
906 AddBuiltinName(BuiltinName);
907
908 // Add current attributes.
909 if (AL.getNumArgs() == 0)
910 AddBuiltinName(kWildcard);
911 else
912 for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) {
913 StringRef BuiltinName;
914 SourceLocation LiteralLoc;
915 if (!S.checkStringLiteralArgumentAttr(AL, I, BuiltinName, &LiteralLoc))
916 return;
917
918 if (Builtin::Context::isBuiltinFunc(BuiltinName))
919 AddBuiltinName(BuiltinName);
920 else
921 S.Diag(LiteralLoc, diag::warn_attribute_no_builtin_invalid_builtin_name)
922 << BuiltinName << AL;
923 }
924
925 // Repeating the same attribute is fine.
926 llvm::sort(Names);
927 Names.erase(llvm::unique(Names), Names.end());
928
929 // Empty no_builtin must be on its own.
930 if (HasWildcard && Names.size() > 1)
931 S.Diag(D->getLocation(),
932 diag::err_attribute_no_builtin_wildcard_or_builtin_name)
933 << AL;
934
935 if (D->hasAttr<NoBuiltinAttr>())
936 D->dropAttr<NoBuiltinAttr>();
937 D->addAttr(::new (S.Context)
938 NoBuiltinAttr(S.Context, AL, Names.data(), Names.size()));
939}
940
941static void handlePassObjectSizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
942 if (D->hasAttr<PassObjectSizeAttr>()) {
943 S.Diag(D->getBeginLoc(), diag::err_attribute_only_once_per_parameter) << AL;
944 return;
945 }
946
947 Expr *E = AL.getArgAsExpr(0);
948 uint32_t Type;
949 if (!S.checkUInt32Argument(AL, E, Type, /*Idx=*/1))
950 return;
951
952 // pass_object_size's argument is passed in as the second argument of
953 // __builtin_object_size. So, it has the same constraints as that second
954 // argument; namely, it must be in the range [0, 3].
955 if (Type > 3) {
956 S.Diag(E->getBeginLoc(), diag::err_attribute_argument_out_of_range)
957 << AL << 0 << 3 << E->getSourceRange();
958 return;
959 }
960
961 // pass_object_size is only supported on constant pointer parameters; as a
962 // kindness to users, we allow the parameter to be non-const for declarations.
963 // At this point, we have no clue if `D` belongs to a function declaration or
964 // definition, so we defer the constness check until later.
965 if (!cast<ParmVarDecl>(D)->getType()->isPointerType()) {
966 S.Diag(D->getBeginLoc(), diag::err_attribute_pointers_only) << AL << 1;
967 return;
968 }
969
970 D->addAttr(::new (S.Context) PassObjectSizeAttr(S.Context, AL, (int)Type));
971}
972
973static void handleConsumableAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
974 ConsumableAttr::ConsumedState DefaultState;
975
976 if (AL.isArgIdent(0)) {
977 IdentifierLoc *IL = AL.getArgAsIdent(0);
978 if (!ConsumableAttr::ConvertStrToConsumedState(
979 IL->getIdentifierInfo()->getName(), DefaultState)) {
980 S.Diag(IL->getLoc(), diag::warn_attribute_type_not_supported)
981 << AL << IL->getIdentifierInfo();
982 return;
983 }
984 } else {
985 S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
987 return;
988 }
989
990 D->addAttr(::new (S.Context) ConsumableAttr(S.Context, AL, DefaultState));
991}
992
994 const ParsedAttr &AL) {
996
997 if (const CXXRecordDecl *RD = ThisType->getAsCXXRecordDecl()) {
998 if (!RD->hasAttr<ConsumableAttr>()) {
999 S.Diag(AL.getLoc(), diag::warn_attr_on_unconsumable_class) << RD;
1000
1001 return false;
1002 }
1003 }
1004
1005 return true;
1006}
1007
1008static void handleCallableWhenAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1009 if (!AL.checkAtLeastNumArgs(S, 1))
1010 return;
1011
1013 return;
1014
1016 for (unsigned ArgIndex = 0; ArgIndex < AL.getNumArgs(); ++ArgIndex) {
1017 CallableWhenAttr::ConsumedState CallableState;
1018
1019 StringRef StateString;
1020 SourceLocation Loc;
1021 if (AL.isArgIdent(ArgIndex)) {
1022 IdentifierLoc *Ident = AL.getArgAsIdent(ArgIndex);
1023 StateString = Ident->getIdentifierInfo()->getName();
1024 Loc = Ident->getLoc();
1025 } else {
1026 if (!S.checkStringLiteralArgumentAttr(AL, ArgIndex, StateString, &Loc))
1027 return;
1028 }
1029
1030 if (!CallableWhenAttr::ConvertStrToConsumedState(StateString,
1031 CallableState)) {
1032 S.Diag(Loc, diag::warn_attribute_type_not_supported) << AL << StateString;
1033 return;
1034 }
1035
1036 States.push_back(CallableState);
1037 }
1038
1039 D->addAttr(::new (S.Context)
1040 CallableWhenAttr(S.Context, AL, States.data(), States.size()));
1041}
1042
1043static void handleParamTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1044 ParamTypestateAttr::ConsumedState ParamState;
1045
1046 if (AL.isArgIdent(0)) {
1047 IdentifierLoc *Ident = AL.getArgAsIdent(0);
1048 StringRef StateString = Ident->getIdentifierInfo()->getName();
1049
1050 if (!ParamTypestateAttr::ConvertStrToConsumedState(StateString,
1051 ParamState)) {
1052 S.Diag(Ident->getLoc(), diag::warn_attribute_type_not_supported)
1053 << AL << StateString;
1054 return;
1055 }
1056 } else {
1057 S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
1058 << AL << AANT_ArgumentIdentifier;
1059 return;
1060 }
1061
1062 // FIXME: This check is currently being done in the analysis. It can be
1063 // enabled here only after the parser propagates attributes at
1064 // template specialization definition, not declaration.
1065 //QualType ReturnType = cast<ParmVarDecl>(D)->getType();
1066 //const CXXRecordDecl *RD = ReturnType->getAsCXXRecordDecl();
1067 //
1068 //if (!RD || !RD->hasAttr<ConsumableAttr>()) {
1069 // S.Diag(AL.getLoc(), diag::warn_return_state_for_unconsumable_type) <<
1070 // ReturnType.getAsString();
1071 // return;
1072 //}
1073
1074 D->addAttr(::new (S.Context) ParamTypestateAttr(S.Context, AL, ParamState));
1075}
1076
1077static void handleReturnTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1078 ReturnTypestateAttr::ConsumedState ReturnState;
1079
1080 if (AL.isArgIdent(0)) {
1081 IdentifierLoc *IL = AL.getArgAsIdent(0);
1082 if (!ReturnTypestateAttr::ConvertStrToConsumedState(
1083 IL->getIdentifierInfo()->getName(), ReturnState)) {
1084 S.Diag(IL->getLoc(), diag::warn_attribute_type_not_supported)
1085 << AL << IL->getIdentifierInfo();
1086 return;
1087 }
1088 } else {
1089 S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
1090 << AL << AANT_ArgumentIdentifier;
1091 return;
1092 }
1093
1094 // FIXME: This check is currently being done in the analysis. It can be
1095 // enabled here only after the parser propagates attributes at
1096 // template specialization definition, not declaration.
1097 // QualType ReturnType;
1098 //
1099 // if (const ParmVarDecl *Param = dyn_cast<ParmVarDecl>(D)) {
1100 // ReturnType = Param->getType();
1101 //
1102 //} else if (const CXXConstructorDecl *Constructor =
1103 // dyn_cast<CXXConstructorDecl>(D)) {
1104 // ReturnType = Constructor->getFunctionObjectParameterType();
1105 //
1106 //} else {
1107 //
1108 // ReturnType = cast<FunctionDecl>(D)->getCallResultType();
1109 //}
1110 //
1111 // const CXXRecordDecl *RD = ReturnType->getAsCXXRecordDecl();
1112 //
1113 // if (!RD || !RD->hasAttr<ConsumableAttr>()) {
1114 // S.Diag(Attr.getLoc(), diag::warn_return_state_for_unconsumable_type) <<
1115 // ReturnType.getAsString();
1116 // return;
1117 //}
1118
1119 D->addAttr(::new (S.Context) ReturnTypestateAttr(S.Context, AL, ReturnState));
1120}
1121
1122static void handleSetTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1124 return;
1125
1126 SetTypestateAttr::ConsumedState NewState;
1127 if (AL.isArgIdent(0)) {
1128 IdentifierLoc *Ident = AL.getArgAsIdent(0);
1129 StringRef Param = Ident->getIdentifierInfo()->getName();
1130 if (!SetTypestateAttr::ConvertStrToConsumedState(Param, NewState)) {
1131 S.Diag(Ident->getLoc(), diag::warn_attribute_type_not_supported)
1132 << AL << Param;
1133 return;
1134 }
1135 } else {
1136 S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
1137 << AL << AANT_ArgumentIdentifier;
1138 return;
1139 }
1140
1141 D->addAttr(::new (S.Context) SetTypestateAttr(S.Context, AL, NewState));
1142}
1143
1144static void handleTestTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1146 return;
1147
1148 TestTypestateAttr::ConsumedState TestState;
1149 if (AL.isArgIdent(0)) {
1150 IdentifierLoc *Ident = AL.getArgAsIdent(0);
1151 StringRef Param = Ident->getIdentifierInfo()->getName();
1152 if (!TestTypestateAttr::ConvertStrToConsumedState(Param, TestState)) {
1153 S.Diag(Ident->getLoc(), diag::warn_attribute_type_not_supported)
1154 << AL << Param;
1155 return;
1156 }
1157 } else {
1158 S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
1159 << AL << AANT_ArgumentIdentifier;
1160 return;
1161 }
1162
1163 D->addAttr(::new (S.Context) TestTypestateAttr(S.Context, AL, TestState));
1164}
1165
1166static void handleExtVectorTypeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1167 // Remember this typedef decl, we will need it later for diagnostics.
1168 if (isa<TypedefNameDecl>(D))
1170}
1171
1172static void handlePackedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1173 if (auto *TD = dyn_cast<TagDecl>(D))
1174 TD->addAttr(::new (S.Context) PackedAttr(S.Context, AL));
1175 else if (auto *FD = dyn_cast<FieldDecl>(D)) {
1176 bool BitfieldByteAligned = (!FD->getType()->isDependentType() &&
1177 !FD->getType()->isIncompleteType() &&
1178 FD->isBitField() &&
1179 S.Context.getTypeAlign(FD->getType()) <= 8);
1180
1181 if (S.getASTContext().getTargetInfo().getTriple().isPS()) {
1182 if (BitfieldByteAligned)
1183 // The PS4/PS5 targets need to maintain ABI backwards compatibility.
1184 S.Diag(AL.getLoc(), diag::warn_attribute_ignored_for_field_of_type)
1185 << AL << FD->getType();
1186 else
1187 FD->addAttr(::new (S.Context) PackedAttr(S.Context, AL));
1188 } else {
1189 // Report warning about changed offset in the newer compiler versions.
1190 if (BitfieldByteAligned)
1191 S.Diag(AL.getLoc(), diag::warn_attribute_packed_for_bitfield);
1192
1193 FD->addAttr(::new (S.Context) PackedAttr(S.Context, AL));
1194 }
1195
1196 } else
1197 S.Diag(AL.getLoc(), diag::warn_attribute_ignored) << AL;
1198}
1199
1200static void handlePreferredName(Sema &S, Decl *D, const ParsedAttr &AL) {
1201 auto *RD = cast<CXXRecordDecl>(D);
1202 ClassTemplateDecl *CTD = RD->getDescribedClassTemplate();
1203 assert(CTD && "attribute does not appertain to this declaration");
1204
1205 ParsedType PT = AL.getTypeArg();
1206 TypeSourceInfo *TSI = nullptr;
1207 QualType T = S.GetTypeFromParser(PT, &TSI);
1208 if (!TSI)
1210
1211 if (!T.hasQualifiers() && T->isTypedefNameType()) {
1212 // Find the template name, if this type names a template specialization.
1213 const TemplateDecl *Template = nullptr;
1214 if (const auto *CTSD = dyn_cast_if_present<ClassTemplateSpecializationDecl>(
1215 T->getAsCXXRecordDecl())) {
1216 Template = CTSD->getSpecializedTemplate();
1217 } else if (const auto *TST = T->getAs<TemplateSpecializationType>()) {
1218 while (TST && TST->isTypeAlias())
1219 TST = TST->getAliasedType()->getAs<TemplateSpecializationType>();
1220 if (TST)
1221 Template = TST->getTemplateName().getAsTemplateDecl();
1222 }
1223
1224 if (Template && declaresSameEntity(Template, CTD)) {
1225 D->addAttr(::new (S.Context) PreferredNameAttr(S.Context, AL, TSI));
1226 return;
1227 }
1228 }
1229
1230 S.Diag(AL.getLoc(), diag::err_attribute_not_typedef_for_specialization)
1231 << T << AL << CTD;
1232 if (const auto *TT = T->getAs<TypedefType>())
1233 S.Diag(TT->getDecl()->getLocation(), diag::note_entity_declared_at)
1234 << TT->getDecl();
1235}
1236
1237static void handleNoSpecializations(Sema &S, Decl *D, const ParsedAttr &AL) {
1238 StringRef Message;
1239 if (AL.getNumArgs() != 0)
1240 S.checkStringLiteralArgumentAttr(AL, 0, Message);
1242 NoSpecializationsAttr::Create(S.Context, Message, AL));
1243}
1244
1246 if (T->isDependentType())
1247 return true;
1248 if (RefOkay) {
1249 if (T->isReferenceType())
1250 return true;
1251 } else {
1252 T = T.getNonReferenceType();
1253 }
1254
1255 // The nonnull attribute, and other similar attributes, can be applied to a
1256 // transparent union that contains a pointer type.
1257 if (const RecordType *UT = T->getAsUnionType()) {
1258 RecordDecl *UD = UT->getOriginalDecl()->getDefinitionOrSelf();
1259 if (UD->hasAttr<TransparentUnionAttr>()) {
1260 for (const auto *I : UD->fields()) {
1261 QualType QT = I->getType();
1262 if (QT->isAnyPointerType() || QT->isBlockPointerType())
1263 return true;
1264 }
1265 }
1266 }
1267
1268 return T->isAnyPointerType() || T->isBlockPointerType();
1269}
1270
1271static bool attrNonNullArgCheck(Sema &S, QualType T, const ParsedAttr &AL,
1272 SourceRange AttrParmRange,
1273 SourceRange TypeRange,
1274 bool isReturnValue = false) {
1275 if (!S.isValidPointerAttrType(T)) {
1276 if (isReturnValue)
1277 S.Diag(AL.getLoc(), diag::warn_attribute_return_pointers_only)
1278 << AL << AttrParmRange << TypeRange;
1279 else
1280 S.Diag(AL.getLoc(), diag::warn_attribute_pointers_only)
1281 << AL << AttrParmRange << TypeRange << 0;
1282 return false;
1283 }
1284 return true;
1285}
1286
1287static void handleNonNullAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1288 SmallVector<ParamIdx, 8> NonNullArgs;
1289 for (unsigned I = 0; I < AL.getNumArgs(); ++I) {
1290 Expr *Ex = AL.getArgAsExpr(I);
1291 ParamIdx Idx;
1293 D, AL, I + 1, Ex, Idx,
1294 /*CanIndexImplicitThis=*/false,
1295 /*CanIndexVariadicArguments=*/true))
1296 return;
1297
1298 // Is the function argument a pointer type?
1302 Ex->getSourceRange(),
1304 continue;
1305
1306 NonNullArgs.push_back(Idx);
1307 }
1308
1309 // If no arguments were specified to __attribute__((nonnull)) then all pointer
1310 // arguments have a nonnull attribute; warn if there aren't any. Skip this
1311 // check if the attribute came from a macro expansion or a template
1312 // instantiation.
1313 if (NonNullArgs.empty() && AL.getLoc().isFileID() &&
1315 bool AnyPointers = isFunctionOrMethodVariadic(D);
1316 for (unsigned I = 0, E = getFunctionOrMethodNumParams(D);
1317 I != E && !AnyPointers; ++I) {
1320 AnyPointers = true;
1321 }
1322
1323 if (!AnyPointers)
1324 S.Diag(AL.getLoc(), diag::warn_attribute_nonnull_no_pointers);
1325 }
1326
1327 ParamIdx *Start = NonNullArgs.data();
1328 unsigned Size = NonNullArgs.size();
1329 llvm::array_pod_sort(Start, Start + Size);
1330 D->addAttr(::new (S.Context) NonNullAttr(S.Context, AL, Start, Size));
1331}
1332
1334 const ParsedAttr &AL) {
1335 if (AL.getNumArgs() > 0) {
1336 if (D->getFunctionType()) {
1337 handleNonNullAttr(S, D, AL);
1338 } else {
1339 S.Diag(AL.getLoc(), diag::warn_attribute_nonnull_parm_no_args)
1340 << D->getSourceRange();
1341 }
1342 return;
1343 }
1344
1345 // Is the argument a pointer type?
1346 if (!attrNonNullArgCheck(S, D->getType(), AL, SourceRange(),
1347 D->getSourceRange()))
1348 return;
1349
1350 D->addAttr(::new (S.Context) NonNullAttr(S.Context, AL, nullptr, 0));
1351}
1352
1353static void handleReturnsNonNullAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1356 if (!attrNonNullArgCheck(S, ResultType, AL, SourceRange(), SR,
1357 /* isReturnValue */ true))
1358 return;
1359
1360 D->addAttr(::new (S.Context) ReturnsNonNullAttr(S.Context, AL));
1361}
1362
1363static void handleNoEscapeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1364 if (D->isInvalidDecl())
1365 return;
1366
1367 // noescape only applies to pointer types.
1368 QualType T = cast<ParmVarDecl>(D)->getType();
1369 if (!S.isValidPointerAttrType(T, /* RefOkay */ true)) {
1370 S.Diag(AL.getLoc(), diag::warn_attribute_pointers_only)
1371 << AL << AL.getRange() << 0;
1372 return;
1373 }
1374
1375 D->addAttr(::new (S.Context) NoEscapeAttr(S.Context, AL));
1376}
1377
1378static void handleAssumeAlignedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1379 Expr *E = AL.getArgAsExpr(0),
1380 *OE = AL.getNumArgs() > 1 ? AL.getArgAsExpr(1) : nullptr;
1381 S.AddAssumeAlignedAttr(D, AL, E, OE);
1382}
1383
1384static void handleAllocAlignAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1385 S.AddAllocAlignAttr(D, AL, AL.getArgAsExpr(0));
1386}
1387
1389 Expr *OE) {
1392 SourceLocation AttrLoc = CI.getLoc();
1393
1394 if (!isValidPointerAttrType(ResultType, /* RefOkay */ true)) {
1395 Diag(AttrLoc, diag::warn_attribute_return_pointers_refs_only)
1396 << CI << CI.getRange() << SR;
1397 return;
1398 }
1399
1400 if (!E->isValueDependent()) {
1401 std::optional<llvm::APSInt> I = llvm::APSInt(64);
1402 if (!(I = E->getIntegerConstantExpr(Context))) {
1403 if (OE)
1404 Diag(AttrLoc, diag::err_attribute_argument_n_type)
1405 << CI << 1 << AANT_ArgumentIntegerConstant << E->getSourceRange();
1406 else
1407 Diag(AttrLoc, diag::err_attribute_argument_type)
1409 return;
1410 }
1411
1412 if (!I->isPowerOf2()) {
1413 Diag(AttrLoc, diag::err_alignment_not_power_of_two)
1414 << E->getSourceRange();
1415 return;
1416 }
1417
1418 if (*I > Sema::MaximumAlignment)
1419 Diag(CI.getLoc(), diag::warn_assume_aligned_too_great)
1421 }
1422
1423 if (OE && !OE->isValueDependent() && !OE->isIntegerConstantExpr(Context)) {
1424 Diag(AttrLoc, diag::err_attribute_argument_n_type)
1425 << CI << 2 << AANT_ArgumentIntegerConstant << OE->getSourceRange();
1426 return;
1427 }
1428
1429 D->addAttr(::new (Context) AssumeAlignedAttr(Context, CI, E, OE));
1430}
1431
1433 Expr *ParamExpr) {
1435 SourceLocation AttrLoc = CI.getLoc();
1436
1437 if (!isValidPointerAttrType(ResultType, /* RefOkay */ true)) {
1438 Diag(AttrLoc, diag::warn_attribute_return_pointers_refs_only)
1440 return;
1441 }
1442
1443 ParamIdx Idx;
1444 const auto *FuncDecl = cast<FunctionDecl>(D);
1445 if (!checkFunctionOrMethodParameterIndex(FuncDecl, CI,
1446 /*AttrArgNum=*/1, ParamExpr, Idx))
1447 return;
1448
1450 if (!Ty->isDependentType() && !Ty->isIntegralType(Context) &&
1451 !Ty->isAlignValT()) {
1452 Diag(ParamExpr->getBeginLoc(), diag::err_attribute_integers_only)
1453 << CI << FuncDecl->getParamDecl(Idx.getASTIndex())->getSourceRange();
1454 return;
1455 }
1456
1457 D->addAttr(::new (Context) AllocAlignAttr(Context, CI, Idx));
1458}
1459
1460/// Normalize the attribute, __foo__ becomes foo.
1461/// Returns true if normalization was applied.
1462static bool normalizeName(StringRef &AttrName) {
1463 if (AttrName.size() > 4 && AttrName.starts_with("__") &&
1464 AttrName.ends_with("__")) {
1465 AttrName = AttrName.drop_front(2).drop_back(2);
1466 return true;
1467 }
1468 return false;
1469}
1470
1471static void handleOwnershipAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1472 // This attribute must be applied to a function declaration. The first
1473 // argument to the attribute must be an identifier, the name of the resource,
1474 // for example: malloc. The following arguments must be argument indexes, the
1475 // arguments must be of integer type for Returns, otherwise of pointer type.
1476 // The difference between Holds and Takes is that a pointer may still be used
1477 // after being held. free() should be __attribute((ownership_takes)), whereas
1478 // a list append function may well be __attribute((ownership_holds)).
1479
1480 if (!AL.isArgIdent(0)) {
1481 S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
1482 << AL << 1 << AANT_ArgumentIdentifier;
1483 return;
1484 }
1485
1486 // Figure out our Kind.
1487 OwnershipAttr::OwnershipKind K =
1488 OwnershipAttr(S.Context, AL, nullptr, nullptr, 0).getOwnKind();
1489
1490 // Check arguments.
1491 switch (K) {
1492 case OwnershipAttr::Takes:
1493 case OwnershipAttr::Holds:
1494 if (AL.getNumArgs() < 2) {
1495 S.Diag(AL.getLoc(), diag::err_attribute_too_few_arguments) << AL << 2;
1496 return;
1497 }
1498 break;
1499 case OwnershipAttr::Returns:
1500 if (AL.getNumArgs() > 2) {
1501 S.Diag(AL.getLoc(), diag::err_attribute_too_many_arguments) << AL << 2;
1502 return;
1503 }
1504 break;
1505 }
1506
1507 // Allow only pointers to be return type for functions with ownership_returns
1508 // attribute. This matches with current OwnershipAttr::Takes semantics
1509 if (K == OwnershipAttr::Returns &&
1510 !getFunctionOrMethodResultType(D)->isPointerType()) {
1511 S.Diag(AL.getLoc(), diag::err_ownership_takes_return_type) << AL;
1512 return;
1513 }
1514
1516
1517 StringRef ModuleName = Module->getName();
1518 if (normalizeName(ModuleName)) {
1519 Module = &S.PP.getIdentifierTable().get(ModuleName);
1520 }
1521
1522 SmallVector<ParamIdx, 8> OwnershipArgs;
1523 for (unsigned i = 1; i < AL.getNumArgs(); ++i) {
1524 Expr *Ex = AL.getArgAsExpr(i);
1525 ParamIdx Idx;
1526 if (!S.checkFunctionOrMethodParameterIndex(D, AL, i, Ex, Idx))
1527 return;
1528
1529 // Is the function argument a pointer type?
1531 int Err = -1; // No error
1532 switch (K) {
1533 case OwnershipAttr::Takes:
1534 case OwnershipAttr::Holds:
1535 if (!T->isAnyPointerType() && !T->isBlockPointerType())
1536 Err = 0;
1537 break;
1538 case OwnershipAttr::Returns:
1539 if (!T->isIntegerType())
1540 Err = 1;
1541 break;
1542 }
1543 if (-1 != Err) {
1544 S.Diag(AL.getLoc(), diag::err_ownership_type) << AL << Err
1545 << Ex->getSourceRange();
1546 return;
1547 }
1548
1549 // Check we don't have a conflict with another ownership attribute.
1550 for (const auto *I : D->specific_attrs<OwnershipAttr>()) {
1551 // Cannot have two ownership attributes of different kinds for the same
1552 // index.
1553 if (I->getOwnKind() != K && llvm::is_contained(I->args(), Idx)) {
1554 S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible)
1555 << AL << I
1556 << (AL.isRegularKeywordAttribute() ||
1557 I->isRegularKeywordAttribute());
1558 return;
1559 } else if (K == OwnershipAttr::Returns &&
1560 I->getOwnKind() == OwnershipAttr::Returns) {
1561 // A returns attribute conflicts with any other returns attribute using
1562 // a different index.
1563 if (!llvm::is_contained(I->args(), Idx)) {
1564 S.Diag(I->getLocation(), diag::err_ownership_returns_index_mismatch)
1565 << I->args_begin()->getSourceIndex();
1566 if (I->args_size())
1567 S.Diag(AL.getLoc(), diag::note_ownership_returns_index_mismatch)
1568 << Idx.getSourceIndex() << Ex->getSourceRange();
1569 return;
1570 }
1571 } else if (K == OwnershipAttr::Takes &&
1572 I->getOwnKind() == OwnershipAttr::Takes) {
1573 if (I->getModule()->getName() != ModuleName) {
1574 S.Diag(I->getLocation(), diag::err_ownership_takes_class_mismatch)
1575 << I->getModule()->getName();
1576 S.Diag(AL.getLoc(), diag::note_ownership_takes_class_mismatch)
1577 << ModuleName << Ex->getSourceRange();
1578
1579 return;
1580 }
1581 }
1582 }
1583 OwnershipArgs.push_back(Idx);
1584 }
1585
1586 ParamIdx *Start = OwnershipArgs.data();
1587 unsigned Size = OwnershipArgs.size();
1588 llvm::array_pod_sort(Start, Start + Size);
1589 D->addAttr(::new (S.Context)
1590 OwnershipAttr(S.Context, AL, Module, Start, Size));
1591}
1592
1593static void handleWeakRefAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1594 // Check the attribute arguments.
1595 if (AL.getNumArgs() > 1) {
1596 S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 1;
1597 return;
1598 }
1599
1600 // gcc rejects
1601 // class c {
1602 // static int a __attribute__((weakref ("v2")));
1603 // static int b() __attribute__((weakref ("f3")));
1604 // };
1605 // and ignores the attributes of
1606 // void f(void) {
1607 // static int a __attribute__((weakref ("v2")));
1608 // }
1609 // we reject them
1610 const DeclContext *Ctx = D->getDeclContext()->getRedeclContext();
1611 if (!Ctx->isFileContext()) {
1612 S.Diag(AL.getLoc(), diag::err_attribute_weakref_not_global_context)
1613 << cast<NamedDecl>(D);
1614 return;
1615 }
1616
1617 // The GCC manual says
1618 //
1619 // At present, a declaration to which `weakref' is attached can only
1620 // be `static'.
1621 //
1622 // It also says
1623 //
1624 // Without a TARGET,
1625 // given as an argument to `weakref' or to `alias', `weakref' is
1626 // equivalent to `weak'.
1627 //
1628 // gcc 4.4.1 will accept
1629 // int a7 __attribute__((weakref));
1630 // as
1631 // int a7 __attribute__((weak));
1632 // This looks like a bug in gcc. We reject that for now. We should revisit
1633 // it if this behaviour is actually used.
1634
1635 // GCC rejects
1636 // static ((alias ("y"), weakref)).
1637 // Should we? How to check that weakref is before or after alias?
1638
1639 // FIXME: it would be good for us to keep the WeakRefAttr as-written instead
1640 // of transforming it into an AliasAttr. The WeakRefAttr never uses the
1641 // StringRef parameter it was given anyway.
1642 StringRef Str;
1643 if (AL.getNumArgs() && S.checkStringLiteralArgumentAttr(AL, 0, Str))
1644 // GCC will accept anything as the argument of weakref. Should we
1645 // check for an existing decl?
1646 D->addAttr(::new (S.Context) AliasAttr(S.Context, AL, Str));
1647
1648 D->addAttr(::new (S.Context) WeakRefAttr(S.Context, AL));
1649}
1650
1651// Mark alias/ifunc target as used. Due to name mangling, we look up the
1652// demangled name ignoring parameters (not supported by microsoftDemangle
1653// https://github.com/llvm/llvm-project/issues/88825). This should handle the
1654// majority of use cases while leaving namespace scope names unmarked.
1655static void markUsedForAliasOrIfunc(Sema &S, Decl *D, const ParsedAttr &AL,
1656 StringRef Str) {
1657 std::unique_ptr<char, llvm::FreeDeleter> Demangled;
1658 if (S.getASTContext().getCXXABIKind() != TargetCXXABI::Microsoft)
1659 Demangled.reset(llvm::itaniumDemangle(Str, /*ParseParams=*/false));
1660 std::unique_ptr<MangleContext> MC(S.Context.createMangleContext());
1661 SmallString<256> Name;
1662
1664 &S.Context.Idents.get(Demangled ? Demangled.get() : Str), AL.getLoc());
1666 if (S.LookupName(LR, S.TUScope)) {
1667 for (NamedDecl *ND : LR) {
1668 if (!isa<FunctionDecl>(ND) && !isa<VarDecl>(ND))
1669 continue;
1670 if (MC->shouldMangleDeclName(ND)) {
1671 llvm::raw_svector_ostream Out(Name);
1672 Name.clear();
1673 MC->mangleName(GlobalDecl(ND), Out);
1674 } else {
1675 Name = ND->getIdentifier()->getName();
1676 }
1677 if (Name == Str)
1678 ND->markUsed(S.Context);
1679 }
1680 }
1681}
1682
1683static void handleIFuncAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1684 StringRef Str;
1685 if (!S.checkStringLiteralArgumentAttr(AL, 0, Str))
1686 return;
1687
1688 // Aliases should be on declarations, not definitions.
1689 const auto *FD = cast<FunctionDecl>(D);
1690 if (FD->isThisDeclarationADefinition()) {
1691 S.Diag(AL.getLoc(), diag::err_alias_is_definition) << FD << 1;
1692 return;
1693 }
1694
1695 markUsedForAliasOrIfunc(S, D, AL, Str);
1696 D->addAttr(::new (S.Context) IFuncAttr(S.Context, AL, Str));
1697}
1698
1699static void handleAliasAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1700 StringRef Str;
1701 if (!S.checkStringLiteralArgumentAttr(AL, 0, Str))
1702 return;
1703
1704 if (S.Context.getTargetInfo().getTriple().isOSDarwin()) {
1705 S.Diag(AL.getLoc(), diag::err_alias_not_supported_on_darwin);
1706 return;
1707 }
1708
1709 if (S.Context.getTargetInfo().getTriple().isNVPTX()) {
1710 CudaVersion Version =
1712 if (Version != CudaVersion::UNKNOWN && Version < CudaVersion::CUDA_100)
1713 S.Diag(AL.getLoc(), diag::err_alias_not_supported_on_nvptx);
1714 }
1715
1716 // Aliases should be on declarations, not definitions.
1717 if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
1718 if (FD->isThisDeclarationADefinition()) {
1719 S.Diag(AL.getLoc(), diag::err_alias_is_definition) << FD << 0;
1720 return;
1721 }
1722 } else {
1723 const auto *VD = cast<VarDecl>(D);
1724 if (VD->isThisDeclarationADefinition() && VD->isExternallyVisible()) {
1725 S.Diag(AL.getLoc(), diag::err_alias_is_definition) << VD << 0;
1726 return;
1727 }
1728 }
1729
1730 markUsedForAliasOrIfunc(S, D, AL, Str);
1731 D->addAttr(::new (S.Context) AliasAttr(S.Context, AL, Str));
1732}
1733
1734static void handleTLSModelAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1735 StringRef Model;
1736 SourceLocation LiteralLoc;
1737 // Check that it is a string.
1738 if (!S.checkStringLiteralArgumentAttr(AL, 0, Model, &LiteralLoc))
1739 return;
1740
1741 // Check that the value.
1742 if (Model != "global-dynamic" && Model != "local-dynamic"
1743 && Model != "initial-exec" && Model != "local-exec") {
1744 S.Diag(LiteralLoc, diag::err_attr_tlsmodel_arg);
1745 return;
1746 }
1747
1748 D->addAttr(::new (S.Context) TLSModelAttr(S.Context, AL, Model));
1749}
1750
1751static void handleRestrictAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1753 if (!ResultType->isAnyPointerType() && !ResultType->isBlockPointerType()) {
1754 S.Diag(AL.getLoc(), diag::warn_attribute_return_pointers_only)
1756 return;
1757 }
1758
1759 if (AL.getNumArgs() == 0) {
1760 D->addAttr(::new (S.Context) RestrictAttr(S.Context, AL));
1761 return;
1762 }
1763
1764 if (AL.getAttributeSpellingListIndex() == RestrictAttr::Declspec_restrict) {
1765 // __declspec(restrict) accepts no arguments
1766 S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 0;
1767 return;
1768 }
1769
1770 // [[gnu::malloc(deallocator)]] with args specifies a deallocator function
1771 Expr *DeallocE = AL.getArgAsExpr(0);
1772 SourceLocation DeallocLoc = DeallocE->getExprLoc();
1773 FunctionDecl *DeallocFD = nullptr;
1774 DeclarationNameInfo DeallocNI;
1775
1776 if (auto *DRE = dyn_cast<DeclRefExpr>(DeallocE)) {
1777 DeallocFD = dyn_cast<FunctionDecl>(DRE->getDecl());
1778 DeallocNI = DRE->getNameInfo();
1779 if (!DeallocFD) {
1780 S.Diag(DeallocLoc, diag::err_attribute_malloc_arg_not_function)
1781 << 1 << DeallocNI.getName();
1782 return;
1783 }
1784 } else if (auto *ULE = dyn_cast<UnresolvedLookupExpr>(DeallocE)) {
1785 DeallocFD = S.ResolveSingleFunctionTemplateSpecialization(ULE, true);
1786 DeallocNI = ULE->getNameInfo();
1787 if (!DeallocFD) {
1788 S.Diag(DeallocLoc, diag::err_attribute_malloc_arg_not_function)
1789 << 2 << DeallocNI.getName();
1790 if (ULE->getType() == S.Context.OverloadTy)
1792 return;
1793 }
1794 } else {
1795 S.Diag(DeallocLoc, diag::err_attribute_malloc_arg_not_function) << 0;
1796 return;
1797 }
1798
1799 // 2nd arg of [[gnu::malloc(deallocator, 2)]] with args specifies the param
1800 // of deallocator that deallocates the pointer (defaults to 1)
1801 ParamIdx DeallocPtrIdx;
1802 if (AL.getNumArgs() == 1) {
1803 DeallocPtrIdx = ParamIdx(1, DeallocFD);
1804
1805 // FIXME: We could probably be better about diagnosing that there IS no
1806 // argument, or that the function doesn't have a prototype, but this is how
1807 // GCC diagnoses this, and is reasonably clear.
1808 if (!DeallocPtrIdx.isValid() || !hasFunctionProto(DeallocFD) ||
1809 getFunctionOrMethodNumParams(DeallocFD) < 1 ||
1810 !getFunctionOrMethodParamType(DeallocFD, DeallocPtrIdx.getASTIndex())
1812 ->isPointerType()) {
1813 S.Diag(DeallocLoc,
1814 diag::err_attribute_malloc_arg_not_function_with_pointer_arg)
1815 << DeallocNI.getName();
1816 return;
1817 }
1818 } else {
1820 DeallocFD, AL, 2, AL.getArgAsExpr(1), DeallocPtrIdx,
1821 /* CanIndexImplicitThis=*/false))
1822 return;
1823
1824 QualType DeallocPtrArgType =
1825 getFunctionOrMethodParamType(DeallocFD, DeallocPtrIdx.getASTIndex());
1826 if (!DeallocPtrArgType.getCanonicalType()->isPointerType()) {
1827 S.Diag(DeallocLoc,
1828 diag::err_attribute_malloc_arg_refers_to_non_pointer_type)
1829 << DeallocPtrIdx.getSourceIndex() << DeallocPtrArgType
1830 << DeallocNI.getName();
1831 return;
1832 }
1833 }
1834
1835 // FIXME: we should add this attribute to Clang's AST, so that clang-analyzer
1836 // can use it, see -Wmismatched-dealloc in GCC for what we can do with this.
1837 S.Diag(AL.getLoc(), diag::warn_attribute_form_ignored) << AL;
1838 D->addAttr(::new (S.Context)
1839 RestrictAttr(S.Context, AL, DeallocE, DeallocPtrIdx));
1840}
1841
1842static void handleCPUSpecificAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1843 // Ensure we don't combine these with themselves, since that causes some
1844 // confusing behavior.
1845 if (AL.getParsedKind() == ParsedAttr::AT_CPUDispatch) {
1847 return;
1848
1849 if (const auto *Other = D->getAttr<CPUDispatchAttr>()) {
1850 S.Diag(AL.getLoc(), diag::err_disallowed_duplicate_attribute) << AL;
1851 S.Diag(Other->getLocation(), diag::note_conflicting_attribute);
1852 return;
1853 }
1854 } else if (AL.getParsedKind() == ParsedAttr::AT_CPUSpecific) {
1856 return;
1857
1858 if (const auto *Other = D->getAttr<CPUSpecificAttr>()) {
1859 S.Diag(AL.getLoc(), diag::err_disallowed_duplicate_attribute) << AL;
1860 S.Diag(Other->getLocation(), diag::note_conflicting_attribute);
1861 return;
1862 }
1863 }
1864
1866
1867 if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
1868 if (MD->getParent()->isLambda()) {
1869 S.Diag(AL.getLoc(), diag::err_attribute_dll_lambda) << AL;
1870 return;
1871 }
1872 }
1873
1874 if (!AL.checkAtLeastNumArgs(S, 1))
1875 return;
1876
1878 for (unsigned ArgNo = 0; ArgNo < getNumAttributeArgs(AL); ++ArgNo) {
1879 if (!AL.isArgIdent(ArgNo)) {
1880 S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
1881 << AL << AANT_ArgumentIdentifier;
1882 return;
1883 }
1884
1885 IdentifierLoc *CPUArg = AL.getArgAsIdent(ArgNo);
1886 StringRef CPUName = CPUArg->getIdentifierInfo()->getName().trim();
1887
1889 S.Diag(CPUArg->getLoc(), diag::err_invalid_cpu_specific_dispatch_value)
1890 << CPUName << (AL.getKind() == ParsedAttr::AT_CPUDispatch);
1891 return;
1892 }
1893
1895 if (llvm::any_of(CPUs, [CPUName, &Target](const IdentifierInfo *Cur) {
1896 return Target.CPUSpecificManglingCharacter(CPUName) ==
1897 Target.CPUSpecificManglingCharacter(Cur->getName());
1898 })) {
1899 S.Diag(AL.getLoc(), diag::warn_multiversion_duplicate_entries);
1900 return;
1901 }
1902 CPUs.push_back(CPUArg->getIdentifierInfo());
1903 }
1904
1905 FD->setIsMultiVersion(true);
1906 if (AL.getKind() == ParsedAttr::AT_CPUSpecific)
1907 D->addAttr(::new (S.Context)
1908 CPUSpecificAttr(S.Context, AL, CPUs.data(), CPUs.size()));
1909 else
1910 D->addAttr(::new (S.Context)
1911 CPUDispatchAttr(S.Context, AL, CPUs.data(), CPUs.size()));
1912}
1913
1914static void handleCommonAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1915 if (S.LangOpts.CPlusPlus) {
1916 S.Diag(AL.getLoc(), diag::err_attribute_not_supported_in_lang)
1918 return;
1919 }
1920
1921 D->addAttr(::new (S.Context) CommonAttr(S.Context, AL));
1922}
1923
1924static void handleNakedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1925 if (AL.isDeclspecAttribute()) {
1926 const auto &Triple = S.getASTContext().getTargetInfo().getTriple();
1927 const auto &Arch = Triple.getArch();
1928 if (Arch != llvm::Triple::x86 &&
1929 (Arch != llvm::Triple::arm && Arch != llvm::Triple::thumb)) {
1930 S.Diag(AL.getLoc(), diag::err_attribute_not_supported_on_arch)
1931 << AL << Triple.getArchName();
1932 return;
1933 }
1934
1935 // This form is not allowed to be written on a member function (static or
1936 // nonstatic) when in Microsoft compatibility mode.
1937 if (S.getLangOpts().MSVCCompat && isa<CXXMethodDecl>(D)) {
1938 S.Diag(AL.getLoc(), diag::err_attribute_wrong_decl_type)
1940 return;
1941 }
1942 }
1943
1944 D->addAttr(::new (S.Context) NakedAttr(S.Context, AL));
1945}
1946
1947// FIXME: This is a best-effort heuristic.
1948// Currently only handles single throw expressions (optionally with
1949// ExprWithCleanups). We could expand this to perform control-flow analysis for
1950// more complex patterns.
1951static bool isKnownToAlwaysThrow(const FunctionDecl *FD) {
1952 if (!FD->hasBody())
1953 return false;
1954 const Stmt *Body = FD->getBody();
1955 const Stmt *OnlyStmt = nullptr;
1956
1957 if (const auto *Compound = dyn_cast<CompoundStmt>(Body)) {
1958 if (Compound->size() != 1)
1959 return false; // More than one statement, can't be known to always throw.
1960 OnlyStmt = *Compound->body_begin();
1961 } else {
1962 OnlyStmt = Body;
1963 }
1964
1965 // Unwrap ExprWithCleanups if necessary.
1966 if (const auto *EWC = dyn_cast<ExprWithCleanups>(OnlyStmt)) {
1967 OnlyStmt = EWC->getSubExpr();
1968 }
1969 // Check if the only statement is a throw expression.
1970 return isa<CXXThrowExpr>(OnlyStmt);
1971}
1972
1974 auto *FD = dyn_cast<FunctionDecl>(D);
1975 if (!FD)
1976 return;
1977
1978 // Skip explicit specializations here as they may have
1979 // a user-provided definition that may deliberately differ from the primary
1980 // template. If an explicit specialization truly never returns, the user
1981 // should explicitly mark it with [[noreturn]].
1983 return;
1984
1985 auto *NonConstFD = const_cast<FunctionDecl *>(FD);
1986 DiagnosticsEngine &Diags = S.getDiagnostics();
1987 if (Diags.isIgnored(diag::warn_falloff_nonvoid, FD->getLocation()) &&
1988 Diags.isIgnored(diag::warn_suggest_noreturn_function, FD->getLocation()))
1989 return;
1990
1991 if (!FD->isNoReturn() && !FD->hasAttr<InferredNoReturnAttr>() &&
1993 NonConstFD->addAttr(InferredNoReturnAttr::CreateImplicit(S.Context));
1994
1995 // [[noreturn]] can only be added to lambdas since C++23
1996 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD);
1998 return;
1999
2000 // Emit a diagnostic suggesting the function being marked [[noreturn]].
2001 S.Diag(FD->getLocation(), diag::warn_suggest_noreturn_function)
2002 << /*isFunction=*/0 << FD;
2003 }
2004}
2005
2006static void handleNoReturnAttr(Sema &S, Decl *D, const ParsedAttr &Attrs) {
2007 if (hasDeclarator(D)) return;
2008
2009 if (!isa<ObjCMethodDecl>(D)) {
2010 S.Diag(Attrs.getLoc(), diag::warn_attribute_wrong_decl_type)
2011 << Attrs << Attrs.isRegularKeywordAttribute()
2013 return;
2014 }
2015
2016 D->addAttr(::new (S.Context) NoReturnAttr(S.Context, Attrs));
2017}
2018
2019static void handleStandardNoReturnAttr(Sema &S, Decl *D, const ParsedAttr &A) {
2020 // The [[_Noreturn]] spelling is deprecated in C23, so if that was used,
2021 // issue an appropriate diagnostic. However, don't issue a diagnostic if the
2022 // attribute name comes from a macro expansion. We don't want to punish users
2023 // who write [[noreturn]] after including <stdnoreturn.h> (where 'noreturn'
2024 // is defined as a macro which expands to '_Noreturn').
2025 if (!S.getLangOpts().CPlusPlus &&
2026 A.getSemanticSpelling() == CXX11NoReturnAttr::C23_Noreturn &&
2027 !(A.getLoc().isMacroID() &&
2029 S.Diag(A.getLoc(), diag::warn_deprecated_noreturn_spelling) << A.getRange();
2030
2031 D->addAttr(::new (S.Context) CXX11NoReturnAttr(S.Context, A));
2032}
2033
2034static void handleNoCfCheckAttr(Sema &S, Decl *D, const ParsedAttr &Attrs) {
2035 if (!S.getLangOpts().CFProtectionBranch)
2036 S.Diag(Attrs.getLoc(), diag::warn_nocf_check_attribute_ignored);
2037 else
2039}
2040
2042 if (!Attrs.checkExactlyNumArgs(*this, 0)) {
2043 Attrs.setInvalid();
2044 return true;
2045 }
2046
2047 return false;
2048}
2049
2051 // Check whether the attribute is valid on the current target.
2052 if (!AL.existsInTarget(Context.getTargetInfo())) {
2054 Diag(AL.getLoc(), diag::err_keyword_not_supported_on_target)
2055 << AL << AL.getRange();
2056 else
2058 AL.setInvalid();
2059 return true;
2060 }
2061 return false;
2062}
2063
2064static void handleAnalyzerNoReturnAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2065
2066 // The checking path for 'noreturn' and 'analyzer_noreturn' are different
2067 // because 'analyzer_noreturn' does not impact the type.
2069 ValueDecl *VD = dyn_cast<ValueDecl>(D);
2070 if (!VD || (!VD->getType()->isBlockPointerType() &&
2071 !VD->getType()->isFunctionPointerType())) {
2073 ? diag::err_attribute_wrong_decl_type
2074 : diag::warn_attribute_wrong_decl_type)
2075 << AL << AL.isRegularKeywordAttribute()
2077 return;
2078 }
2079 }
2080
2081 D->addAttr(::new (S.Context) AnalyzerNoReturnAttr(S.Context, AL));
2082}
2083
2084// PS3 PPU-specific.
2085static void handleVecReturnAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2086 /*
2087 Returning a Vector Class in Registers
2088
2089 According to the PPU ABI specifications, a class with a single member of
2090 vector type is returned in memory when used as the return value of a
2091 function.
2092 This results in inefficient code when implementing vector classes. To return
2093 the value in a single vector register, add the vecreturn attribute to the
2094 class definition. This attribute is also applicable to struct types.
2095
2096 Example:
2097
2098 struct Vector
2099 {
2100 __vector float xyzw;
2101 } __attribute__((vecreturn));
2102
2103 Vector Add(Vector lhs, Vector rhs)
2104 {
2105 Vector result;
2106 result.xyzw = vec_add(lhs.xyzw, rhs.xyzw);
2107 return result; // This will be returned in a register
2108 }
2109 */
2110 if (VecReturnAttr *A = D->getAttr<VecReturnAttr>()) {
2111 S.Diag(AL.getLoc(), diag::err_repeat_attribute) << A;
2112 return;
2113 }
2114
2115 const auto *R = cast<RecordDecl>(D);
2116 int count = 0;
2117
2118 if (!isa<CXXRecordDecl>(R)) {
2119 S.Diag(AL.getLoc(), diag::err_attribute_vecreturn_only_vector_member);
2120 return;
2121 }
2122
2123 if (!cast<CXXRecordDecl>(R)->isPOD()) {
2124 S.Diag(AL.getLoc(), diag::err_attribute_vecreturn_only_pod_record);
2125 return;
2126 }
2127
2128 for (const auto *I : R->fields()) {
2129 if ((count == 1) || !I->getType()->isVectorType()) {
2130 S.Diag(AL.getLoc(), diag::err_attribute_vecreturn_only_vector_member);
2131 return;
2132 }
2133 count++;
2134 }
2135
2136 D->addAttr(::new (S.Context) VecReturnAttr(S.Context, AL));
2137}
2138
2140 const ParsedAttr &AL) {
2141 if (isa<ParmVarDecl>(D)) {
2142 // [[carries_dependency]] can only be applied to a parameter if it is a
2143 // parameter of a function declaration or lambda.
2145 S.Diag(AL.getLoc(),
2146 diag::err_carries_dependency_param_not_function_decl);
2147 return;
2148 }
2149 }
2150
2151 D->addAttr(::new (S.Context) CarriesDependencyAttr(S.Context, AL));
2152}
2153
2154static void handleUnusedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2155 bool IsCXX17Attr = AL.isCXX11Attribute() && !AL.getScopeName();
2156
2157 // If this is spelled as the standard C++17 attribute, but not in C++17, warn
2158 // about using it as an extension.
2159 if (!S.getLangOpts().CPlusPlus17 && IsCXX17Attr)
2160 S.Diag(AL.getLoc(), diag::ext_cxx17_attr) << AL;
2161
2162 D->addAttr(::new (S.Context) UnusedAttr(S.Context, AL));
2163}
2164
2166 const ParsedAttr &AL) {
2167 // If no Expr node exists on the attribute, return a nullptr result (default
2168 // priority to be used). If Expr node exists but is not valid, return an
2169 // invalid result. Otherwise, return the Expr.
2170 Expr *E = nullptr;
2171 if (AL.getNumArgs() == 1) {
2172 E = AL.getArgAsExpr(0);
2173 if (E->isValueDependent()) {
2174 if (!E->isTypeDependent() && !E->getType()->isIntegerType()) {
2175 S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
2177 return ExprError();
2178 }
2179 } else {
2180 uint32_t priority;
2181 if (!S.checkUInt32Argument(AL, AL.getArgAsExpr(0), priority)) {
2182 return ExprError();
2183 }
2184 return ConstantExpr::Create(S.Context, E,
2185 APValue(llvm::APSInt::getUnsigned(priority)));
2186 }
2187 }
2188 return E;
2189}
2190
2191static void handleConstructorAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2192 if (S.getLangOpts().HLSL && AL.getNumArgs()) {
2193 S.Diag(AL.getLoc(), diag::err_hlsl_init_priority_unsupported);
2194 return;
2195 }
2197 if (E.isInvalid())
2198 return;
2199 S.Diag(D->getLocation(), diag::warn_global_constructor)
2200 << D->getSourceRange();
2201 D->addAttr(ConstructorAttr::Create(S.Context, E.get(), AL));
2202}
2203
2204static void handleDestructorAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2206 if (E.isInvalid())
2207 return;
2208 S.Diag(D->getLocation(), diag::warn_global_destructor) << D->getSourceRange();
2209 D->addAttr(DestructorAttr::Create(S.Context, E.get(), AL));
2210}
2211
2212template <typename AttrTy>
2213static void handleAttrWithMessage(Sema &S, Decl *D, const ParsedAttr &AL) {
2214 // Handle the case where the attribute has a text message.
2215 StringRef Str;
2216 if (AL.getNumArgs() == 1 && !S.checkStringLiteralArgumentAttr(AL, 0, Str))
2217 return;
2218
2219 D->addAttr(::new (S.Context) AttrTy(S.Context, AL, Str));
2220}
2221
2223 IdentifierInfo *Platform,
2224 VersionTuple Introduced,
2225 VersionTuple Deprecated,
2226 VersionTuple Obsoleted) {
2227 StringRef PlatformName
2228 = AvailabilityAttr::getPrettyPlatformName(Platform->getName());
2229 if (PlatformName.empty())
2230 PlatformName = Platform->getName();
2231
2232 // Ensure that Introduced <= Deprecated <= Obsoleted (although not all
2233 // of these steps are needed).
2234 if (!Introduced.empty() && !Deprecated.empty() &&
2235 !(Introduced <= Deprecated)) {
2236 S.Diag(Range.getBegin(), diag::warn_availability_version_ordering)
2237 << 1 << PlatformName << Deprecated.getAsString()
2238 << 0 << Introduced.getAsString();
2239 return true;
2240 }
2241
2242 if (!Introduced.empty() && !Obsoleted.empty() &&
2243 !(Introduced <= Obsoleted)) {
2244 S.Diag(Range.getBegin(), diag::warn_availability_version_ordering)
2245 << 2 << PlatformName << Obsoleted.getAsString()
2246 << 0 << Introduced.getAsString();
2247 return true;
2248 }
2249
2250 if (!Deprecated.empty() && !Obsoleted.empty() &&
2251 !(Deprecated <= Obsoleted)) {
2252 S.Diag(Range.getBegin(), diag::warn_availability_version_ordering)
2253 << 2 << PlatformName << Obsoleted.getAsString()
2254 << 1 << Deprecated.getAsString();
2255 return true;
2256 }
2257
2258 return false;
2259}
2260
2261/// Check whether the two versions match.
2262///
2263/// If either version tuple is empty, then they are assumed to match. If
2264/// \p BeforeIsOkay is true, then \p X can be less than or equal to \p Y.
2265static bool versionsMatch(const VersionTuple &X, const VersionTuple &Y,
2266 bool BeforeIsOkay) {
2267 if (X.empty() || Y.empty())
2268 return true;
2269
2270 if (X == Y)
2271 return true;
2272
2273 if (BeforeIsOkay && X < Y)
2274 return true;
2275
2276 return false;
2277}
2278
2280 NamedDecl *D, const AttributeCommonInfo &CI, IdentifierInfo *Platform,
2281 bool Implicit, VersionTuple Introduced, VersionTuple Deprecated,
2282 VersionTuple Obsoleted, bool IsUnavailable, StringRef Message,
2283 bool IsStrict, StringRef Replacement, AvailabilityMergeKind AMK,
2284 int Priority, IdentifierInfo *Environment) {
2285 VersionTuple MergedIntroduced = Introduced;
2286 VersionTuple MergedDeprecated = Deprecated;
2287 VersionTuple MergedObsoleted = Obsoleted;
2288 bool FoundAny = false;
2289 bool OverrideOrImpl = false;
2290 switch (AMK) {
2293 OverrideOrImpl = false;
2294 break;
2295
2299 OverrideOrImpl = true;
2300 break;
2301 }
2302
2303 if (D->hasAttrs()) {
2304 AttrVec &Attrs = D->getAttrs();
2305 for (unsigned i = 0, e = Attrs.size(); i != e;) {
2306 const auto *OldAA = dyn_cast<AvailabilityAttr>(Attrs[i]);
2307 if (!OldAA) {
2308 ++i;
2309 continue;
2310 }
2311
2312 IdentifierInfo *OldPlatform = OldAA->getPlatform();
2313 if (OldPlatform != Platform) {
2314 ++i;
2315 continue;
2316 }
2317
2318 IdentifierInfo *OldEnvironment = OldAA->getEnvironment();
2319 if (OldEnvironment != Environment) {
2320 ++i;
2321 continue;
2322 }
2323
2324 // If there is an existing availability attribute for this platform that
2325 // has a lower priority use the existing one and discard the new
2326 // attribute.
2327 if (OldAA->getPriority() < Priority)
2328 return nullptr;
2329
2330 // If there is an existing attribute for this platform that has a higher
2331 // priority than the new attribute then erase the old one and continue
2332 // processing the attributes.
2333 if (OldAA->getPriority() > Priority) {
2334 Attrs.erase(Attrs.begin() + i);
2335 --e;
2336 continue;
2337 }
2338
2339 FoundAny = true;
2340 VersionTuple OldIntroduced = OldAA->getIntroduced();
2341 VersionTuple OldDeprecated = OldAA->getDeprecated();
2342 VersionTuple OldObsoleted = OldAA->getObsoleted();
2343 bool OldIsUnavailable = OldAA->getUnavailable();
2344
2345 if (!versionsMatch(OldIntroduced, Introduced, OverrideOrImpl) ||
2346 !versionsMatch(Deprecated, OldDeprecated, OverrideOrImpl) ||
2347 !versionsMatch(Obsoleted, OldObsoleted, OverrideOrImpl) ||
2348 !(OldIsUnavailable == IsUnavailable ||
2349 (OverrideOrImpl && !OldIsUnavailable && IsUnavailable))) {
2350 if (OverrideOrImpl) {
2351 int Which = -1;
2352 VersionTuple FirstVersion;
2353 VersionTuple SecondVersion;
2354 if (!versionsMatch(OldIntroduced, Introduced, OverrideOrImpl)) {
2355 Which = 0;
2356 FirstVersion = OldIntroduced;
2357 SecondVersion = Introduced;
2358 } else if (!versionsMatch(Deprecated, OldDeprecated, OverrideOrImpl)) {
2359 Which = 1;
2360 FirstVersion = Deprecated;
2361 SecondVersion = OldDeprecated;
2362 } else if (!versionsMatch(Obsoleted, OldObsoleted, OverrideOrImpl)) {
2363 Which = 2;
2364 FirstVersion = Obsoleted;
2365 SecondVersion = OldObsoleted;
2366 }
2367
2368 if (Which == -1) {
2369 Diag(OldAA->getLocation(),
2370 diag::warn_mismatched_availability_override_unavail)
2371 << AvailabilityAttr::getPrettyPlatformName(Platform->getName())
2373 } else if (Which != 1 && AMK == AvailabilityMergeKind::
2375 // Allow different 'introduced' / 'obsoleted' availability versions
2376 // on a method that implements an optional protocol requirement. It
2377 // makes less sense to allow this for 'deprecated' as the user can't
2378 // see if the method is 'deprecated' as 'respondsToSelector' will
2379 // still return true when the method is deprecated.
2380 ++i;
2381 continue;
2382 } else {
2383 Diag(OldAA->getLocation(),
2384 diag::warn_mismatched_availability_override)
2385 << Which
2386 << AvailabilityAttr::getPrettyPlatformName(Platform->getName())
2387 << FirstVersion.getAsString() << SecondVersion.getAsString()
2389 }
2391 Diag(CI.getLoc(), diag::note_overridden_method);
2392 else
2393 Diag(CI.getLoc(), diag::note_protocol_method);
2394 } else {
2395 Diag(OldAA->getLocation(), diag::warn_mismatched_availability);
2396 Diag(CI.getLoc(), diag::note_previous_attribute);
2397 }
2398
2399 Attrs.erase(Attrs.begin() + i);
2400 --e;
2401 continue;
2402 }
2403
2404 VersionTuple MergedIntroduced2 = MergedIntroduced;
2405 VersionTuple MergedDeprecated2 = MergedDeprecated;
2406 VersionTuple MergedObsoleted2 = MergedObsoleted;
2407
2408 if (MergedIntroduced2.empty())
2409 MergedIntroduced2 = OldIntroduced;
2410 if (MergedDeprecated2.empty())
2411 MergedDeprecated2 = OldDeprecated;
2412 if (MergedObsoleted2.empty())
2413 MergedObsoleted2 = OldObsoleted;
2414
2415 if (checkAvailabilityAttr(*this, OldAA->getRange(), Platform,
2416 MergedIntroduced2, MergedDeprecated2,
2417 MergedObsoleted2)) {
2418 Attrs.erase(Attrs.begin() + i);
2419 --e;
2420 continue;
2421 }
2422
2423 MergedIntroduced = MergedIntroduced2;
2424 MergedDeprecated = MergedDeprecated2;
2425 MergedObsoleted = MergedObsoleted2;
2426 ++i;
2427 }
2428 }
2429
2430 if (FoundAny &&
2431 MergedIntroduced == Introduced &&
2432 MergedDeprecated == Deprecated &&
2433 MergedObsoleted == Obsoleted)
2434 return nullptr;
2435
2436 // Only create a new attribute if !OverrideOrImpl, but we want to do
2437 // the checking.
2438 if (!checkAvailabilityAttr(*this, CI.getRange(), Platform, MergedIntroduced,
2439 MergedDeprecated, MergedObsoleted) &&
2440 !OverrideOrImpl) {
2441 auto *Avail = ::new (Context) AvailabilityAttr(
2442 Context, CI, Platform, Introduced, Deprecated, Obsoleted, IsUnavailable,
2443 Message, IsStrict, Replacement, Priority, Environment);
2444 Avail->setImplicit(Implicit);
2445 return Avail;
2446 }
2447 return nullptr;
2448}
2449
2450static void handleAvailabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2452 D)) {
2453 S.Diag(AL.getRange().getBegin(), diag::warn_deprecated_ignored_on_using)
2454 << AL;
2455 return;
2456 }
2457
2458 if (!AL.checkExactlyNumArgs(S, 1))
2459 return;
2460 IdentifierLoc *Platform = AL.getArgAsIdent(0);
2461
2462 IdentifierInfo *II = Platform->getIdentifierInfo();
2463 StringRef PrettyName = AvailabilityAttr::getPrettyPlatformName(II->getName());
2464 if (PrettyName.empty())
2465 S.Diag(Platform->getLoc(), diag::warn_availability_unknown_platform)
2466 << Platform->getIdentifierInfo();
2467
2468 auto *ND = dyn_cast<NamedDecl>(D);
2469 if (!ND) // We warned about this already, so just return.
2470 return;
2471
2475
2476 const llvm::Triple::OSType PlatformOS = AvailabilityAttr::getOSType(
2477 AvailabilityAttr::canonicalizePlatformName(II->getName()));
2478
2479 auto reportAndUpdateIfInvalidOS = [&](auto &InputVersion) -> void {
2480 const bool IsInValidRange =
2481 llvm::Triple::isValidVersionForOS(PlatformOS, InputVersion);
2482 // Canonicalize availability versions.
2483 auto CanonicalVersion = llvm::Triple::getCanonicalVersionForOS(
2484 PlatformOS, InputVersion, IsInValidRange);
2485 if (!IsInValidRange) {
2486 S.Diag(Platform->getLoc(), diag::warn_availability_invalid_os_version)
2487 << InputVersion.getAsString() << PrettyName;
2488 S.Diag(Platform->getLoc(),
2489 diag::note_availability_invalid_os_version_adjusted)
2490 << CanonicalVersion.getAsString();
2491 }
2492 InputVersion = CanonicalVersion;
2493 };
2494
2495 if (PlatformOS != llvm::Triple::OSType::UnknownOS) {
2496 reportAndUpdateIfInvalidOS(Introduced.Version);
2497 reportAndUpdateIfInvalidOS(Deprecated.Version);
2498 reportAndUpdateIfInvalidOS(Obsoleted.Version);
2499 }
2500
2501 bool IsUnavailable = AL.getUnavailableLoc().isValid();
2502 bool IsStrict = AL.getStrictLoc().isValid();
2503 StringRef Str;
2504 if (const auto *SE = dyn_cast_if_present<StringLiteral>(AL.getMessageExpr()))
2505 Str = SE->getString();
2506 StringRef Replacement;
2507 if (const auto *SE =
2508 dyn_cast_if_present<StringLiteral>(AL.getReplacementExpr()))
2509 Replacement = SE->getString();
2510
2511 if (II->isStr("swift")) {
2512 if (Introduced.isValid() || Obsoleted.isValid() ||
2513 (!IsUnavailable && !Deprecated.isValid())) {
2514 S.Diag(AL.getLoc(),
2515 diag::warn_availability_swift_unavailable_deprecated_only);
2516 return;
2517 }
2518 }
2519
2520 if (II->isStr("fuchsia")) {
2521 std::optional<unsigned> Min, Sub;
2522 if ((Min = Introduced.Version.getMinor()) ||
2523 (Sub = Introduced.Version.getSubminor())) {
2524 S.Diag(AL.getLoc(), diag::warn_availability_fuchsia_unavailable_minor);
2525 return;
2526 }
2527 }
2528
2529 if (S.getLangOpts().HLSL && IsStrict)
2530 S.Diag(AL.getStrictLoc(), diag::err_availability_unexpected_parameter)
2531 << "strict" << /* HLSL */ 0;
2532
2533 int PriorityModifier = AL.isPragmaClangAttribute()
2536
2537 const IdentifierLoc *EnvironmentLoc = AL.getEnvironment();
2538 IdentifierInfo *IIEnvironment = nullptr;
2539 if (EnvironmentLoc) {
2540 if (S.getLangOpts().HLSL) {
2541 IIEnvironment = EnvironmentLoc->getIdentifierInfo();
2542 if (AvailabilityAttr::getEnvironmentType(
2543 EnvironmentLoc->getIdentifierInfo()->getName()) ==
2544 llvm::Triple::EnvironmentType::UnknownEnvironment)
2545 S.Diag(EnvironmentLoc->getLoc(),
2546 diag::warn_availability_unknown_environment)
2547 << EnvironmentLoc->getIdentifierInfo();
2548 } else {
2549 S.Diag(EnvironmentLoc->getLoc(),
2550 diag::err_availability_unexpected_parameter)
2551 << "environment" << /* C/C++ */ 1;
2552 }
2553 }
2554
2555 AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr(
2556 ND, AL, II, false /*Implicit*/, Introduced.Version, Deprecated.Version,
2557 Obsoleted.Version, IsUnavailable, Str, IsStrict, Replacement,
2558 AvailabilityMergeKind::None, PriorityModifier, IIEnvironment);
2559 if (NewAttr)
2560 D->addAttr(NewAttr);
2561
2562 // Transcribe "ios" to "watchos" (and add a new attribute) if the versioning
2563 // matches before the start of the watchOS platform.
2564 if (S.Context.getTargetInfo().getTriple().isWatchOS()) {
2565 IdentifierInfo *NewII = nullptr;
2566 if (II->getName() == "ios")
2567 NewII = &S.Context.Idents.get("watchos");
2568 else if (II->getName() == "ios_app_extension")
2569 NewII = &S.Context.Idents.get("watchos_app_extension");
2570
2571 if (NewII) {
2572 const auto *SDKInfo = S.getDarwinSDKInfoForAvailabilityChecking();
2573 const auto *IOSToWatchOSMapping =
2574 SDKInfo ? SDKInfo->getVersionMapping(
2576 : nullptr;
2577
2578 auto adjustWatchOSVersion =
2579 [IOSToWatchOSMapping](VersionTuple Version) -> VersionTuple {
2580 if (Version.empty())
2581 return Version;
2582 auto MinimumWatchOSVersion = VersionTuple(2, 0);
2583
2584 if (IOSToWatchOSMapping) {
2585 if (auto MappedVersion = IOSToWatchOSMapping->map(
2586 Version, MinimumWatchOSVersion, std::nullopt)) {
2587 return *MappedVersion;
2588 }
2589 }
2590
2591 auto Major = Version.getMajor();
2592 auto NewMajor = Major;
2593 if (Major < 9)
2594 NewMajor = 0;
2595 else if (Major < 12)
2596 NewMajor = Major - 7;
2597 if (NewMajor >= 2) {
2598 if (Version.getMinor()) {
2599 if (Version.getSubminor())
2600 return VersionTuple(NewMajor, *Version.getMinor(),
2601 *Version.getSubminor());
2602 else
2603 return VersionTuple(NewMajor, *Version.getMinor());
2604 }
2605 return VersionTuple(NewMajor);
2606 }
2607
2608 return MinimumWatchOSVersion;
2609 };
2610
2611 auto NewIntroduced = adjustWatchOSVersion(Introduced.Version);
2612 auto NewDeprecated = adjustWatchOSVersion(Deprecated.Version);
2613 auto NewObsoleted = adjustWatchOSVersion(Obsoleted.Version);
2614
2615 AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr(
2616 ND, AL, NewII, true /*Implicit*/, NewIntroduced, NewDeprecated,
2617 NewObsoleted, IsUnavailable, Str, IsStrict, Replacement,
2619 PriorityModifier + Sema::AP_InferredFromOtherPlatform, IIEnvironment);
2620 if (NewAttr)
2621 D->addAttr(NewAttr);
2622 }
2623 } else if (S.Context.getTargetInfo().getTriple().isTvOS()) {
2624 // Transcribe "ios" to "tvos" (and add a new attribute) if the versioning
2625 // matches before the start of the tvOS platform.
2626 IdentifierInfo *NewII = nullptr;
2627 if (II->getName() == "ios")
2628 NewII = &S.Context.Idents.get("tvos");
2629 else if (II->getName() == "ios_app_extension")
2630 NewII = &S.Context.Idents.get("tvos_app_extension");
2631
2632 if (NewII) {
2633 const auto *SDKInfo = S.getDarwinSDKInfoForAvailabilityChecking();
2634 const auto *IOSToTvOSMapping =
2635 SDKInfo ? SDKInfo->getVersionMapping(
2637 : nullptr;
2638
2639 auto AdjustTvOSVersion =
2640 [IOSToTvOSMapping](VersionTuple Version) -> VersionTuple {
2641 if (Version.empty())
2642 return Version;
2643
2644 if (IOSToTvOSMapping) {
2645 if (auto MappedVersion = IOSToTvOSMapping->map(
2646 Version, VersionTuple(0, 0), std::nullopt)) {
2647 return *MappedVersion;
2648 }
2649 }
2650 return Version;
2651 };
2652
2653 auto NewIntroduced = AdjustTvOSVersion(Introduced.Version);
2654 auto NewDeprecated = AdjustTvOSVersion(Deprecated.Version);
2655 auto NewObsoleted = AdjustTvOSVersion(Obsoleted.Version);
2656
2657 AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr(
2658 ND, AL, NewII, true /*Implicit*/, NewIntroduced, NewDeprecated,
2659 NewObsoleted, IsUnavailable, Str, IsStrict, Replacement,
2661 PriorityModifier + Sema::AP_InferredFromOtherPlatform, IIEnvironment);
2662 if (NewAttr)
2663 D->addAttr(NewAttr);
2664 }
2665 } else if (S.Context.getTargetInfo().getTriple().getOS() ==
2666 llvm::Triple::IOS &&
2667 S.Context.getTargetInfo().getTriple().isMacCatalystEnvironment()) {
2668 auto GetSDKInfo = [&]() {
2670 "macOS");
2671 };
2672
2673 // Transcribe "ios" to "maccatalyst" (and add a new attribute).
2674 IdentifierInfo *NewII = nullptr;
2675 if (II->getName() == "ios")
2676 NewII = &S.Context.Idents.get("maccatalyst");
2677 else if (II->getName() == "ios_app_extension")
2678 NewII = &S.Context.Idents.get("maccatalyst_app_extension");
2679 if (NewII) {
2680 auto MinMacCatalystVersion = [](const VersionTuple &V) {
2681 if (V.empty())
2682 return V;
2683 if (V.getMajor() < 13 ||
2684 (V.getMajor() == 13 && V.getMinor() && *V.getMinor() < 1))
2685 return VersionTuple(13, 1); // The min Mac Catalyst version is 13.1.
2686 return V;
2687 };
2688 AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr(
2689 ND, AL, NewII, true /*Implicit*/,
2690 MinMacCatalystVersion(Introduced.Version),
2691 MinMacCatalystVersion(Deprecated.Version),
2692 MinMacCatalystVersion(Obsoleted.Version), IsUnavailable, Str,
2693 IsStrict, Replacement, AvailabilityMergeKind::None,
2694 PriorityModifier + Sema::AP_InferredFromOtherPlatform, IIEnvironment);
2695 if (NewAttr)
2696 D->addAttr(NewAttr);
2697 } else if (II->getName() == "macos" && GetSDKInfo() &&
2698 (!Introduced.Version.empty() || !Deprecated.Version.empty() ||
2699 !Obsoleted.Version.empty())) {
2700 if (const auto *MacOStoMacCatalystMapping =
2701 GetSDKInfo()->getVersionMapping(
2703 // Infer Mac Catalyst availability from the macOS availability attribute
2704 // if it has versioned availability. Don't infer 'unavailable'. This
2705 // inferred availability has lower priority than the other availability
2706 // attributes that are inferred from 'ios'.
2707 NewII = &S.Context.Idents.get("maccatalyst");
2708 auto RemapMacOSVersion =
2709 [&](const VersionTuple &V) -> std::optional<VersionTuple> {
2710 if (V.empty())
2711 return std::nullopt;
2712 // API_TO_BE_DEPRECATED is 100000.
2713 if (V.getMajor() == 100000)
2714 return VersionTuple(100000);
2715 // The minimum iosmac version is 13.1
2716 return MacOStoMacCatalystMapping->map(V, VersionTuple(13, 1),
2717 std::nullopt);
2718 };
2719 std::optional<VersionTuple> NewIntroduced =
2720 RemapMacOSVersion(Introduced.Version),
2721 NewDeprecated =
2722 RemapMacOSVersion(Deprecated.Version),
2723 NewObsoleted =
2724 RemapMacOSVersion(Obsoleted.Version);
2725 if (NewIntroduced || NewDeprecated || NewObsoleted) {
2726 auto VersionOrEmptyVersion =
2727 [](const std::optional<VersionTuple> &V) -> VersionTuple {
2728 return V ? *V : VersionTuple();
2729 };
2730 AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr(
2731 ND, AL, NewII, true /*Implicit*/,
2732 VersionOrEmptyVersion(NewIntroduced),
2733 VersionOrEmptyVersion(NewDeprecated),
2734 VersionOrEmptyVersion(NewObsoleted), /*IsUnavailable=*/false, Str,
2735 IsStrict, Replacement, AvailabilityMergeKind::None,
2736 PriorityModifier + Sema::AP_InferredFromOtherPlatform +
2738 IIEnvironment);
2739 if (NewAttr)
2740 D->addAttr(NewAttr);
2741 }
2742 }
2743 }
2744 }
2745}
2746
2748 const ParsedAttr &AL) {
2749 if (!AL.checkAtLeastNumArgs(S, 1) || !AL.checkAtMostNumArgs(S, 4))
2750 return;
2751
2752 StringRef Language;
2753 if (const auto *SE = dyn_cast_if_present<StringLiteral>(AL.getArgAsExpr(0)))
2754 Language = SE->getString();
2755 StringRef DefinedIn;
2756 if (const auto *SE = dyn_cast_if_present<StringLiteral>(AL.getArgAsExpr(1)))
2757 DefinedIn = SE->getString();
2758 bool IsGeneratedDeclaration = AL.getArgAsIdent(2) != nullptr;
2759 StringRef USR;
2760 if (const auto *SE = dyn_cast_if_present<StringLiteral>(AL.getArgAsExpr(3)))
2761 USR = SE->getString();
2762
2763 D->addAttr(::new (S.Context) ExternalSourceSymbolAttr(
2764 S.Context, AL, Language, DefinedIn, IsGeneratedDeclaration, USR));
2765}
2766
2767template <class T>
2769 typename T::VisibilityType value) {
2770 T *existingAttr = D->getAttr<T>();
2771 if (existingAttr) {
2772 typename T::VisibilityType existingValue = existingAttr->getVisibility();
2773 if (existingValue == value)
2774 return nullptr;
2775 S.Diag(existingAttr->getLocation(), diag::err_mismatched_visibility);
2776 S.Diag(CI.getLoc(), diag::note_previous_attribute);
2777 D->dropAttr<T>();
2778 }
2779 return ::new (S.Context) T(S.Context, CI, value);
2780}
2781
2783 const AttributeCommonInfo &CI,
2784 VisibilityAttr::VisibilityType Vis) {
2785 return ::mergeVisibilityAttr<VisibilityAttr>(*this, D, CI, Vis);
2786}
2787
2788TypeVisibilityAttr *
2790 TypeVisibilityAttr::VisibilityType Vis) {
2791 return ::mergeVisibilityAttr<TypeVisibilityAttr>(*this, D, CI, Vis);
2792}
2793
2794static void handleVisibilityAttr(Sema &S, Decl *D, const ParsedAttr &AL,
2795 bool isTypeVisibility) {
2796 // Visibility attributes don't mean anything on a typedef.
2797 if (isa<TypedefNameDecl>(D)) {
2798 S.Diag(AL.getRange().getBegin(), diag::warn_attribute_ignored) << AL;
2799 return;
2800 }
2801
2802 // 'type_visibility' can only go on a type or namespace.
2803 if (isTypeVisibility && !(isa<TagDecl>(D) || isa<ObjCInterfaceDecl>(D) ||
2804 isa<NamespaceDecl>(D))) {
2805 S.Diag(AL.getRange().getBegin(), diag::err_attribute_wrong_decl_type)
2807 return;
2808 }
2809
2810 // Check that the argument is a string literal.
2811 StringRef TypeStr;
2812 SourceLocation LiteralLoc;
2813 if (!S.checkStringLiteralArgumentAttr(AL, 0, TypeStr, &LiteralLoc))
2814 return;
2815
2816 VisibilityAttr::VisibilityType type;
2817 if (!VisibilityAttr::ConvertStrToVisibilityType(TypeStr, type)) {
2818 S.Diag(LiteralLoc, diag::warn_attribute_type_not_supported) << AL
2819 << TypeStr;
2820 return;
2821 }
2822
2823 // Complain about attempts to use protected visibility on targets
2824 // (like Darwin) that don't support it.
2825 if (type == VisibilityAttr::Protected &&
2827 S.Diag(AL.getLoc(), diag::warn_attribute_protected_visibility);
2828 type = VisibilityAttr::Default;
2829 }
2830
2831 Attr *newAttr;
2832 if (isTypeVisibility) {
2833 newAttr = S.mergeTypeVisibilityAttr(
2834 D, AL, (TypeVisibilityAttr::VisibilityType)type);
2835 } else {
2836 newAttr = S.mergeVisibilityAttr(D, AL, type);
2837 }
2838 if (newAttr)
2839 D->addAttr(newAttr);
2840}
2841
2842static void handleSentinelAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2843 unsigned sentinel = (unsigned)SentinelAttr::DefaultSentinel;
2844 if (AL.getNumArgs() > 0) {
2845 Expr *E = AL.getArgAsExpr(0);
2846 std::optional<llvm::APSInt> Idx = llvm::APSInt(32);
2847 if (E->isTypeDependent() || !(Idx = E->getIntegerConstantExpr(S.Context))) {
2848 S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
2849 << AL << 1 << AANT_ArgumentIntegerConstant << E->getSourceRange();
2850 return;
2851 }
2852
2853 if (Idx->isSigned() && Idx->isNegative()) {
2854 S.Diag(AL.getLoc(), diag::err_attribute_sentinel_less_than_zero)
2855 << E->getSourceRange();
2856 return;
2857 }
2858
2859 sentinel = Idx->getZExtValue();
2860 }
2861
2862 unsigned nullPos = (unsigned)SentinelAttr::DefaultNullPos;
2863 if (AL.getNumArgs() > 1) {
2864 Expr *E = AL.getArgAsExpr(1);
2865 std::optional<llvm::APSInt> Idx = llvm::APSInt(32);
2866 if (E->isTypeDependent() || !(Idx = E->getIntegerConstantExpr(S.Context))) {
2867 S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
2868 << AL << 2 << AANT_ArgumentIntegerConstant << E->getSourceRange();
2869 return;
2870 }
2871 nullPos = Idx->getZExtValue();
2872
2873 if ((Idx->isSigned() && Idx->isNegative()) || nullPos > 1) {
2874 // FIXME: This error message could be improved, it would be nice
2875 // to say what the bounds actually are.
2876 S.Diag(AL.getLoc(), diag::err_attribute_sentinel_not_zero_or_one)
2877 << E->getSourceRange();
2878 return;
2879 }
2880 }
2881
2882 if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
2883 const FunctionType *FT = FD->getType()->castAs<FunctionType>();
2884 if (isa<FunctionNoProtoType>(FT)) {
2885 S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_named_arguments);
2886 return;
2887 }
2888
2889 if (!cast<FunctionProtoType>(FT)->isVariadic()) {
2890 S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 0;
2891 return;
2892 }
2893 } else if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) {
2894 if (!MD->isVariadic()) {
2895 S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 0;
2896 return;
2897 }
2898 } else if (const auto *BD = dyn_cast<BlockDecl>(D)) {
2899 if (!BD->isVariadic()) {
2900 S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 1;
2901 return;
2902 }
2903 } else if (const auto *V = dyn_cast<VarDecl>(D)) {
2904 QualType Ty = V->getType();
2905 if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) {
2906 const FunctionType *FT = Ty->isFunctionPointerType()
2907 ? D->getFunctionType()
2908 : Ty->castAs<BlockPointerType>()
2909 ->getPointeeType()
2910 ->castAs<FunctionType>();
2911 if (!cast<FunctionProtoType>(FT)->isVariadic()) {
2912 int m = Ty->isFunctionPointerType() ? 0 : 1;
2913 S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_not_variadic) << m;
2914 return;
2915 }
2916 } else {
2917 S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
2918 << AL << AL.isRegularKeywordAttribute()
2920 return;
2921 }
2922 } else {
2923 S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
2924 << AL << AL.isRegularKeywordAttribute()
2926 return;
2927 }
2928 D->addAttr(::new (S.Context) SentinelAttr(S.Context, AL, sentinel, nullPos));
2929}
2930
2931static void handleWarnUnusedResult(Sema &S, Decl *D, const ParsedAttr &AL) {
2932 if (D->getFunctionType() &&
2935 S.Diag(AL.getLoc(), diag::warn_attribute_void_function_method) << AL << 0;
2936 return;
2937 }
2938 if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
2939 if (MD->getReturnType()->isVoidType()) {
2940 S.Diag(AL.getLoc(), diag::warn_attribute_void_function_method) << AL << 1;
2941 return;
2942 }
2943
2944 StringRef Str;
2945 if (AL.isStandardAttributeSyntax()) {
2946 // If this is spelled [[clang::warn_unused_result]] we look for an optional
2947 // string literal. This is not gated behind any specific version of the
2948 // standard.
2949 if (AL.isClangScope()) {
2950 if (AL.getNumArgs() == 1 &&
2951 !S.checkStringLiteralArgumentAttr(AL, 0, Str, nullptr))
2952 return;
2953 } else if (!AL.getScopeName()) {
2954 // The standard attribute cannot be applied to variable declarations such
2955 // as a function pointer.
2956 if (isa<VarDecl>(D))
2957 S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
2958 << AL << AL.isRegularKeywordAttribute()
2960
2961 // If this is spelled as the standard C++17 attribute, but not in C++17,
2962 // warn about using it as an extension. If there are attribute arguments,
2963 // then claim it's a C++20 extension instead. C23 supports this attribute
2964 // with the message; no extension warning is needed there beyond the one
2965 // already issued for accepting attributes in older modes.
2966 const LangOptions &LO = S.getLangOpts();
2967 if (AL.getNumArgs() == 1) {
2968 if (LO.CPlusPlus && !LO.CPlusPlus20)
2969 S.Diag(AL.getLoc(), diag::ext_cxx20_attr) << AL;
2970
2971 if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, nullptr))
2972 return;
2973 } else if (LO.CPlusPlus && !LO.CPlusPlus17)
2974 S.Diag(AL.getLoc(), diag::ext_cxx17_attr) << AL;
2975 }
2976 }
2977
2978 if ((!AL.isGNUAttribute() &&
2979 !(AL.isStandardAttributeSyntax() && AL.isClangScope())) &&
2981 S.Diag(AL.getLoc(), diag::warn_unused_result_typedef_unsupported_spelling)
2982 << AL.isGNUScope();
2983 return;
2984 }
2985
2986 D->addAttr(::new (S.Context) WarnUnusedResultAttr(S.Context, AL, Str));
2987}
2988
2989static void handleWeakImportAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2990 // weak_import only applies to variable & function declarations.
2991 bool isDef = false;
2992 if (!D->canBeWeakImported(isDef)) {
2993 if (isDef)
2994 S.Diag(AL.getLoc(), diag::warn_attribute_invalid_on_definition)
2995 << "weak_import";
2996 else if (isa<ObjCPropertyDecl>(D) || isa<ObjCMethodDecl>(D) ||
2997 (S.Context.getTargetInfo().getTriple().isOSDarwin() &&
2999 // Nothing to warn about here.
3000 } else
3001 S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
3003
3004 return;
3005 }
3006
3007 D->addAttr(::new (S.Context) WeakImportAttr(S.Context, AL));
3008}
3009
3010// Checks whether an argument of launch_bounds-like attribute is
3011// acceptable, performs implicit conversion to Rvalue, and returns
3012// non-nullptr Expr result on success. Otherwise, it returns nullptr
3013// and may output an error.
3014template <class Attribute>
3015static Expr *makeAttributeArgExpr(Sema &S, Expr *E, const Attribute &Attr,
3016 const unsigned Idx) {
3018 return nullptr;
3019
3020 // Accept template arguments for now as they depend on something else.
3021 // We'll get to check them when they eventually get instantiated.
3022 if (E->isValueDependent())
3023 return E;
3024
3025 std::optional<llvm::APSInt> I = llvm::APSInt(64);
3026 if (!(I = E->getIntegerConstantExpr(S.Context))) {
3027 S.Diag(E->getExprLoc(), diag::err_attribute_argument_n_type)
3028 << &Attr << Idx << AANT_ArgumentIntegerConstant << E->getSourceRange();
3029 return nullptr;
3030 }
3031 // Make sure we can fit it in 32 bits.
3032 if (!I->isIntN(32)) {
3033 S.Diag(E->getExprLoc(), diag::err_ice_too_large)
3034 << toString(*I, 10, false) << 32 << /* Unsigned */ 1;
3035 return nullptr;
3036 }
3037 if (*I < 0)
3038 S.Diag(E->getExprLoc(), diag::err_attribute_requires_positive_integer)
3039 << &Attr << /*non-negative*/ 1 << E->getSourceRange();
3040
3041 // We may need to perform implicit conversion of the argument.
3043 S.Context, S.Context.getConstType(S.Context.IntTy), /*consume*/ false);
3044 ExprResult ValArg = S.PerformCopyInitialization(Entity, SourceLocation(), E);
3045 assert(!ValArg.isInvalid() &&
3046 "Unexpected PerformCopyInitialization() failure.");
3047
3048 return ValArg.getAs<Expr>();
3049}
3050
3051// Handles reqd_work_group_size and work_group_size_hint.
3052template <typename WorkGroupAttr>
3053static void handleWorkGroupSize(Sema &S, Decl *D, const ParsedAttr &AL) {
3054 Expr *WGSize[3];
3055 for (unsigned i = 0; i < 3; ++i) {
3056 if (Expr *E = makeAttributeArgExpr(S, AL.getArgAsExpr(i), AL, i))
3057 WGSize[i] = E;
3058 else
3059 return;
3060 }
3061
3062 auto IsZero = [&](Expr *E) {
3063 if (E->isValueDependent())
3064 return false;
3065 std::optional<llvm::APSInt> I = E->getIntegerConstantExpr(S.Context);
3066 assert(I && "Non-integer constant expr");
3067 return I->isZero();
3068 };
3069
3070 if (!llvm::all_of(WGSize, IsZero)) {
3071 for (unsigned i = 0; i < 3; ++i) {
3072 const Expr *E = AL.getArgAsExpr(i);
3073 if (IsZero(WGSize[i])) {
3074 S.Diag(AL.getLoc(), diag::err_attribute_argument_is_zero)
3075 << AL << E->getSourceRange();
3076 return;
3077 }
3078 }
3079 }
3080
3081 auto Equal = [&](Expr *LHS, Expr *RHS) {
3082 if (LHS->isValueDependent() || RHS->isValueDependent())
3083 return true;
3084 std::optional<llvm::APSInt> L = LHS->getIntegerConstantExpr(S.Context);
3085 assert(L && "Non-integer constant expr");
3086 std::optional<llvm::APSInt> R = RHS->getIntegerConstantExpr(S.Context);
3087 assert(L && "Non-integer constant expr");
3088 return L == R;
3089 };
3090
3091 WorkGroupAttr *Existing = D->getAttr<WorkGroupAttr>();
3092 if (Existing &&
3093 !llvm::equal(std::initializer_list<Expr *>{Existing->getXDim(),
3094 Existing->getYDim(),
3095 Existing->getZDim()},
3096 WGSize, Equal))
3097 S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL;
3098
3099 D->addAttr(::new (S.Context)
3100 WorkGroupAttr(S.Context, AL, WGSize[0], WGSize[1], WGSize[2]));
3101}
3102
3103static void handleVecTypeHint(Sema &S, Decl *D, const ParsedAttr &AL) {
3104 if (!AL.hasParsedType()) {
3105 S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 1;
3106 return;
3107 }
3108
3109 TypeSourceInfo *ParmTSI = nullptr;
3110 QualType ParmType = S.GetTypeFromParser(AL.getTypeArg(), &ParmTSI);
3111 assert(ParmTSI && "no type source info for attribute argument");
3112
3113 if (!ParmType->isExtVectorType() && !ParmType->isFloatingType() &&
3114 (ParmType->isBooleanType() ||
3115 !ParmType->isIntegralType(S.getASTContext()))) {
3116 S.Diag(AL.getLoc(), diag::err_attribute_invalid_argument) << 2 << AL;
3117 return;
3118 }
3119
3120 if (VecTypeHintAttr *A = D->getAttr<VecTypeHintAttr>()) {
3121 if (!S.Context.hasSameType(A->getTypeHint(), ParmType)) {
3122 S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL;
3123 return;
3124 }
3125 }
3126
3127 D->addAttr(::new (S.Context) VecTypeHintAttr(S.Context, AL, ParmTSI));
3128}
3129
3131 StringRef Name) {
3132 // Explicit or partial specializations do not inherit
3133 // the section attribute from the primary template.
3134 if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3135 if (CI.getAttributeSpellingListIndex() == SectionAttr::Declspec_allocate &&
3137 return nullptr;
3138 }
3139 if (SectionAttr *ExistingAttr = D->getAttr<SectionAttr>()) {
3140 if (ExistingAttr->getName() == Name)
3141 return nullptr;
3142 Diag(ExistingAttr->getLocation(), diag::warn_mismatched_section)
3143 << 1 /*section*/;
3144 Diag(CI.getLoc(), diag::note_previous_attribute);
3145 return nullptr;
3146 }
3147 return ::new (Context) SectionAttr(Context, CI, Name);
3148}
3149
3150llvm::Error Sema::isValidSectionSpecifier(StringRef SecName) {
3151 if (!Context.getTargetInfo().getTriple().isOSDarwin())
3152 return llvm::Error::success();
3153
3154 // Let MCSectionMachO validate this.
3155 StringRef Segment, Section;
3156 unsigned TAA, StubSize;
3157 bool HasTAA;
3158 return llvm::MCSectionMachO::ParseSectionSpecifier(SecName, Segment, Section,
3159 TAA, HasTAA, StubSize);
3160}
3161
3162bool Sema::checkSectionName(SourceLocation LiteralLoc, StringRef SecName) {
3163 if (llvm::Error E = isValidSectionSpecifier(SecName)) {
3164 Diag(LiteralLoc, diag::err_attribute_section_invalid_for_target)
3165 << toString(std::move(E)) << 1 /*'section'*/;
3166 return false;
3167 }
3168 return true;
3169}
3170
3171static void handleSectionAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3172 // Make sure that there is a string literal as the sections's single
3173 // argument.
3174 StringRef Str;
3175 SourceLocation LiteralLoc;
3176 if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &LiteralLoc))
3177 return;
3178
3179 if (!S.checkSectionName(LiteralLoc, Str))
3180 return;
3181
3182 SectionAttr *NewAttr = S.mergeSectionAttr(D, AL, Str);
3183 if (NewAttr) {
3184 D->addAttr(NewAttr);
3186 ObjCPropertyDecl>(D))
3187 S.UnifySection(NewAttr->getName(),
3189 cast<NamedDecl>(D));
3190 }
3191}
3192
3193static bool isValidCodeModelAttr(llvm::Triple &Triple, StringRef Str) {
3194 if (Triple.isLoongArch()) {
3195 return Str == "normal" || Str == "medium" || Str == "extreme";
3196 } else {
3197 assert(Triple.getArch() == llvm::Triple::x86_64 &&
3198 "only loongarch/x86-64 supported");
3199 return Str == "small" || Str == "large";
3200 }
3201}
3202
3203static void handleCodeModelAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3204 StringRef Str;
3205 SourceLocation LiteralLoc;
3206 auto IsTripleSupported = [](llvm::Triple &Triple) {
3207 return Triple.getArch() == llvm::Triple::ArchType::x86_64 ||
3208 Triple.isLoongArch();
3209 };
3210
3211 // Check that it is a string.
3212 if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &LiteralLoc))
3213 return;
3214
3217 if (auto *aux = S.Context.getAuxTargetInfo()) {
3218 Triples.push_back(aux->getTriple());
3219 } else if (S.Context.getTargetInfo().getTriple().isNVPTX() ||
3220 S.Context.getTargetInfo().getTriple().isAMDGPU() ||
3221 S.Context.getTargetInfo().getTriple().isSPIRV()) {
3222 // Ignore the attribute for pure GPU device compiles since it only applies
3223 // to host globals.
3224 return;
3225 }
3226
3227 auto SupportedTripleIt = llvm::find_if(Triples, IsTripleSupported);
3228 if (SupportedTripleIt == Triples.end()) {
3229 S.Diag(LiteralLoc, diag::warn_unknown_attribute_ignored) << AL;
3230 return;
3231 }
3232
3233 llvm::CodeModel::Model CM;
3234 if (!CodeModelAttr::ConvertStrToModel(Str, CM) ||
3235 !isValidCodeModelAttr(*SupportedTripleIt, Str)) {
3236 S.Diag(LiteralLoc, diag::err_attr_codemodel_arg) << Str;
3237 return;
3238 }
3239
3240 D->addAttr(::new (S.Context) CodeModelAttr(S.Context, AL, CM));
3241}
3242
3243// This is used for `__declspec(code_seg("segname"))` on a decl.
3244// `#pragma code_seg("segname")` uses checkSectionName() instead.
3245static bool checkCodeSegName(Sema &S, SourceLocation LiteralLoc,
3246 StringRef CodeSegName) {
3247 if (llvm::Error E = S.isValidSectionSpecifier(CodeSegName)) {
3248 S.Diag(LiteralLoc, diag::err_attribute_section_invalid_for_target)
3249 << toString(std::move(E)) << 0 /*'code-seg'*/;
3250 return false;
3251 }
3252
3253 return true;
3254}
3255
3257 StringRef Name) {
3258 // Explicit or partial specializations do not inherit
3259 // the code_seg attribute from the primary template.
3260 if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3262 return nullptr;
3263 }
3264 if (const auto *ExistingAttr = D->getAttr<CodeSegAttr>()) {
3265 if (ExistingAttr->getName() == Name)
3266 return nullptr;
3267 Diag(ExistingAttr->getLocation(), diag::warn_mismatched_section)
3268 << 0 /*codeseg*/;
3269 Diag(CI.getLoc(), diag::note_previous_attribute);
3270 return nullptr;
3271 }
3272 return ::new (Context) CodeSegAttr(Context, CI, Name);
3273}
3274
3275static void handleCodeSegAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3276 StringRef Str;
3277 SourceLocation LiteralLoc;
3278 if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &LiteralLoc))
3279 return;
3280 if (!checkCodeSegName(S, LiteralLoc, Str))
3281 return;
3282 if (const auto *ExistingAttr = D->getAttr<CodeSegAttr>()) {
3283 if (!ExistingAttr->isImplicit()) {
3284 S.Diag(AL.getLoc(),
3285 ExistingAttr->getName() == Str
3286 ? diag::warn_duplicate_codeseg_attribute
3287 : diag::err_conflicting_codeseg_attribute);
3288 return;
3289 }
3290 D->dropAttr<CodeSegAttr>();
3291 }
3292 if (CodeSegAttr *CSA = S.mergeCodeSegAttr(D, AL, Str))
3293 D->addAttr(CSA);
3294}
3295
3296bool Sema::checkTargetAttr(SourceLocation LiteralLoc, StringRef AttrStr) {
3297 using namespace DiagAttrParams;
3298
3299 if (AttrStr.contains("fpmath="))
3300 return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3301 << Unsupported << None << "fpmath=" << Target;
3302
3303 // Diagnose use of tune if target doesn't support it.
3304 if (!Context.getTargetInfo().supportsTargetAttributeTune() &&
3305 AttrStr.contains("tune="))
3306 return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3307 << Unsupported << None << "tune=" << Target;
3308
3309 ParsedTargetAttr ParsedAttrs =
3310 Context.getTargetInfo().parseTargetAttr(AttrStr);
3311
3312 if (!ParsedAttrs.CPU.empty() &&
3313 !Context.getTargetInfo().isValidCPUName(ParsedAttrs.CPU))
3314 return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3315 << Unknown << CPU << ParsedAttrs.CPU << Target;
3316
3317 if (!ParsedAttrs.Tune.empty() &&
3318 !Context.getTargetInfo().isValidCPUName(ParsedAttrs.Tune))
3319 return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3320 << Unknown << Tune << ParsedAttrs.Tune << Target;
3321
3322 if (Context.getTargetInfo().getTriple().isRISCV()) {
3323 if (ParsedAttrs.Duplicate != "")
3324 return Diag(LiteralLoc, diag::err_duplicate_target_attribute)
3325 << Duplicate << None << ParsedAttrs.Duplicate << Target;
3326 for (StringRef CurFeature : ParsedAttrs.Features) {
3327 if (!CurFeature.starts_with('+') && !CurFeature.starts_with('-'))
3328 return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3329 << Unsupported << None << AttrStr << Target;
3330 }
3331 }
3332
3333 if (Context.getTargetInfo().getTriple().isLoongArch()) {
3334 for (StringRef CurFeature : ParsedAttrs.Features) {
3335 if (CurFeature.starts_with("!arch=")) {
3336 StringRef ArchValue = CurFeature.split("=").second.trim();
3337 return Diag(LiteralLoc, diag::err_attribute_unsupported)
3338 << "target(arch=..)" << ArchValue;
3339 }
3340 }
3341 }
3342
3343 if (ParsedAttrs.Duplicate != "")
3344 return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3345 << Duplicate << None << ParsedAttrs.Duplicate << Target;
3346
3347 for (const auto &Feature : ParsedAttrs.Features) {
3348 auto CurFeature = StringRef(Feature).drop_front(); // remove + or -.
3349 if (!Context.getTargetInfo().isValidFeatureName(CurFeature))
3350 return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3351 << Unsupported << None << CurFeature << Target;
3352 }
3353
3355 StringRef DiagMsg;
3356 if (ParsedAttrs.BranchProtection.empty())
3357 return false;
3358 if (!Context.getTargetInfo().validateBranchProtection(
3359 ParsedAttrs.BranchProtection, ParsedAttrs.CPU, BPI,
3360 Context.getLangOpts(), DiagMsg)) {
3361 if (DiagMsg.empty())
3362 return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3363 << Unsupported << None << "branch-protection" << Target;
3364 return Diag(LiteralLoc, diag::err_invalid_branch_protection_spec)
3365 << DiagMsg;
3366 }
3367 if (!DiagMsg.empty())
3368 Diag(LiteralLoc, diag::warn_unsupported_branch_protection_spec) << DiagMsg;
3369
3370 return false;
3371}
3372
3373static void handleTargetVersionAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3374 StringRef Param;
3375 SourceLocation Loc;
3376 if (!S.checkStringLiteralArgumentAttr(AL, 0, Param, &Loc))
3377 return;
3378
3379 if (S.Context.getTargetInfo().getTriple().isAArch64()) {
3380 if (S.ARM().checkTargetVersionAttr(Param, Loc))
3381 return;
3382 } else if (S.Context.getTargetInfo().getTriple().isRISCV()) {
3383 if (S.RISCV().checkTargetVersionAttr(Param, Loc))
3384 return;
3385 }
3386
3387 TargetVersionAttr *NewAttr =
3388 ::new (S.Context) TargetVersionAttr(S.Context, AL, Param);
3389 D->addAttr(NewAttr);
3390}
3391
3392static void handleTargetAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3393 StringRef Str;
3394 SourceLocation LiteralLoc;
3395 if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &LiteralLoc) ||
3396 S.checkTargetAttr(LiteralLoc, Str))
3397 return;
3398
3399 TargetAttr *NewAttr = ::new (S.Context) TargetAttr(S.Context, AL, Str);
3400 D->addAttr(NewAttr);
3401}
3402
3403static void handleTargetClonesAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3404 // Ensure we don't combine these with themselves, since that causes some
3405 // confusing behavior.
3406 if (const auto *Other = D->getAttr<TargetClonesAttr>()) {
3407 S.Diag(AL.getLoc(), diag::err_disallowed_duplicate_attribute) << AL;
3408 S.Diag(Other->getLocation(), diag::note_conflicting_attribute);
3409 return;
3410 }
3412 return;
3413
3414 // FIXME: We could probably figure out how to get this to work for lambdas
3415 // someday.
3416 if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
3417 if (MD->getParent()->isLambda()) {
3418 S.Diag(D->getLocation(), diag::err_multiversion_doesnt_support)
3419 << static_cast<unsigned>(MultiVersionKind::TargetClones)
3420 << /*Lambda*/ 9;
3421 return;
3422 }
3423 }
3424
3427 for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) {
3428 StringRef Param;
3429 SourceLocation Loc;
3430 if (!S.checkStringLiteralArgumentAttr(AL, I, Param, &Loc))
3431 return;
3432 Params.push_back(Param);
3433 Locations.push_back(Loc);
3434 }
3435
3436 SmallVector<SmallString<64>, 2> NewParams;
3437 if (S.Context.getTargetInfo().getTriple().isAArch64()) {
3438 if (S.ARM().checkTargetClonesAttr(Params, Locations, NewParams))
3439 return;
3440 } else if (S.Context.getTargetInfo().getTriple().isRISCV()) {
3441 if (S.RISCV().checkTargetClonesAttr(Params, Locations, NewParams))
3442 return;
3443 } else if (S.Context.getTargetInfo().getTriple().isX86()) {
3444 if (S.X86().checkTargetClonesAttr(Params, Locations, NewParams))
3445 return;
3446 }
3447 Params.clear();
3448 for (auto &SmallStr : NewParams)
3449 Params.push_back(SmallStr.str());
3450
3451 TargetClonesAttr *NewAttr = ::new (S.Context)
3452 TargetClonesAttr(S.Context, AL, Params.data(), Params.size());
3453 D->addAttr(NewAttr);
3454}
3455
3456static void handleMinVectorWidthAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3457 Expr *E = AL.getArgAsExpr(0);
3458 uint32_t VecWidth;
3459 if (!S.checkUInt32Argument(AL, E, VecWidth)) {
3460 AL.setInvalid();
3461 return;
3462 }
3463
3464 MinVectorWidthAttr *Existing = D->getAttr<MinVectorWidthAttr>();
3465 if (Existing && Existing->getVectorWidth() != VecWidth) {
3466 S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL;
3467 return;
3468 }
3469
3470 D->addAttr(::new (S.Context) MinVectorWidthAttr(S.Context, AL, VecWidth));
3471}
3472
3473static void handleCleanupAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3474 Expr *E = AL.getArgAsExpr(0);
3475 SourceLocation Loc = E->getExprLoc();
3476 FunctionDecl *FD = nullptr;
3478
3479 // gcc only allows for simple identifiers. Since we support more than gcc, we
3480 // will warn the user.
3481 if (auto *DRE = dyn_cast<DeclRefExpr>(E)) {
3482 if (DRE->hasQualifier())
3483 S.Diag(Loc, diag::warn_cleanup_ext);
3484 FD = dyn_cast<FunctionDecl>(DRE->getDecl());
3485 NI = DRE->getNameInfo();
3486 if (!FD) {
3487 S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 1
3488 << NI.getName();
3489 return;
3490 }
3491 } else if (auto *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
3492 if (ULE->hasExplicitTemplateArgs())
3493 S.Diag(Loc, diag::warn_cleanup_ext);
3495 NI = ULE->getNameInfo();
3496 if (!FD) {
3497 S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 2
3498 << NI.getName();
3499 if (ULE->getType() == S.Context.OverloadTy)
3501 return;
3502 }
3503 } else {
3504 S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 0;
3505 return;
3506 }
3507
3508 if (FD->getNumParams() != 1) {
3509 S.Diag(Loc, diag::err_attribute_cleanup_func_must_take_one_arg)
3510 << NI.getName();
3511 return;
3512 }
3513
3514 // We're currently more strict than GCC about what function types we accept.
3515 // If this ever proves to be a problem it should be easy to fix.
3517 QualType ParamTy = FD->getParamDecl(0)->getType();
3519 FD->getParamDecl(0)->getLocation(), ParamTy, Ty))) {
3520 S.Diag(Loc, diag::err_attribute_cleanup_func_arg_incompatible_type)
3521 << NI.getName() << ParamTy << Ty;
3522 return;
3523 }
3524 VarDecl *VD = cast<VarDecl>(D);
3525 // Create a reference to the variable declaration. This is a fake/dummy
3526 // reference.
3527 DeclRefExpr *VariableReference = DeclRefExpr::Create(
3528 S.Context, NestedNameSpecifierLoc{}, FD->getLocation(), VD, false,
3529 DeclarationNameInfo{VD->getDeclName(), VD->getLocation()}, VD->getType(),
3530 VK_LValue);
3531
3532 // Create a unary operator expression that represents taking the address of
3533 // the variable. This is a fake/dummy expression.
3534 Expr *AddressOfVariable = UnaryOperator::Create(
3535 S.Context, VariableReference, UnaryOperatorKind::UO_AddrOf,
3537 +false, FPOptionsOverride{});
3538
3539 // Create a function call expression. This is a fake/dummy call expression.
3540 CallExpr *FunctionCallExpression =
3541 CallExpr::Create(S.Context, E, ArrayRef{AddressOfVariable},
3543
3544 if (S.CheckFunctionCall(FD, FunctionCallExpression,
3545 FD->getType()->getAs<FunctionProtoType>())) {
3546 return;
3547 }
3548
3549 auto *attr = ::new (S.Context) CleanupAttr(S.Context, AL, FD);
3550 attr->setArgLoc(E->getExprLoc());
3551 D->addAttr(attr);
3552}
3553
3555 const ParsedAttr &AL) {
3556 if (!AL.isArgIdent(0)) {
3557 S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
3558 << AL << 0 << AANT_ArgumentIdentifier;
3559 return;
3560 }
3561
3562 EnumExtensibilityAttr::Kind ExtensibilityKind;
3564 if (!EnumExtensibilityAttr::ConvertStrToKind(II->getName(),
3565 ExtensibilityKind)) {
3566 S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << II;
3567 return;
3568 }
3569
3570 D->addAttr(::new (S.Context)
3571 EnumExtensibilityAttr(S.Context, AL, ExtensibilityKind));
3572}
3573
3574/// Handle __attribute__((format_arg((idx)))) attribute based on
3575/// http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html
3576static void handleFormatArgAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3577 const Expr *IdxExpr = AL.getArgAsExpr(0);
3578 ParamIdx Idx;
3579 if (!S.checkFunctionOrMethodParameterIndex(D, AL, 1, IdxExpr, Idx))
3580 return;
3581
3582 // Make sure the format string is really a string.
3584
3585 bool NotNSStringTy = !S.ObjC().isNSStringType(Ty);
3586 if (NotNSStringTy && !S.ObjC().isCFStringType(Ty) &&
3587 (!Ty->isPointerType() ||
3589 S.Diag(AL.getLoc(), diag::err_format_attribute_not)
3590 << IdxExpr->getSourceRange() << getFunctionOrMethodParamRange(D, 0);
3591 return;
3592 }
3594 // replace instancetype with the class type
3595 auto *Instancetype = cast<TypedefType>(S.Context.getTypedefType(
3596 ElaboratedTypeKeyword::None, /*Qualifier=*/std::nullopt,
3598 if (Ty->getAs<TypedefType>() == Instancetype)
3599 if (auto *OMD = dyn_cast<ObjCMethodDecl>(D))
3600 if (auto *Interface = OMD->getClassInterface())
3602 QualType(Interface->getTypeForDecl(), 0));
3603 if (!S.ObjC().isNSStringType(Ty, /*AllowNSAttributedString=*/true) &&
3604 !S.ObjC().isCFStringType(Ty) &&
3605 (!Ty->isPointerType() ||
3607 S.Diag(AL.getLoc(), diag::err_format_attribute_result_not)
3608 << (NotNSStringTy ? "string type" : "NSString")
3609 << IdxExpr->getSourceRange() << getFunctionOrMethodParamRange(D, 0);
3610 return;
3611 }
3612
3613 D->addAttr(::new (S.Context) FormatArgAttr(S.Context, AL, Idx));
3614}
3615
3624
3625/// getFormatAttrKind - Map from format attribute names to supported format
3626/// types.
3627static FormatAttrKind getFormatAttrKind(StringRef Format) {
3628 return llvm::StringSwitch<FormatAttrKind>(Format)
3629 // Check for formats that get handled specially.
3630 .Case("NSString", NSStringFormat)
3631 .Case("CFString", CFStringFormat)
3632 .Cases("gnu_strftime", "strftime", StrftimeFormat)
3633
3634 // Otherwise, check for supported formats.
3635 .Cases("gnu_scanf", "scanf", "gnu_printf", "printf", "printf0",
3636 "gnu_strfmon", "strfmon", SupportedFormat)
3637 .Cases("cmn_err", "vcmn_err", "zcmn_err", SupportedFormat)
3638 .Cases("kprintf", "syslog", SupportedFormat) // OpenBSD.
3639 .Case("freebsd_kprintf", SupportedFormat) // FreeBSD.
3640 .Case("os_trace", SupportedFormat)
3641 .Case("os_log", SupportedFormat)
3642
3643 .Cases("gcc_diag", "gcc_cdiag", "gcc_cxxdiag", "gcc_tdiag", IgnoredFormat)
3644 .Default(InvalidFormat);
3645}
3646
3647/// Handle __attribute__((init_priority(priority))) attributes based on
3648/// http://gcc.gnu.org/onlinedocs/gcc/C_002b_002b-Attributes.html
3649static void handleInitPriorityAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3650 if (!S.getLangOpts().CPlusPlus) {
3651 S.Diag(AL.getLoc(), diag::warn_attribute_ignored) << AL;
3652 return;
3653 }
3654
3655 if (S.getLangOpts().HLSL) {
3656 S.Diag(AL.getLoc(), diag::err_hlsl_init_priority_unsupported);
3657 return;
3658 }
3659
3661 S.Diag(AL.getLoc(), diag::err_init_priority_object_attr);
3662 AL.setInvalid();
3663 return;
3664 }
3665 QualType T = cast<VarDecl>(D)->getType();
3666 if (S.Context.getAsArrayType(T))
3668 if (!T->isRecordType()) {
3669 S.Diag(AL.getLoc(), diag::err_init_priority_object_attr);
3670 AL.setInvalid();
3671 return;
3672 }
3673
3674 Expr *E = AL.getArgAsExpr(0);
3675 uint32_t prioritynum;
3676 if (!S.checkUInt32Argument(AL, E, prioritynum)) {
3677 AL.setInvalid();
3678 return;
3679 }
3680
3681 if (prioritynum > 65535) {
3682 S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_range)
3683 << E->getSourceRange() << AL << 0 << 65535;
3684 AL.setInvalid();
3685 return;
3686 }
3687
3688 // Values <= 100 are reserved for the implementation, and libc++
3689 // benefits from being able to specify values in that range.
3690 if (prioritynum < 101)
3691 S.Diag(AL.getLoc(), diag::warn_init_priority_reserved)
3692 << E->getSourceRange() << prioritynum;
3693 D->addAttr(::new (S.Context) InitPriorityAttr(S.Context, AL, prioritynum));
3694}
3695
3697 StringRef NewUserDiagnostic) {
3698 if (const auto *EA = D->getAttr<ErrorAttr>()) {
3699 std::string NewAttr = CI.getNormalizedFullName();
3700 assert((NewAttr == "error" || NewAttr == "warning") &&
3701 "unexpected normalized full name");
3702 bool Match = (EA->isError() && NewAttr == "error") ||
3703 (EA->isWarning() && NewAttr == "warning");
3704 if (!Match) {
3705 Diag(EA->getLocation(), diag::err_attributes_are_not_compatible)
3706 << CI << EA
3707 << (CI.isRegularKeywordAttribute() ||
3708 EA->isRegularKeywordAttribute());
3709 Diag(CI.getLoc(), diag::note_conflicting_attribute);
3710 return nullptr;
3711 }
3712 if (EA->getUserDiagnostic() != NewUserDiagnostic) {
3713 Diag(CI.getLoc(), diag::warn_duplicate_attribute) << EA;
3714 Diag(EA->getLoc(), diag::note_previous_attribute);
3715 }
3716 D->dropAttr<ErrorAttr>();
3717 }
3718 return ::new (Context) ErrorAttr(Context, CI, NewUserDiagnostic);
3719}
3720
3722 IdentifierInfo *Format, int FormatIdx,
3723 int FirstArg) {
3724 // Check whether we already have an equivalent format attribute.
3725 for (auto *F : D->specific_attrs<FormatAttr>()) {
3726 if (F->getType() == Format &&
3727 F->getFormatIdx() == FormatIdx &&
3728 F->getFirstArg() == FirstArg) {
3729 // If we don't have a valid location for this attribute, adopt the
3730 // location.
3731 if (F->getLocation().isInvalid())
3732 F->setRange(CI.getRange());
3733 return nullptr;
3734 }
3735 }
3736
3737 return ::new (Context) FormatAttr(Context, CI, Format, FormatIdx, FirstArg);
3738}
3739
3741 const AttributeCommonInfo &CI,
3742 IdentifierInfo *Format,
3743 int FormatIdx,
3744 StringLiteral *FormatStr) {
3745 // Check whether we already have an equivalent FormatMatches attribute.
3746 for (auto *F : D->specific_attrs<FormatMatchesAttr>()) {
3747 if (F->getType() == Format && F->getFormatIdx() == FormatIdx) {
3748 if (!CheckFormatStringsCompatible(GetFormatStringType(Format->getName()),
3749 F->getFormatString(), FormatStr))
3750 return nullptr;
3751
3752 // If we don't have a valid location for this attribute, adopt the
3753 // location.
3754 if (F->getLocation().isInvalid())
3755 F->setRange(CI.getRange());
3756 return nullptr;
3757 }
3758 }
3759
3760 return ::new (Context)
3761 FormatMatchesAttr(Context, CI, Format, FormatIdx, FormatStr);
3762}
3763
3770
3771/// Handle __attribute__((format(type,idx,firstarg))) attributes based on
3772/// http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html
3773static bool handleFormatAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL,
3774 FormatAttrCommon *Info) {
3775 // Checks the first two arguments of the attribute; this is shared between
3776 // Format and FormatMatches attributes.
3777
3778 if (!AL.isArgIdent(0)) {
3779 S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
3780 << AL << 1 << AANT_ArgumentIdentifier;
3781 return false;
3782 }
3783
3784 // In C++ the implicit 'this' function parameter also counts, and they are
3785 // counted from one.
3786 bool HasImplicitThisParam = isInstanceMethod(D);
3787 Info->NumArgs = getFunctionOrMethodNumParams(D) + HasImplicitThisParam;
3788
3790 StringRef Format = Info->Identifier->getName();
3791
3792 if (normalizeName(Format)) {
3793 // If we've modified the string name, we need a new identifier for it.
3794 Info->Identifier = &S.Context.Idents.get(Format);
3795 }
3796
3797 // Check for supported formats.
3798 Info->Kind = getFormatAttrKind(Format);
3799
3800 if (Info->Kind == IgnoredFormat)
3801 return false;
3802
3803 if (Info->Kind == InvalidFormat) {
3804 S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported)
3805 << AL << Info->Identifier->getName();
3806 return false;
3807 }
3808
3809 // checks for the 2nd argument
3810 Expr *IdxExpr = AL.getArgAsExpr(1);
3811 if (!S.checkUInt32Argument(AL, IdxExpr, Info->FormatStringIdx, 2))
3812 return false;
3813
3814 if (Info->FormatStringIdx < 1 || Info->FormatStringIdx > Info->NumArgs) {
3815 S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
3816 << AL << 2 << IdxExpr->getSourceRange();
3817 return false;
3818 }
3819
3820 // FIXME: Do we need to bounds check?
3821 unsigned ArgIdx = Info->FormatStringIdx - 1;
3822
3823 if (HasImplicitThisParam) {
3824 if (ArgIdx == 0) {
3825 S.Diag(AL.getLoc(),
3826 diag::err_format_attribute_implicit_this_format_string)
3827 << IdxExpr->getSourceRange();
3828 return false;
3829 }
3830 ArgIdx--;
3831 }
3832
3833 // make sure the format string is really a string
3834 QualType Ty = getFunctionOrMethodParamType(D, ArgIdx);
3835
3836 if (!S.ObjC().isNSStringType(Ty, true) && !S.ObjC().isCFStringType(Ty) &&
3837 (!Ty->isPointerType() ||
3839 S.Diag(AL.getLoc(), diag::err_format_attribute_not)
3840 << IdxExpr->getSourceRange()
3841 << getFunctionOrMethodParamRange(D, ArgIdx);
3842 return false;
3843 }
3844
3845 return true;
3846}
3847
3848static void handleFormatAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3849 FormatAttrCommon Info;
3850 if (!handleFormatAttrCommon(S, D, AL, &Info))
3851 return;
3852
3853 // check the 3rd argument
3854 Expr *FirstArgExpr = AL.getArgAsExpr(2);
3855 uint32_t FirstArg;
3856 if (!S.checkUInt32Argument(AL, FirstArgExpr, FirstArg, 3))
3857 return;
3858
3859 // FirstArg == 0 is is always valid.
3860 if (FirstArg != 0) {
3861 if (Info.Kind == StrftimeFormat) {
3862 // If the kind is strftime, FirstArg must be 0 because strftime does not
3863 // use any variadic arguments.
3864 S.Diag(AL.getLoc(), diag::err_format_strftime_third_parameter)
3865 << FirstArgExpr->getSourceRange()
3866 << FixItHint::CreateReplacement(FirstArgExpr->getSourceRange(), "0");
3867 return;
3868 } else if (isFunctionOrMethodVariadic(D)) {
3869 // Else, if the function is variadic, then FirstArg must be 0 or the
3870 // "position" of the ... parameter. It's unusual to use 0 with variadic
3871 // functions, so the fixit proposes the latter.
3872 if (FirstArg != Info.NumArgs + 1) {
3873 S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
3874 << AL << 3 << FirstArgExpr->getSourceRange()
3876 std::to_string(Info.NumArgs + 1));
3877 return;
3878 }
3879 } else {
3880 // Inescapable GCC compatibility diagnostic.
3881 S.Diag(D->getLocation(), diag::warn_gcc_requires_variadic_function) << AL;
3882 if (FirstArg <= Info.FormatStringIdx) {
3883 // Else, the function is not variadic, and FirstArg must be 0 or any
3884 // parameter after the format parameter. We don't offer a fixit because
3885 // there are too many possible good values.
3886 S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
3887 << AL << 3 << FirstArgExpr->getSourceRange();
3888 return;
3889 }
3890 }
3891 }
3892
3893 FormatAttr *NewAttr =
3894 S.mergeFormatAttr(D, AL, Info.Identifier, Info.FormatStringIdx, FirstArg);
3895 if (NewAttr)
3896 D->addAttr(NewAttr);
3897}
3898
3899static void handleFormatMatchesAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3900 FormatAttrCommon Info;
3901 if (!handleFormatAttrCommon(S, D, AL, &Info))
3902 return;
3903
3904 Expr *FormatStrExpr = AL.getArgAsExpr(2)->IgnoreParenImpCasts();
3905 if (auto *SL = dyn_cast<StringLiteral>(FormatStrExpr)) {
3907 if (S.ValidateFormatString(FST, SL))
3908 if (auto *NewAttr = S.mergeFormatMatchesAttr(D, AL, Info.Identifier,
3909 Info.FormatStringIdx, SL))
3910 D->addAttr(NewAttr);
3911 return;
3912 }
3913
3914 S.Diag(AL.getLoc(), diag::err_format_nonliteral)
3915 << FormatStrExpr->getSourceRange();
3916}
3917
3918/// Handle __attribute__((callback(CalleeIdx, PayloadIdx0, ...))) attributes.
3919static void handleCallbackAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3920 // The index that identifies the callback callee is mandatory.
3921 if (AL.getNumArgs() == 0) {
3922 S.Diag(AL.getLoc(), diag::err_callback_attribute_no_callee)
3923 << AL.getRange();
3924 return;
3925 }
3926
3927 bool HasImplicitThisParam = isInstanceMethod(D);
3928 int32_t NumArgs = getFunctionOrMethodNumParams(D);
3929
3930 FunctionDecl *FD = D->getAsFunction();
3931 assert(FD && "Expected a function declaration!");
3932
3933 llvm::StringMap<int> NameIdxMapping;
3934 NameIdxMapping["__"] = -1;
3935
3936 NameIdxMapping["this"] = 0;
3937
3938 int Idx = 1;
3939 for (const ParmVarDecl *PVD : FD->parameters())
3940 NameIdxMapping[PVD->getName()] = Idx++;
3941
3942 auto UnknownName = NameIdxMapping.end();
3943
3944 SmallVector<int, 8> EncodingIndices;
3945 for (unsigned I = 0, E = AL.getNumArgs(); I < E; ++I) {
3946 SourceRange SR;
3947 int32_t ArgIdx;
3948
3949 if (AL.isArgIdent(I)) {
3950 IdentifierLoc *IdLoc = AL.getArgAsIdent(I);
3951 auto It = NameIdxMapping.find(IdLoc->getIdentifierInfo()->getName());
3952 if (It == UnknownName) {
3953 S.Diag(AL.getLoc(), diag::err_callback_attribute_argument_unknown)
3954 << IdLoc->getIdentifierInfo() << IdLoc->getLoc();
3955 return;
3956 }
3957
3958 SR = SourceRange(IdLoc->getLoc());
3959 ArgIdx = It->second;
3960 } else if (AL.isArgExpr(I)) {
3961 Expr *IdxExpr = AL.getArgAsExpr(I);
3962
3963 // If the expression is not parseable as an int32_t we have a problem.
3964 if (!S.checkUInt32Argument(AL, IdxExpr, (uint32_t &)ArgIdx, I + 1,
3965 false)) {
3966 S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
3967 << AL << (I + 1) << IdxExpr->getSourceRange();
3968 return;
3969 }
3970
3971 // Check oob, excluding the special values, 0 and -1.
3972 if (ArgIdx < -1 || ArgIdx > NumArgs) {
3973 S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
3974 << AL << (I + 1) << IdxExpr->getSourceRange();
3975 return;
3976 }
3977
3978 SR = IdxExpr->getSourceRange();
3979 } else {
3980 llvm_unreachable("Unexpected ParsedAttr argument type!");
3981 }
3982
3983 if (ArgIdx == 0 && !HasImplicitThisParam) {
3984 S.Diag(AL.getLoc(), diag::err_callback_implicit_this_not_available)
3985 << (I + 1) << SR;
3986 return;
3987 }
3988
3989 // Adjust for the case we do not have an implicit "this" parameter. In this
3990 // case we decrease all positive values by 1 to get LLVM argument indices.
3991 if (!HasImplicitThisParam && ArgIdx > 0)
3992 ArgIdx -= 1;
3993
3994 EncodingIndices.push_back(ArgIdx);
3995 }
3996
3997 int CalleeIdx = EncodingIndices.front();
3998 // Check if the callee index is proper, thus not "this" and not "unknown".
3999 // This means the "CalleeIdx" has to be non-negative if "HasImplicitThisParam"
4000 // is false and positive if "HasImplicitThisParam" is true.
4001 if (CalleeIdx < (int)HasImplicitThisParam) {
4002 S.Diag(AL.getLoc(), diag::err_callback_attribute_invalid_callee)
4003 << AL.getRange();
4004 return;
4005 }
4006
4007 // Get the callee type, note the index adjustment as the AST doesn't contain
4008 // the this type (which the callee cannot reference anyway!).
4009 const Type *CalleeType =
4010 getFunctionOrMethodParamType(D, CalleeIdx - HasImplicitThisParam)
4011 .getTypePtr();
4012 if (!CalleeType || !CalleeType->isFunctionPointerType()) {
4013 S.Diag(AL.getLoc(), diag::err_callback_callee_no_function_type)
4014 << AL.getRange();
4015 return;
4016 }
4017
4018 const Type *CalleeFnType =
4020
4021 // TODO: Check the type of the callee arguments.
4022
4023 const auto *CalleeFnProtoType = dyn_cast<FunctionProtoType>(CalleeFnType);
4024 if (!CalleeFnProtoType) {
4025 S.Diag(AL.getLoc(), diag::err_callback_callee_no_function_type)
4026 << AL.getRange();
4027 return;
4028 }
4029
4030 if (CalleeFnProtoType->getNumParams() != EncodingIndices.size() - 1) {
4031 S.Diag(AL.getLoc(), diag::err_attribute_wrong_arg_count_for_func)
4032 << AL << QualType{CalleeFnProtoType, 0}
4033 << CalleeFnProtoType->getNumParams()
4034 << (unsigned)(EncodingIndices.size() - 1);
4035 return;
4036 }
4037
4038 if (CalleeFnProtoType->isVariadic()) {
4039 S.Diag(AL.getLoc(), diag::err_callback_callee_is_variadic) << AL.getRange();
4040 return;
4041 }
4042
4043 // Do not allow multiple callback attributes.
4044 if (D->hasAttr<CallbackAttr>()) {
4045 S.Diag(AL.getLoc(), diag::err_callback_attribute_multiple) << AL.getRange();
4046 return;
4047 }
4048
4049 D->addAttr(::new (S.Context) CallbackAttr(
4050 S.Context, AL, EncodingIndices.data(), EncodingIndices.size()));
4051}
4052
4053LifetimeCaptureByAttr *Sema::ParseLifetimeCaptureByAttr(const ParsedAttr &AL,
4054 StringRef ParamName) {
4055 // Atleast one capture by is required.
4056 if (AL.getNumArgs() == 0) {
4057 Diag(AL.getLoc(), diag::err_capture_by_attribute_no_entity)
4058 << AL.getRange();
4059 return nullptr;
4060 }
4061 unsigned N = AL.getNumArgs();
4062 auto ParamIdents =
4064 auto ParamLocs =
4066 bool IsValid = true;
4067 for (unsigned I = 0; I < N; ++I) {
4068 if (AL.isArgExpr(I)) {
4069 Expr *E = AL.getArgAsExpr(I);
4070 Diag(E->getExprLoc(), diag::err_capture_by_attribute_argument_unknown)
4071 << E << E->getExprLoc();
4072 IsValid = false;
4073 continue;
4074 }
4075 assert(AL.isArgIdent(I));
4076 IdentifierLoc *IdLoc = AL.getArgAsIdent(I);
4077 if (IdLoc->getIdentifierInfo()->getName() == ParamName) {
4078 Diag(IdLoc->getLoc(), diag::err_capture_by_references_itself)
4079 << IdLoc->getLoc();
4080 IsValid = false;
4081 continue;
4082 }
4083 ParamIdents[I] = IdLoc->getIdentifierInfo();
4084 ParamLocs[I] = IdLoc->getLoc();
4085 }
4086 if (!IsValid)
4087 return nullptr;
4088 SmallVector<int> FakeParamIndices(N, LifetimeCaptureByAttr::Invalid);
4089 auto *CapturedBy =
4090 LifetimeCaptureByAttr::Create(Context, FakeParamIndices.data(), N, AL);
4091 CapturedBy->setArgs(ParamIdents, ParamLocs);
4092 return CapturedBy;
4093}
4094
4096 const ParsedAttr &AL) {
4097 // Do not allow multiple attributes.
4098 if (D->hasAttr<LifetimeCaptureByAttr>()) {
4099 S.Diag(AL.getLoc(), diag::err_capture_by_attribute_multiple)
4100 << AL.getRange();
4101 return;
4102 }
4103 auto *PVD = dyn_cast<ParmVarDecl>(D);
4104 assert(PVD);
4105 auto *CaptureByAttr = S.ParseLifetimeCaptureByAttr(AL, PVD->getName());
4106 if (CaptureByAttr)
4107 D->addAttr(CaptureByAttr);
4108}
4109
4111 bool HasImplicitThisParam = isInstanceMethod(FD);
4113 for (ParmVarDecl *PVD : FD->parameters())
4114 if (auto *A = PVD->getAttr<LifetimeCaptureByAttr>())
4115 Attrs.push_back(A);
4116 if (HasImplicitThisParam) {
4117 TypeSourceInfo *TSI = FD->getTypeSourceInfo();
4118 if (!TSI)
4119 return;
4121 for (TypeLoc TL = TSI->getTypeLoc();
4122 (ATL = TL.getAsAdjusted<AttributedTypeLoc>());
4123 TL = ATL.getModifiedLoc()) {
4124 if (auto *A = ATL.getAttrAs<LifetimeCaptureByAttr>())
4125 Attrs.push_back(const_cast<LifetimeCaptureByAttr *>(A));
4126 }
4127 }
4128 if (Attrs.empty())
4129 return;
4130 llvm::StringMap<int> NameIdxMapping = {
4131 {"global", LifetimeCaptureByAttr::Global},
4132 {"unknown", LifetimeCaptureByAttr::Unknown}};
4133 int Idx = 0;
4134 if (HasImplicitThisParam) {
4135 NameIdxMapping["this"] = 0;
4136 Idx++;
4137 }
4138 for (const ParmVarDecl *PVD : FD->parameters())
4139 NameIdxMapping[PVD->getName()] = Idx++;
4140 auto DisallowReservedParams = [&](StringRef Reserved) {
4141 for (const ParmVarDecl *PVD : FD->parameters())
4142 if (PVD->getName() == Reserved)
4143 Diag(PVD->getLocation(), diag::err_capture_by_param_uses_reserved_name)
4144 << (PVD->getName() == "unknown");
4145 };
4146 for (auto *CapturedBy : Attrs) {
4147 const auto &Entities = CapturedBy->getArgIdents();
4148 for (size_t I = 0; I < Entities.size(); ++I) {
4149 StringRef Name = Entities[I]->getName();
4150 auto It = NameIdxMapping.find(Name);
4151 if (It == NameIdxMapping.end()) {
4152 auto Loc = CapturedBy->getArgLocs()[I];
4153 if (!HasImplicitThisParam && Name == "this")
4154 Diag(Loc, diag::err_capture_by_implicit_this_not_available) << Loc;
4155 else
4156 Diag(Loc, diag::err_capture_by_attribute_argument_unknown)
4157 << Entities[I] << Loc;
4158 continue;
4159 }
4160 if (Name == "unknown" || Name == "global")
4161 DisallowReservedParams(Name);
4162 CapturedBy->setParamIdx(I, It->second);
4163 }
4164 }
4165}
4166
4167static bool isFunctionLike(const Type &T) {
4168 // Check for explicit function types.
4169 // 'called_once' is only supported in Objective-C and it has
4170 // function pointers and block pointers.
4171 return T.isFunctionPointerType() || T.isBlockPointerType();
4172}
4173
4174/// Handle 'called_once' attribute.
4175static void handleCalledOnceAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4176 // 'called_once' only applies to parameters representing functions.
4177 QualType T = cast<ParmVarDecl>(D)->getType();
4178
4179 if (!isFunctionLike(*T)) {
4180 S.Diag(AL.getLoc(), diag::err_called_once_attribute_wrong_type);
4181 return;
4182 }
4183
4184 D->addAttr(::new (S.Context) CalledOnceAttr(S.Context, AL));
4185}
4186
4187static void handleTransparentUnionAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4188 // Try to find the underlying union declaration.
4189 RecordDecl *RD = nullptr;
4190 const auto *TD = dyn_cast<TypedefNameDecl>(D);
4191 if (TD && TD->getUnderlyingType()->isUnionType())
4192 RD = TD->getUnderlyingType()->getAsRecordDecl();
4193 else
4194 RD = dyn_cast<RecordDecl>(D);
4195
4196 if (!RD || !RD->isUnion()) {
4197 S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
4199 return;
4200 }
4201
4202 if (!RD->isCompleteDefinition()) {
4203 if (!RD->isBeingDefined())
4204 S.Diag(AL.getLoc(),
4205 diag::warn_transparent_union_attribute_not_definition);
4206 return;
4207 }
4208
4210 FieldEnd = RD->field_end();
4211 if (Field == FieldEnd) {
4212 S.Diag(AL.getLoc(), diag::warn_transparent_union_attribute_zero_fields);
4213 return;
4214 }
4215
4216 FieldDecl *FirstField = *Field;
4217 QualType FirstType = FirstField->getType();
4218 if (FirstType->hasFloatingRepresentation() || FirstType->isVectorType()) {
4219 S.Diag(FirstField->getLocation(),
4220 diag::warn_transparent_union_attribute_floating)
4221 << FirstType->isVectorType() << FirstType;
4222 return;
4223 }
4224
4225 if (FirstType->isIncompleteType())
4226 return;
4227 uint64_t FirstSize = S.Context.getTypeSize(FirstType);
4228 uint64_t FirstAlign = S.Context.getTypeAlign(FirstType);
4229 for (; Field != FieldEnd; ++Field) {
4230 QualType FieldType = Field->getType();
4231 if (FieldType->isIncompleteType())
4232 return;
4233 // FIXME: this isn't fully correct; we also need to test whether the
4234 // members of the union would all have the same calling convention as the
4235 // first member of the union. Checking just the size and alignment isn't
4236 // sufficient (consider structs passed on the stack instead of in registers
4237 // as an example).
4238 if (S.Context.getTypeSize(FieldType) != FirstSize ||
4239 S.Context.getTypeAlign(FieldType) > FirstAlign) {
4240 // Warn if we drop the attribute.
4241 bool isSize = S.Context.getTypeSize(FieldType) != FirstSize;
4242 unsigned FieldBits = isSize ? S.Context.getTypeSize(FieldType)
4243 : S.Context.getTypeAlign(FieldType);
4244 S.Diag(Field->getLocation(),
4245 diag::warn_transparent_union_attribute_field_size_align)
4246 << isSize << *Field << FieldBits;
4247 unsigned FirstBits = isSize ? FirstSize : FirstAlign;
4248 S.Diag(FirstField->getLocation(),
4249 diag::note_transparent_union_first_field_size_align)
4250 << isSize << FirstBits;
4251 return;
4252 }
4253 }
4254
4255 RD->addAttr(::new (S.Context) TransparentUnionAttr(S.Context, AL));
4256}
4257
4258static void handleAnnotateAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4259 auto *Attr = S.CreateAnnotationAttr(AL);
4260 if (Attr) {
4261 D->addAttr(Attr);
4262 }
4263}
4264
4265static void handleAlignValueAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4266 S.AddAlignValueAttr(D, AL, AL.getArgAsExpr(0));
4267}
4268
4270 SourceLocation AttrLoc = CI.getLoc();
4271
4272 QualType T;
4273 if (const auto *TD = dyn_cast<TypedefNameDecl>(D))
4274 T = TD->getUnderlyingType();
4275 else if (const auto *VD = dyn_cast<ValueDecl>(D))
4276 T = VD->getType();
4277 else
4278 llvm_unreachable("Unknown decl type for align_value");
4279
4280 if (!T->isDependentType() && !T->isAnyPointerType() &&
4281 !T->isReferenceType() && !T->isMemberPointerType()) {
4282 Diag(AttrLoc, diag::warn_attribute_pointer_or_reference_only)
4283 << CI << T << D->getSourceRange();
4284 return;
4285 }
4286
4287 if (!E->isValueDependent()) {
4288 llvm::APSInt Alignment;
4290 E, &Alignment, diag::err_align_value_attribute_argument_not_int);
4291 if (ICE.isInvalid())
4292 return;
4293
4294 if (!Alignment.isPowerOf2()) {
4295 Diag(AttrLoc, diag::err_alignment_not_power_of_two)
4296 << E->getSourceRange();
4297 return;
4298 }
4299
4300 D->addAttr(::new (Context) AlignValueAttr(Context, CI, ICE.get()));
4301 return;
4302 }
4303
4304 // Save dependent expressions in the AST to be instantiated.
4305 D->addAttr(::new (Context) AlignValueAttr(Context, CI, E));
4306}
4307
4308static void handleAlignedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4309 if (AL.hasParsedType()) {
4310 const ParsedType &TypeArg = AL.getTypeArg();
4311 TypeSourceInfo *TInfo;
4312 (void)S.GetTypeFromParser(
4313 ParsedType::getFromOpaquePtr(TypeArg.getAsOpaquePtr()), &TInfo);
4314 if (AL.isPackExpansion() &&
4316 S.Diag(AL.getEllipsisLoc(),
4317 diag::err_pack_expansion_without_parameter_packs);
4318 return;
4319 }
4320
4321 if (!AL.isPackExpansion() &&
4323 TInfo, Sema::UPPC_Expression))
4324 return;
4325
4326 S.AddAlignedAttr(D, AL, TInfo, AL.isPackExpansion());
4327 return;
4328 }
4329
4330 // check the attribute arguments.
4331 if (AL.getNumArgs() > 1) {
4332 S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 1;
4333 return;
4334 }
4335
4336 if (AL.getNumArgs() == 0) {
4337 D->addAttr(::new (S.Context) AlignedAttr(S.Context, AL, true, nullptr));
4338 return;
4339 }
4340
4341 Expr *E = AL.getArgAsExpr(0);
4343 S.Diag(AL.getEllipsisLoc(),
4344 diag::err_pack_expansion_without_parameter_packs);
4345 return;
4346 }
4347
4349 return;
4350
4351 S.AddAlignedAttr(D, AL, E, AL.isPackExpansion());
4352}
4353
4354/// Perform checking of type validity
4355///
4356/// C++11 [dcl.align]p1:
4357/// An alignment-specifier may be applied to a variable or to a class
4358/// data member, but it shall not be applied to a bit-field, a function
4359/// parameter, the formal parameter of a catch clause, or a variable
4360/// declared with the register storage class specifier. An
4361/// alignment-specifier may also be applied to the declaration of a class
4362/// or enumeration type.
4363/// CWG 2354:
4364/// CWG agreed to remove permission for alignas to be applied to
4365/// enumerations.
4366/// C11 6.7.5/2:
4367/// An alignment attribute shall not be specified in a declaration of
4368/// a typedef, or a bit-field, or a function, or a parameter, or an
4369/// object declared with the register storage-class specifier.
4371 const AlignedAttr &Attr,
4372 SourceLocation AttrLoc) {
4373 int DiagKind = -1;
4374 if (isa<ParmVarDecl>(D)) {
4375 DiagKind = 0;
4376 } else if (const auto *VD = dyn_cast<VarDecl>(D)) {
4377 if (VD->getStorageClass() == SC_Register)
4378 DiagKind = 1;
4379 if (VD->isExceptionVariable())
4380 DiagKind = 2;
4381 } else if (const auto *FD = dyn_cast<FieldDecl>(D)) {
4382 if (FD->isBitField())
4383 DiagKind = 3;
4384 } else if (const auto *ED = dyn_cast<EnumDecl>(D)) {
4385 if (ED->getLangOpts().CPlusPlus)
4386 DiagKind = 4;
4387 } else if (!isa<TagDecl>(D)) {
4388 return S.Diag(AttrLoc, diag::err_attribute_wrong_decl_type)
4390 << (Attr.isC11() ? ExpectedVariableOrField
4392 }
4393 if (DiagKind != -1) {
4394 return S.Diag(AttrLoc, diag::err_alignas_attribute_wrong_decl_type)
4395 << &Attr << DiagKind;
4396 }
4397 return false;
4398}
4399
4401 bool IsPackExpansion) {
4402 AlignedAttr TmpAttr(Context, CI, true, E);
4403 SourceLocation AttrLoc = CI.getLoc();
4404
4405 // C++11 alignas(...) and C11 _Alignas(...) have additional requirements.
4406 if (TmpAttr.isAlignas() &&
4407 validateAlignasAppliedType(*this, D, TmpAttr, AttrLoc))
4408 return;
4409
4410 if (E->isValueDependent()) {
4411 // We can't support a dependent alignment on a non-dependent type,
4412 // because we have no way to model that a type is "alignment-dependent"
4413 // but not dependent in any other way.
4414 if (const auto *TND = dyn_cast<TypedefNameDecl>(D)) {
4415 if (!TND->getUnderlyingType()->isDependentType()) {
4416 Diag(AttrLoc, diag::err_alignment_dependent_typedef_name)
4417 << E->getSourceRange();
4418 return;
4419 }
4420 }
4421
4422 // Save dependent expressions in the AST to be instantiated.
4423 AlignedAttr *AA = ::new (Context) AlignedAttr(Context, CI, true, E);
4424 AA->setPackExpansion(IsPackExpansion);
4425 D->addAttr(AA);
4426 return;
4427 }
4428
4429 // FIXME: Cache the number on the AL object?
4430 llvm::APSInt Alignment;
4432 E, &Alignment, diag::err_aligned_attribute_argument_not_int);
4433 if (ICE.isInvalid())
4434 return;
4435
4437 if (Context.getTargetInfo().getTriple().isOSBinFormatCOFF())
4438 MaximumAlignment = std::min(MaximumAlignment, uint64_t(8192));
4439 if (Alignment > MaximumAlignment) {
4440 Diag(AttrLoc, diag::err_attribute_aligned_too_great)
4442 return;
4443 }
4444
4445 uint64_t AlignVal = Alignment.getZExtValue();
4446 // C++11 [dcl.align]p2:
4447 // -- if the constant expression evaluates to zero, the alignment
4448 // specifier shall have no effect
4449 // C11 6.7.5p6:
4450 // An alignment specification of zero has no effect.
4451 if (!(TmpAttr.isAlignas() && !Alignment)) {
4452 if (!llvm::isPowerOf2_64(AlignVal)) {
4453 Diag(AttrLoc, diag::err_alignment_not_power_of_two)
4454 << E->getSourceRange();
4455 return;
4456 }
4457 }
4458
4459 const auto *VD = dyn_cast<VarDecl>(D);
4460 if (VD) {
4461 unsigned MaxTLSAlign =
4462 Context.toCharUnitsFromBits(Context.getTargetInfo().getMaxTLSAlign())
4463 .getQuantity();
4464 if (MaxTLSAlign && AlignVal > MaxTLSAlign &&
4465 VD->getTLSKind() != VarDecl::TLS_None) {
4466 Diag(VD->getLocation(), diag::err_tls_var_aligned_over_maximum)
4467 << (unsigned)AlignVal << VD << MaxTLSAlign;
4468 return;
4469 }
4470 }
4471
4472 // On AIX, an aligned attribute can not decrease the alignment when applied
4473 // to a variable declaration with vector type.
4474 if (VD && Context.getTargetInfo().getTriple().isOSAIX()) {
4475 const Type *Ty = VD->getType().getTypePtr();
4476 if (Ty->isVectorType() && AlignVal < 16) {
4477 Diag(VD->getLocation(), diag::warn_aligned_attr_underaligned)
4478 << VD->getType() << 16;
4479 return;
4480 }
4481 }
4482
4483 AlignedAttr *AA = ::new (Context) AlignedAttr(Context, CI, true, ICE.get());
4484 AA->setPackExpansion(IsPackExpansion);
4485 AA->setCachedAlignmentValue(
4486 static_cast<unsigned>(AlignVal * Context.getCharWidth()));
4487 D->addAttr(AA);
4488}
4489
4491 TypeSourceInfo *TS, bool IsPackExpansion) {
4492 AlignedAttr TmpAttr(Context, CI, false, TS);
4493 SourceLocation AttrLoc = CI.getLoc();
4494
4495 // C++11 alignas(...) and C11 _Alignas(...) have additional requirements.
4496 if (TmpAttr.isAlignas() &&
4497 validateAlignasAppliedType(*this, D, TmpAttr, AttrLoc))
4498 return;
4499
4500 if (TS->getType()->isDependentType()) {
4501 // We can't support a dependent alignment on a non-dependent type,
4502 // because we have no way to model that a type is "type-dependent"
4503 // but not dependent in any other way.
4504 if (const auto *TND = dyn_cast<TypedefNameDecl>(D)) {
4505 if (!TND->getUnderlyingType()->isDependentType()) {
4506 Diag(AttrLoc, diag::err_alignment_dependent_typedef_name)
4507 << TS->getTypeLoc().getSourceRange();
4508 return;
4509 }
4510 }
4511
4512 AlignedAttr *AA = ::new (Context) AlignedAttr(Context, CI, false, TS);
4513 AA->setPackExpansion(IsPackExpansion);
4514 D->addAttr(AA);
4515 return;
4516 }
4517
4518 const auto *VD = dyn_cast<VarDecl>(D);
4519 unsigned AlignVal = TmpAttr.getAlignment(Context);
4520 // On AIX, an aligned attribute can not decrease the alignment when applied
4521 // to a variable declaration with vector type.
4522 if (VD && Context.getTargetInfo().getTriple().isOSAIX()) {
4523 const Type *Ty = VD->getType().getTypePtr();
4524 if (Ty->isVectorType() &&
4525 Context.toCharUnitsFromBits(AlignVal).getQuantity() < 16) {
4526 Diag(VD->getLocation(), diag::warn_aligned_attr_underaligned)
4527 << VD->getType() << 16;
4528 return;
4529 }
4530 }
4531
4532 AlignedAttr *AA = ::new (Context) AlignedAttr(Context, CI, false, TS);
4533 AA->setPackExpansion(IsPackExpansion);
4534 AA->setCachedAlignmentValue(AlignVal);
4535 D->addAttr(AA);
4536}
4537
4539 assert(D->hasAttrs() && "no attributes on decl");
4540
4541 QualType UnderlyingTy, DiagTy;
4542 if (const auto *VD = dyn_cast<ValueDecl>(D)) {
4543 UnderlyingTy = DiagTy = VD->getType();
4544 } else {
4545 UnderlyingTy = DiagTy = Context.getCanonicalTagType(cast<TagDecl>(D));
4546 if (const auto *ED = dyn_cast<EnumDecl>(D))
4547 UnderlyingTy = ED->getIntegerType();
4548 }
4549 if (DiagTy->isDependentType() || DiagTy->isIncompleteType())
4550 return;
4551
4552 // C++11 [dcl.align]p5, C11 6.7.5/4:
4553 // The combined effect of all alignment attributes in a declaration shall
4554 // not specify an alignment that is less strict than the alignment that
4555 // would otherwise be required for the entity being declared.
4556 AlignedAttr *AlignasAttr = nullptr;
4557 AlignedAttr *LastAlignedAttr = nullptr;
4558 unsigned Align = 0;
4559 for (auto *I : D->specific_attrs<AlignedAttr>()) {
4560 if (I->isAlignmentDependent())
4561 return;
4562 if (I->isAlignas())
4563 AlignasAttr = I;
4564 Align = std::max(Align, I->getAlignment(Context));
4565 LastAlignedAttr = I;
4566 }
4567
4568 if (Align && DiagTy->isSizelessType()) {
4569 Diag(LastAlignedAttr->getLocation(), diag::err_attribute_sizeless_type)
4570 << LastAlignedAttr << DiagTy;
4571 } else if (AlignasAttr && Align) {
4572 CharUnits RequestedAlign = Context.toCharUnitsFromBits(Align);
4573 CharUnits NaturalAlign = Context.getTypeAlignInChars(UnderlyingTy);
4574 if (NaturalAlign > RequestedAlign)
4575 Diag(AlignasAttr->getLocation(), diag::err_alignas_underaligned)
4576 << DiagTy << (unsigned)NaturalAlign.getQuantity();
4577 }
4578}
4579
4581 CXXRecordDecl *RD, SourceRange Range, bool BestCase,
4582 MSInheritanceModel ExplicitModel) {
4583 assert(RD->hasDefinition() && "RD has no definition!");
4584
4585 // We may not have seen base specifiers or any virtual methods yet. We will
4586 // have to wait until the record is defined to catch any mismatches.
4587 if (!RD->getDefinition()->isCompleteDefinition())
4588 return false;
4589
4590 // The unspecified model never matches what a definition could need.
4591 if (ExplicitModel == MSInheritanceModel::Unspecified)
4592 return false;
4593
4594 if (BestCase) {
4595 if (RD->calculateInheritanceModel() == ExplicitModel)
4596 return false;
4597 } else {
4598 if (RD->calculateInheritanceModel() <= ExplicitModel)
4599 return false;
4600 }
4601
4602 Diag(Range.getBegin(), diag::err_mismatched_ms_inheritance)
4603 << 0 /*definition*/;
4604 Diag(RD->getDefinition()->getLocation(), diag::note_defined_here) << RD;
4605 return true;
4606}
4607
4608/// parseModeAttrArg - Parses attribute mode string and returns parsed type
4609/// attribute.
4610static void parseModeAttrArg(Sema &S, StringRef Str, unsigned &DestWidth,
4611 bool &IntegerMode, bool &ComplexMode,
4612 FloatModeKind &ExplicitType) {
4613 IntegerMode = true;
4614 ComplexMode = false;
4615 ExplicitType = FloatModeKind::NoFloat;
4616 switch (Str.size()) {
4617 case 2:
4618 switch (Str[0]) {
4619 case 'Q':
4620 DestWidth = 8;
4621 break;
4622 case 'H':
4623 DestWidth = 16;
4624 break;
4625 case 'S':
4626 DestWidth = 32;
4627 break;
4628 case 'D':
4629 DestWidth = 64;
4630 break;
4631 case 'X':
4632 DestWidth = 96;
4633 break;
4634 case 'K': // KFmode - IEEE quad precision (__float128)
4635 ExplicitType = FloatModeKind::Float128;
4636 DestWidth = Str[1] == 'I' ? 0 : 128;
4637 break;
4638 case 'T':
4639 ExplicitType = FloatModeKind::LongDouble;
4640 DestWidth = 128;
4641 break;
4642 case 'I':
4643 ExplicitType = FloatModeKind::Ibm128;
4644 DestWidth = Str[1] == 'I' ? 0 : 128;
4645 break;
4646 }
4647 if (Str[1] == 'F') {
4648 IntegerMode = false;
4649 } else if (Str[1] == 'C') {
4650 IntegerMode = false;
4651 ComplexMode = true;
4652 } else if (Str[1] != 'I') {
4653 DestWidth = 0;
4654 }
4655 break;
4656 case 4:
4657 // FIXME: glibc uses 'word' to define register_t; this is narrower than a
4658 // pointer on PIC16 and other embedded platforms.
4659 if (Str == "word")
4660 DestWidth = S.Context.getTargetInfo().getRegisterWidth();
4661 else if (Str == "byte")
4662 DestWidth = S.Context.getTargetInfo().getCharWidth();
4663 break;
4664 case 7:
4665 if (Str == "pointer")
4667 break;
4668 case 11:
4669 if (Str == "unwind_word")
4670 DestWidth = S.Context.getTargetInfo().getUnwindWordWidth();
4671 break;
4672 }
4673}
4674
4675/// handleModeAttr - This attribute modifies the width of a decl with primitive
4676/// type.
4677///
4678/// Despite what would be logical, the mode attribute is a decl attribute, not a
4679/// type attribute: 'int ** __attribute((mode(HI))) *G;' tries to make 'G' be
4680/// HImode, not an intermediate pointer.
4681static void handleModeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4682 // This attribute isn't documented, but glibc uses it. It changes
4683 // the width of an int or unsigned int to the specified size.
4684 if (!AL.isArgIdent(0)) {
4685 S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
4686 << AL << AANT_ArgumentIdentifier;
4687 return;
4688 }
4689
4691
4692 S.AddModeAttr(D, AL, Name);
4693}
4694
4696 IdentifierInfo *Name, bool InInstantiation) {
4697 StringRef Str = Name->getName();
4698 normalizeName(Str);
4699 SourceLocation AttrLoc = CI.getLoc();
4700
4701 unsigned DestWidth = 0;
4702 bool IntegerMode = true;
4703 bool ComplexMode = false;
4705 llvm::APInt VectorSize(64, 0);
4706 if (Str.size() >= 4 && Str[0] == 'V') {
4707 // Minimal length of vector mode is 4: 'V' + NUMBER(>=1) + TYPE(>=2).
4708 size_t StrSize = Str.size();
4709 size_t VectorStringLength = 0;
4710 while ((VectorStringLength + 1) < StrSize &&
4711 isdigit(Str[VectorStringLength + 1]))
4712 ++VectorStringLength;
4713 if (VectorStringLength &&
4714 !Str.substr(1, VectorStringLength).getAsInteger(10, VectorSize) &&
4715 VectorSize.isPowerOf2()) {
4716 parseModeAttrArg(*this, Str.substr(VectorStringLength + 1), DestWidth,
4717 IntegerMode, ComplexMode, ExplicitType);
4718 // Avoid duplicate warning from template instantiation.
4719 if (!InInstantiation)
4720 Diag(AttrLoc, diag::warn_vector_mode_deprecated);
4721 } else {
4722 VectorSize = 0;
4723 }
4724 }
4725
4726 if (!VectorSize)
4727 parseModeAttrArg(*this, Str, DestWidth, IntegerMode, ComplexMode,
4728 ExplicitType);
4729
4730 // FIXME: Sync this with InitializePredefinedMacros; we need to match int8_t
4731 // and friends, at least with glibc.
4732 // FIXME: Make sure floating-point mappings are accurate
4733 // FIXME: Support XF and TF types
4734 if (!DestWidth) {
4735 Diag(AttrLoc, diag::err_machine_mode) << 0 /*Unknown*/ << Name;
4736 return;
4737 }
4738
4739 QualType OldTy;
4740 if (const auto *TD = dyn_cast<TypedefNameDecl>(D))
4741 OldTy = TD->getUnderlyingType();
4742 else if (const auto *ED = dyn_cast<EnumDecl>(D)) {
4743 // Something like 'typedef enum { X } __attribute__((mode(XX))) T;'.
4744 // Try to get type from enum declaration, default to int.
4745 OldTy = ED->getIntegerType();
4746 if (OldTy.isNull())
4747 OldTy = Context.IntTy;
4748 } else
4749 OldTy = cast<ValueDecl>(D)->getType();
4750
4751 if (OldTy->isDependentType()) {
4752 D->addAttr(::new (Context) ModeAttr(Context, CI, Name));
4753 return;
4754 }
4755
4756 // Base type can also be a vector type (see PR17453).
4757 // Distinguish between base type and base element type.
4758 QualType OldElemTy = OldTy;
4759 if (const auto *VT = OldTy->getAs<VectorType>())
4760 OldElemTy = VT->getElementType();
4761
4762 // GCC allows 'mode' attribute on enumeration types (even incomplete), except
4763 // for vector modes. So, 'enum X __attribute__((mode(QI)));' forms a complete
4764 // type, 'enum { A } __attribute__((mode(V4SI)))' is rejected.
4765 if ((isa<EnumDecl>(D) || OldElemTy->isEnumeralType()) &&
4766 VectorSize.getBoolValue()) {
4767 Diag(AttrLoc, diag::err_enum_mode_vector_type) << Name << CI.getRange();
4768 return;
4769 }
4770 bool IntegralOrAnyEnumType = (OldElemTy->isIntegralOrEnumerationType() &&
4771 !OldElemTy->isBitIntType()) ||
4772 OldElemTy->isEnumeralType();
4773
4774 if (!OldElemTy->getAs<BuiltinType>() && !OldElemTy->isComplexType() &&
4775 !IntegralOrAnyEnumType)
4776 Diag(AttrLoc, diag::err_mode_not_primitive);
4777 else if (IntegerMode) {
4778 if (!IntegralOrAnyEnumType)
4779 Diag(AttrLoc, diag::err_mode_wrong_type);
4780 } else if (ComplexMode) {
4781 if (!OldElemTy->isComplexType())
4782 Diag(AttrLoc, diag::err_mode_wrong_type);
4783 } else {
4784 if (!OldElemTy->isFloatingType())
4785 Diag(AttrLoc, diag::err_mode_wrong_type);
4786 }
4787
4788 QualType NewElemTy;
4789
4790 if (IntegerMode)
4791 NewElemTy = Context.getIntTypeForBitwidth(DestWidth,
4792 OldElemTy->isSignedIntegerType());
4793 else
4794 NewElemTy = Context.getRealTypeForBitwidth(DestWidth, ExplicitType);
4795
4796 if (NewElemTy.isNull()) {
4797 // Only emit diagnostic on host for 128-bit mode attribute
4798 if (!(DestWidth == 128 &&
4799 (getLangOpts().CUDAIsDevice || getLangOpts().SYCLIsDevice)))
4800 Diag(AttrLoc, diag::err_machine_mode) << 1 /*Unsupported*/ << Name;
4801 return;
4802 }
4803
4804 if (ComplexMode) {
4805 NewElemTy = Context.getComplexType(NewElemTy);
4806 }
4807
4808 QualType NewTy = NewElemTy;
4809 if (VectorSize.getBoolValue()) {
4810 NewTy = Context.getVectorType(NewTy, VectorSize.getZExtValue(),
4812 } else if (const auto *OldVT = OldTy->getAs<VectorType>()) {
4813 // Complex machine mode does not support base vector types.
4814 if (ComplexMode) {
4815 Diag(AttrLoc, diag::err_complex_mode_vector_type);
4816 return;
4817 }
4818 unsigned NumElements = Context.getTypeSize(OldElemTy) *
4819 OldVT->getNumElements() /
4820 Context.getTypeSize(NewElemTy);
4821 NewTy =
4822 Context.getVectorType(NewElemTy, NumElements, OldVT->getVectorKind());
4823 }
4824
4825 if (NewTy.isNull()) {
4826 Diag(AttrLoc, diag::err_mode_wrong_type);
4827 return;
4828 }
4829
4830 // Install the new type.
4831 if (auto *TD = dyn_cast<TypedefNameDecl>(D))
4832 TD->setModedTypeSourceInfo(TD->getTypeSourceInfo(), NewTy);
4833 else if (auto *ED = dyn_cast<EnumDecl>(D))
4834 ED->setIntegerType(NewTy);
4835 else
4836 cast<ValueDecl>(D)->setType(NewTy);
4837
4838 D->addAttr(::new (Context) ModeAttr(Context, CI, Name));
4839}
4840
4841static void handleNonStringAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4842 // This only applies to fields and variable declarations which have an array
4843 // type or pointer type, with character elements.
4844 QualType QT = cast<ValueDecl>(D)->getType();
4845 if ((!QT->isArrayType() && !QT->isPointerType()) ||
4847 S.Diag(D->getBeginLoc(), diag::warn_attribute_non_character_array)
4848 << AL << AL.isRegularKeywordAttribute() << QT << AL.getRange();
4849 return;
4850 }
4851
4852 D->addAttr(::new (S.Context) NonStringAttr(S.Context, AL));
4853}
4854
4855static void handleNoDebugAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4856 D->addAttr(::new (S.Context) NoDebugAttr(S.Context, AL));
4857}
4858
4860 const AttributeCommonInfo &CI,
4861 const IdentifierInfo *Ident) {
4862 if (OptimizeNoneAttr *Optnone = D->getAttr<OptimizeNoneAttr>()) {
4863 Diag(CI.getLoc(), diag::warn_attribute_ignored) << Ident;
4864 Diag(Optnone->getLocation(), diag::note_conflicting_attribute);
4865 return nullptr;
4866 }
4867
4868 if (D->hasAttr<AlwaysInlineAttr>())
4869 return nullptr;
4870
4871 return ::new (Context) AlwaysInlineAttr(Context, CI);
4872}
4873
4874InternalLinkageAttr *Sema::mergeInternalLinkageAttr(Decl *D,
4875 const ParsedAttr &AL) {
4876 if (const auto *VD = dyn_cast<VarDecl>(D)) {
4877 // Attribute applies to Var but not any subclass of it (like ParmVar,
4878 // ImplicitParm or VarTemplateSpecialization).
4879 if (VD->getKind() != Decl::Var) {
4880 Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
4881 << AL << AL.isRegularKeywordAttribute()
4884 return nullptr;
4885 }
4886 // Attribute does not apply to non-static local variables.
4887 if (VD->hasLocalStorage()) {
4888 Diag(VD->getLocation(), diag::warn_internal_linkage_local_storage);
4889 return nullptr;
4890 }
4891 }
4892
4893 return ::new (Context) InternalLinkageAttr(Context, AL);
4894}
4895InternalLinkageAttr *
4896Sema::mergeInternalLinkageAttr(Decl *D, const InternalLinkageAttr &AL) {
4897 if (const auto *VD = dyn_cast<VarDecl>(D)) {
4898 // Attribute applies to Var but not any subclass of it (like ParmVar,
4899 // ImplicitParm or VarTemplateSpecialization).
4900 if (VD->getKind() != Decl::Var) {
4901 Diag(AL.getLocation(), diag::warn_attribute_wrong_decl_type)
4902 << &AL << AL.isRegularKeywordAttribute()
4905 return nullptr;
4906 }
4907 // Attribute does not apply to non-static local variables.
4908 if (VD->hasLocalStorage()) {
4909 Diag(VD->getLocation(), diag::warn_internal_linkage_local_storage);
4910 return nullptr;
4911 }
4912 }
4913
4914 return ::new (Context) InternalLinkageAttr(Context, AL);
4915}
4916
4918 if (OptimizeNoneAttr *Optnone = D->getAttr<OptimizeNoneAttr>()) {
4919 Diag(CI.getLoc(), diag::warn_attribute_ignored) << "'minsize'";
4920 Diag(Optnone->getLocation(), diag::note_conflicting_attribute);
4921 return nullptr;
4922 }
4923
4924 if (D->hasAttr<MinSizeAttr>())
4925 return nullptr;
4926
4927 return ::new (Context) MinSizeAttr(Context, CI);
4928}
4929
4931 const AttributeCommonInfo &CI) {
4932 if (AlwaysInlineAttr *Inline = D->getAttr<AlwaysInlineAttr>()) {
4933 Diag(Inline->getLocation(), diag::warn_attribute_ignored) << Inline;
4934 Diag(CI.getLoc(), diag::note_conflicting_attribute);
4935 D->dropAttr<AlwaysInlineAttr>();
4936 }
4937 if (MinSizeAttr *MinSize = D->getAttr<MinSizeAttr>()) {
4938 Diag(MinSize->getLocation(), diag::warn_attribute_ignored) << MinSize;
4939 Diag(CI.getLoc(), diag::note_conflicting_attribute);
4940 D->dropAttr<MinSizeAttr>();
4941 }
4942
4943 if (D->hasAttr<OptimizeNoneAttr>())
4944 return nullptr;
4945
4946 return ::new (Context) OptimizeNoneAttr(Context, CI);
4947}
4948
4949static void handleAlwaysInlineAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4950 if (AlwaysInlineAttr *Inline =
4951 S.mergeAlwaysInlineAttr(D, AL, AL.getAttrName()))
4952 D->addAttr(Inline);
4953}
4954
4955static void handleMinSizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4956 if (MinSizeAttr *MinSize = S.mergeMinSizeAttr(D, AL))
4957 D->addAttr(MinSize);
4958}
4959
4960static void handleOptimizeNoneAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4961 if (OptimizeNoneAttr *Optnone = S.mergeOptimizeNoneAttr(D, AL))
4962 D->addAttr(Optnone);
4963}
4964
4965static void handleConstantAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4966 const auto *VD = cast<VarDecl>(D);
4967 if (VD->hasLocalStorage()) {
4968 S.Diag(AL.getLoc(), diag::err_cuda_nonstatic_constdev);
4969 return;
4970 }
4971 // constexpr variable may already get an implicit constant attr, which should
4972 // be replaced by the explicit constant attr.
4973 if (auto *A = D->getAttr<CUDAConstantAttr>()) {
4974 if (!A->isImplicit())
4975 return;
4976 D->dropAttr<CUDAConstantAttr>();
4977 }
4978 D->addAttr(::new (S.Context) CUDAConstantAttr(S.Context, AL));
4979}
4980
4981static void handleSharedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4982 const auto *VD = cast<VarDecl>(D);
4983 // extern __shared__ is only allowed on arrays with no length (e.g.
4984 // "int x[]").
4985 if (!S.getLangOpts().GPURelocatableDeviceCode && VD->hasExternalStorage() &&
4986 !isa<IncompleteArrayType>(VD->getType())) {
4987 S.Diag(AL.getLoc(), diag::err_cuda_extern_shared) << VD;
4988 return;
4989 }
4990 if (S.getLangOpts().CUDA && VD->hasLocalStorage() &&
4991 S.CUDA().DiagIfHostCode(AL.getLoc(), diag::err_cuda_host_shared)
4992 << S.CUDA().CurrentTarget())
4993 return;
4994 D->addAttr(::new (S.Context) CUDASharedAttr(S.Context, AL));
4995}
4996
4997static void handleGlobalAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4998 const auto *FD = cast<FunctionDecl>(D);
4999 if (!FD->getReturnType()->isVoidType() &&
5000 !FD->getReturnType()->getAs<AutoType>() &&
5002 SourceRange RTRange = FD->getReturnTypeSourceRange();
5003 S.Diag(FD->getTypeSpecStartLoc(), diag::err_kern_type_not_void_return)
5004 << FD->getType()
5005 << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "void")
5006 : FixItHint());
5007 return;
5008 }
5009 if (const auto *Method = dyn_cast<CXXMethodDecl>(FD)) {
5010 if (Method->isInstance()) {
5011 S.Diag(Method->getBeginLoc(), diag::err_kern_is_nonstatic_method)
5012 << Method;
5013 return;
5014 }
5015 S.Diag(Method->getBeginLoc(), diag::warn_kern_is_method) << Method;
5016 }
5017 // Only warn for "inline" when compiling for host, to cut down on noise.
5018 if (FD->isInlineSpecified() && !S.getLangOpts().CUDAIsDevice)
5019 S.Diag(FD->getBeginLoc(), diag::warn_kern_is_inline) << FD;
5020
5021 if (AL.getKind() == ParsedAttr::AT_DeviceKernel)
5022 D->addAttr(::new (S.Context) DeviceKernelAttr(S.Context, AL));
5023 else
5024 D->addAttr(::new (S.Context) CUDAGlobalAttr(S.Context, AL));
5025 // In host compilation the kernel is emitted as a stub function, which is
5026 // a helper function for launching the kernel. The instructions in the helper
5027 // function has nothing to do with the source code of the kernel. Do not emit
5028 // debug info for the stub function to avoid confusing the debugger.
5029 if (S.LangOpts.HIP && !S.LangOpts.CUDAIsDevice)
5030 D->addAttr(NoDebugAttr::CreateImplicit(S.Context));
5031}
5032
5033static void handleDeviceAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5034 if (const auto *VD = dyn_cast<VarDecl>(D)) {
5035 if (VD->hasLocalStorage()) {
5036 S.Diag(AL.getLoc(), diag::err_cuda_nonstatic_constdev);
5037 return;
5038 }
5039 }
5040
5041 if (auto *A = D->getAttr<CUDADeviceAttr>()) {
5042 if (!A->isImplicit())
5043 return;
5044 D->dropAttr<CUDADeviceAttr>();
5045 }
5046 D->addAttr(::new (S.Context) CUDADeviceAttr(S.Context, AL));
5047}
5048
5049static void handleManagedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5050 if (const auto *VD = dyn_cast<VarDecl>(D)) {
5051 if (VD->hasLocalStorage()) {
5052 S.Diag(AL.getLoc(), diag::err_cuda_nonstatic_constdev);
5053 return;
5054 }
5055 }
5056 if (!D->hasAttr<HIPManagedAttr>())
5057 D->addAttr(::new (S.Context) HIPManagedAttr(S.Context, AL));
5058 if (!D->hasAttr<CUDADeviceAttr>())
5059 D->addAttr(CUDADeviceAttr::CreateImplicit(S.Context));
5060}
5061
5062static void handleGridConstantAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5063 if (D->isInvalidDecl())
5064 return;
5065 // Whether __grid_constant__ is allowed to be used will be checked in
5066 // Sema::CheckFunctionDeclaration as we need complete function decl to make
5067 // the call.
5068 D->addAttr(::new (S.Context) CUDAGridConstantAttr(S.Context, AL));
5069}
5070
5071static void handleGNUInlineAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5072 const auto *Fn = cast<FunctionDecl>(D);
5073 if (!Fn->isInlineSpecified()) {
5074 S.Diag(AL.getLoc(), diag::warn_gnu_inline_attribute_requires_inline);
5075 return;
5076 }
5077
5078 if (S.LangOpts.CPlusPlus && Fn->getStorageClass() != SC_Extern)
5079 S.Diag(AL.getLoc(), diag::warn_gnu_inline_cplusplus_without_extern);
5080
5081 D->addAttr(::new (S.Context) GNUInlineAttr(S.Context, AL));
5082}
5083
5084static void handleCallConvAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5085 if (hasDeclarator(D)) return;
5086
5087 // Diagnostic is emitted elsewhere: here we store the (valid) AL
5088 // in the Decl node for syntactic reasoning, e.g., pretty-printing.
5089 CallingConv CC;
5091 AL, CC, /*FD*/ nullptr,
5092 S.CUDA().IdentifyTarget(dyn_cast<FunctionDecl>(D))))
5093 return;
5094
5095 if (!isa<ObjCMethodDecl>(D)) {
5096 S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
5098 return;
5099 }
5100
5101 switch (AL.getKind()) {
5102 case ParsedAttr::AT_FastCall:
5103 D->addAttr(::new (S.Context) FastCallAttr(S.Context, AL));
5104 return;
5105 case ParsedAttr::AT_StdCall:
5106 D->addAttr(::new (S.Context) StdCallAttr(S.Context, AL));
5107 return;
5108 case ParsedAttr::AT_ThisCall:
5109 D->addAttr(::new (S.Context) ThisCallAttr(S.Context, AL));
5110 return;
5111 case ParsedAttr::AT_CDecl:
5112 D->addAttr(::new (S.Context) CDeclAttr(S.Context, AL));
5113 return;
5114 case ParsedAttr::AT_Pascal:
5115 D->addAttr(::new (S.Context) PascalAttr(S.Context, AL));
5116 return;
5117 case ParsedAttr::AT_SwiftCall:
5118 D->addAttr(::new (S.Context) SwiftCallAttr(S.Context, AL));
5119 return;
5120 case ParsedAttr::AT_SwiftAsyncCall:
5121 D->addAttr(::new (S.Context) SwiftAsyncCallAttr(S.Context, AL));
5122 return;
5123 case ParsedAttr::AT_VectorCall:
5124 D->addAttr(::new (S.Context) VectorCallAttr(S.Context, AL));
5125 return;
5126 case ParsedAttr::AT_MSABI:
5127 D->addAttr(::new (S.Context) MSABIAttr(S.Context, AL));
5128 return;
5129 case ParsedAttr::AT_SysVABI:
5130 D->addAttr(::new (S.Context) SysVABIAttr(S.Context, AL));
5131 return;
5132 case ParsedAttr::AT_RegCall:
5133 D->addAttr(::new (S.Context) RegCallAttr(S.Context, AL));
5134 return;
5135 case ParsedAttr::AT_Pcs: {
5136 PcsAttr::PCSType PCS;
5137 switch (CC) {
5138 case CC_AAPCS:
5139 PCS = PcsAttr::AAPCS;
5140 break;
5141 case CC_AAPCS_VFP:
5142 PCS = PcsAttr::AAPCS_VFP;
5143 break;
5144 default:
5145 llvm_unreachable("unexpected calling convention in pcs attribute");
5146 }
5147
5148 D->addAttr(::new (S.Context) PcsAttr(S.Context, AL, PCS));
5149 return;
5150 }
5151 case ParsedAttr::AT_AArch64VectorPcs:
5152 D->addAttr(::new (S.Context) AArch64VectorPcsAttr(S.Context, AL));
5153 return;
5154 case ParsedAttr::AT_AArch64SVEPcs:
5155 D->addAttr(::new (S.Context) AArch64SVEPcsAttr(S.Context, AL));
5156 return;
5157 case ParsedAttr::AT_DeviceKernel: {
5158 // The attribute should already be applied.
5159 assert(D->hasAttr<DeviceKernelAttr>() && "Expected attribute");
5160 return;
5161 }
5162 case ParsedAttr::AT_IntelOclBicc:
5163 D->addAttr(::new (S.Context) IntelOclBiccAttr(S.Context, AL));
5164 return;
5165 case ParsedAttr::AT_PreserveMost:
5166 D->addAttr(::new (S.Context) PreserveMostAttr(S.Context, AL));
5167 return;
5168 case ParsedAttr::AT_PreserveAll:
5169 D->addAttr(::new (S.Context) PreserveAllAttr(S.Context, AL));
5170 return;
5171 case ParsedAttr::AT_M68kRTD:
5172 D->addAttr(::new (S.Context) M68kRTDAttr(S.Context, AL));
5173 return;
5174 case ParsedAttr::AT_PreserveNone:
5175 D->addAttr(::new (S.Context) PreserveNoneAttr(S.Context, AL));
5176 return;
5177 case ParsedAttr::AT_RISCVVectorCC:
5178 D->addAttr(::new (S.Context) RISCVVectorCCAttr(S.Context, AL));
5179 return;
5180 case ParsedAttr::AT_RISCVVLSCC: {
5181 // If the riscv_abi_vlen doesn't have any argument, default ABI_VLEN is 128.
5182 unsigned VectorLength = 128;
5183 if (AL.getNumArgs() &&
5185 return;
5187 S.Diag(AL.getLoc(), diag::err_argument_invalid_range)
5188 << VectorLength << 32 << 65536;
5189 return;
5190 }
5191 if (!llvm::isPowerOf2_64(VectorLength)) {
5192 S.Diag(AL.getLoc(), diag::err_argument_not_power_of_2);
5193 return;
5194 }
5195
5196 D->addAttr(::new (S.Context) RISCVVLSCCAttr(S.Context, AL, VectorLength));
5197 return;
5198 }
5199 default:
5200 llvm_unreachable("unexpected attribute kind");
5201 }
5202}
5203
5204static void handleDeviceKernelAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5205 const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
5206 bool IsFunctionTemplate = FD && FD->getDescribedFunctionTemplate();
5207 if (S.getLangOpts().SYCLIsDevice) {
5208 if (!IsFunctionTemplate) {
5209 S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type_str)
5210 << AL << AL.isRegularKeywordAttribute() << "function templates";
5211 } else {
5212 S.SYCL().handleKernelAttr(D, AL);
5213 }
5214 } else if (DeviceKernelAttr::isSYCLSpelling(AL)) {
5215 S.Diag(AL.getLoc(), diag::warn_attribute_ignored) << AL;
5216 } else if (S.getASTContext().getTargetInfo().getTriple().isNVPTX()) {
5217 handleGlobalAttr(S, D, AL);
5218 } else {
5219 // OpenCL C++ will throw a more specific error.
5220 if (!S.getLangOpts().OpenCLCPlusPlus && (!FD || IsFunctionTemplate)) {
5221 S.Diag(AL.getLoc(), diag::err_attribute_wrong_decl_type_str)
5222 << AL << AL.isRegularKeywordAttribute() << "functions";
5223 }
5225 }
5226 // Make sure we validate the CC with the target
5227 // and warn/error if necessary.
5228 handleCallConvAttr(S, D, AL);
5229}
5230
5231static void handleSuppressAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5232 if (AL.getAttributeSpellingListIndex() == SuppressAttr::CXX11_gsl_suppress) {
5233 // Suppression attribute with GSL spelling requires at least 1 argument.
5234 if (!AL.checkAtLeastNumArgs(S, 1))
5235 return;
5236 }
5237
5238 std::vector<StringRef> DiagnosticIdentifiers;
5239 for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) {
5240 StringRef RuleName;
5241
5242 if (!S.checkStringLiteralArgumentAttr(AL, I, RuleName, nullptr))
5243 return;
5244
5245 DiagnosticIdentifiers.push_back(RuleName);
5246 }
5247 D->addAttr(::new (S.Context)
5248 SuppressAttr(S.Context, AL, DiagnosticIdentifiers.data(),
5249 DiagnosticIdentifiers.size()));
5250}
5251
5252static void handleLifetimeCategoryAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5253 TypeSourceInfo *DerefTypeLoc = nullptr;
5254 QualType ParmType;
5255 if (AL.hasParsedType()) {
5256 ParmType = S.GetTypeFromParser(AL.getTypeArg(), &DerefTypeLoc);
5257
5258 unsigned SelectIdx = ~0U;
5259 if (ParmType->isReferenceType())
5260 SelectIdx = 0;
5261 else if (ParmType->isArrayType())
5262 SelectIdx = 1;
5263
5264 if (SelectIdx != ~0U) {
5265 S.Diag(AL.getLoc(), diag::err_attribute_invalid_argument)
5266 << SelectIdx << AL;
5267 return;
5268 }
5269 }
5270
5271 // To check if earlier decl attributes do not conflict the newly parsed ones
5272 // we always add (and check) the attribute to the canonical decl. We need
5273 // to repeat the check for attribute mutual exclusion because we're attaching
5274 // all of the attributes to the canonical declaration rather than the current
5275 // declaration.
5276 D = D->getCanonicalDecl();
5277 if (AL.getKind() == ParsedAttr::AT_Owner) {
5279 return;
5280 if (const auto *OAttr = D->getAttr<OwnerAttr>()) {
5281 const Type *ExistingDerefType = OAttr->getDerefTypeLoc()
5282 ? OAttr->getDerefType().getTypePtr()
5283 : nullptr;
5284 if (ExistingDerefType != ParmType.getTypePtrOrNull()) {
5285 S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible)
5286 << AL << OAttr
5287 << (AL.isRegularKeywordAttribute() ||
5288 OAttr->isRegularKeywordAttribute());
5289 S.Diag(OAttr->getLocation(), diag::note_conflicting_attribute);
5290 }
5291 return;
5292 }
5293 for (Decl *Redecl : D->redecls()) {
5294 Redecl->addAttr(::new (S.Context) OwnerAttr(S.Context, AL, DerefTypeLoc));
5295 }
5296 } else {
5298 return;
5299 if (const auto *PAttr = D->getAttr<PointerAttr>()) {
5300 const Type *ExistingDerefType = PAttr->getDerefTypeLoc()
5301 ? PAttr->getDerefType().getTypePtr()
5302 : nullptr;
5303 if (ExistingDerefType != ParmType.getTypePtrOrNull()) {
5304 S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible)
5305 << AL << PAttr
5306 << (AL.isRegularKeywordAttribute() ||
5307 PAttr->isRegularKeywordAttribute());
5308 S.Diag(PAttr->getLocation(), diag::note_conflicting_attribute);
5309 }
5310 return;
5311 }
5312 for (Decl *Redecl : D->redecls()) {
5313 Redecl->addAttr(::new (S.Context)
5314 PointerAttr(S.Context, AL, DerefTypeLoc));
5315 }
5316 }
5317}
5318
5319static void handleRandomizeLayoutAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5321 return;
5322 if (!D->hasAttr<RandomizeLayoutAttr>())
5323 D->addAttr(::new (S.Context) RandomizeLayoutAttr(S.Context, AL));
5324}
5325
5327 const ParsedAttr &AL) {
5329 return;
5330 if (!D->hasAttr<NoRandomizeLayoutAttr>())
5331 D->addAttr(::new (S.Context) NoRandomizeLayoutAttr(S.Context, AL));
5332}
5333
5335 const FunctionDecl *FD,
5336 CUDAFunctionTarget CFT) {
5337 if (Attrs.isInvalid())
5338 return true;
5339
5340 if (Attrs.hasProcessingCache()) {
5341 CC = (CallingConv) Attrs.getProcessingCache();
5342 return false;
5343 }
5344
5345 if (Attrs.getKind() == ParsedAttr::AT_RISCVVLSCC) {
5346 // riscv_vls_cc only accepts 0 or 1 argument.
5347 if (!Attrs.checkAtLeastNumArgs(*this, 0) ||
5348 !Attrs.checkAtMostNumArgs(*this, 1)) {
5349 Attrs.setInvalid();
5350 return true;
5351 }
5352 } else {
5353 unsigned ReqArgs = Attrs.getKind() == ParsedAttr::AT_Pcs ? 1 : 0;
5354 if (!Attrs.checkExactlyNumArgs(*this, ReqArgs)) {
5355 Attrs.setInvalid();
5356 return true;
5357 }
5358 }
5359
5360 bool IsTargetDefaultMSABI =
5361 Context.getTargetInfo().getTriple().isOSWindows() ||
5362 Context.getTargetInfo().getTriple().isUEFI();
5363 // TODO: diagnose uses of these conventions on the wrong target.
5364 switch (Attrs.getKind()) {
5365 case ParsedAttr::AT_CDecl:
5366 CC = CC_C;
5367 break;
5368 case ParsedAttr::AT_FastCall:
5369 CC = CC_X86FastCall;
5370 break;
5371 case ParsedAttr::AT_StdCall:
5372 CC = CC_X86StdCall;
5373 break;
5374 case ParsedAttr::AT_ThisCall:
5375 CC = CC_X86ThisCall;
5376 break;
5377 case ParsedAttr::AT_Pascal:
5378 CC = CC_X86Pascal;
5379 break;
5380 case ParsedAttr::AT_SwiftCall:
5381 CC = CC_Swift;
5382 break;
5383 case ParsedAttr::AT_SwiftAsyncCall:
5384 CC = CC_SwiftAsync;
5385 break;
5386 case ParsedAttr::AT_VectorCall:
5387 CC = CC_X86VectorCall;
5388 break;
5389 case ParsedAttr::AT_AArch64VectorPcs:
5391 break;
5392 case ParsedAttr::AT_AArch64SVEPcs:
5393 CC = CC_AArch64SVEPCS;
5394 break;
5395 case ParsedAttr::AT_RegCall:
5396 CC = CC_X86RegCall;
5397 break;
5398 case ParsedAttr::AT_MSABI:
5399 CC = IsTargetDefaultMSABI ? CC_C : CC_Win64;
5400 break;
5401 case ParsedAttr::AT_SysVABI:
5402 CC = IsTargetDefaultMSABI ? CC_X86_64SysV : CC_C;
5403 break;
5404 case ParsedAttr::AT_Pcs: {
5405 StringRef StrRef;
5406 if (!checkStringLiteralArgumentAttr(Attrs, 0, StrRef)) {
5407 Attrs.setInvalid();
5408 return true;
5409 }
5410 if (StrRef == "aapcs") {
5411 CC = CC_AAPCS;
5412 break;
5413 } else if (StrRef == "aapcs-vfp") {
5414 CC = CC_AAPCS_VFP;
5415 break;
5416 }
5417
5418 Attrs.setInvalid();
5419 Diag(Attrs.getLoc(), diag::err_invalid_pcs);
5420 return true;
5421 }
5422 case ParsedAttr::AT_IntelOclBicc:
5423 CC = CC_IntelOclBicc;
5424 break;
5425 case ParsedAttr::AT_PreserveMost:
5426 CC = CC_PreserveMost;
5427 break;
5428 case ParsedAttr::AT_PreserveAll:
5429 CC = CC_PreserveAll;
5430 break;
5431 case ParsedAttr::AT_M68kRTD:
5432 CC = CC_M68kRTD;
5433 break;
5434 case ParsedAttr::AT_PreserveNone:
5435 CC = CC_PreserveNone;
5436 break;
5437 case ParsedAttr::AT_RISCVVectorCC:
5438 CC = CC_RISCVVectorCall;
5439 break;
5440 case ParsedAttr::AT_RISCVVLSCC: {
5441 // If the riscv_abi_vlen doesn't have any argument, we set set it to default
5442 // value 128.
5443 unsigned ABIVLen = 128;
5444 if (Attrs.getNumArgs() &&
5445 !checkUInt32Argument(Attrs, Attrs.getArgAsExpr(0), ABIVLen)) {
5446 Attrs.setInvalid();
5447 return true;
5448 }
5449 if (Attrs.getNumArgs() && (ABIVLen < 32 || ABIVLen > 65536)) {
5450 Attrs.setInvalid();
5451 Diag(Attrs.getLoc(), diag::err_argument_invalid_range)
5452 << ABIVLen << 32 << 65536;
5453 return true;
5454 }
5455 if (!llvm::isPowerOf2_64(ABIVLen)) {
5456 Attrs.setInvalid();
5457 Diag(Attrs.getLoc(), diag::err_argument_not_power_of_2);
5458 return true;
5459 }
5461 llvm::Log2_64(ABIVLen) - 5);
5462 break;
5463 }
5464 case ParsedAttr::AT_DeviceKernel: {
5465 // Validation was handled in handleDeviceKernelAttr.
5466 CC = CC_DeviceKernel;
5467 break;
5468 }
5469 default: llvm_unreachable("unexpected attribute kind");
5470 }
5471
5473 const TargetInfo &TI = Context.getTargetInfo();
5474 auto *Aux = Context.getAuxTargetInfo();
5475 // CUDA functions may have host and/or device attributes which indicate
5476 // their targeted execution environment, therefore the calling convention
5477 // of functions in CUDA should be checked against the target deduced based
5478 // on their host/device attributes.
5479 if (LangOpts.CUDA) {
5480 assert(FD || CFT != CUDAFunctionTarget::InvalidTarget);
5481 auto CudaTarget = FD ? CUDA().IdentifyTarget(FD) : CFT;
5482 bool CheckHost = false, CheckDevice = false;
5483 switch (CudaTarget) {
5485 CheckHost = true;
5486 CheckDevice = true;
5487 break;
5489 CheckHost = true;
5490 break;
5493 CheckDevice = true;
5494 break;
5496 llvm_unreachable("unexpected cuda target");
5497 }
5498 auto *HostTI = LangOpts.CUDAIsDevice ? Aux : &TI;
5499 auto *DeviceTI = LangOpts.CUDAIsDevice ? &TI : Aux;
5500 if (CheckHost && HostTI)
5501 A = HostTI->checkCallingConvention(CC);
5502 if (A == TargetInfo::CCCR_OK && CheckDevice && DeviceTI)
5503 A = DeviceTI->checkCallingConvention(CC);
5504 } else if (LangOpts.SYCLIsDevice && TI.getTriple().isAMDGPU() &&
5505 CC == CC_X86VectorCall) {
5506 // Assuming SYCL Device AMDGPU CC_X86VectorCall functions are always to be
5507 // emitted on the host. The MSVC STL has CC-based specializations so we
5508 // cannot change the CC to be the default as that will cause a clash with
5509 // another specialization.
5510 A = TI.checkCallingConvention(CC);
5511 if (Aux && A != TargetInfo::CCCR_OK)
5512 A = Aux->checkCallingConvention(CC);
5513 } else {
5514 A = TI.checkCallingConvention(CC);
5515 }
5516
5517 switch (A) {
5519 break;
5520
5522 // Treat an ignored convention as if it was an explicit C calling convention
5523 // attribute. For example, __stdcall on Win x64 functions as __cdecl, so
5524 // that command line flags that change the default convention to
5525 // __vectorcall don't affect declarations marked __stdcall.
5526 CC = CC_C;
5527 break;
5528
5530 Diag(Attrs.getLoc(), diag::error_cconv_unsupported)
5532 break;
5533
5535 Diag(Attrs.getLoc(), diag::warn_cconv_unsupported)
5537
5538 // This convention is not valid for the target. Use the default function or
5539 // method calling convention.
5540 bool IsCXXMethod = false, IsVariadic = false;
5541 if (FD) {
5542 IsCXXMethod = FD->isCXXInstanceMember();
5543 IsVariadic = FD->isVariadic();
5544 }
5545 CC = Context.getDefaultCallingConvention(IsVariadic, IsCXXMethod);
5546 break;
5547 }
5548 }
5549
5550 Attrs.setProcessingCache((unsigned) CC);
5551 return false;
5552}
5553
5554bool Sema::CheckRegparmAttr(const ParsedAttr &AL, unsigned &numParams) {
5555 if (AL.isInvalid())
5556 return true;
5557
5558 if (!AL.checkExactlyNumArgs(*this, 1)) {
5559 AL.setInvalid();
5560 return true;
5561 }
5562
5563 uint32_t NP;
5564 Expr *NumParamsExpr = AL.getArgAsExpr(0);
5565 if (!checkUInt32Argument(AL, NumParamsExpr, NP)) {
5566 AL.setInvalid();
5567 return true;
5568 }
5569
5570 if (Context.getTargetInfo().getRegParmMax() == 0) {
5571 Diag(AL.getLoc(), diag::err_attribute_regparm_wrong_platform)
5572 << NumParamsExpr->getSourceRange();
5573 AL.setInvalid();
5574 return true;
5575 }
5576
5577 numParams = NP;
5578 if (numParams > Context.getTargetInfo().getRegParmMax()) {
5579 Diag(AL.getLoc(), diag::err_attribute_regparm_invalid_number)
5580 << Context.getTargetInfo().getRegParmMax() << NumParamsExpr->getSourceRange();
5581 AL.setInvalid();
5582 return true;
5583 }
5584
5585 return false;
5586}
5587
5588// Helper to get OffloadArch.
5590 if (!TI.getTriple().isNVPTX())
5591 llvm_unreachable("getOffloadArch is only valid for NVPTX triple");
5592 auto &TO = TI.getTargetOpts();
5593 return StringToOffloadArch(TO.CPU);
5594}
5595
5596// Checks whether an argument of launch_bounds attribute is
5597// acceptable, performs implicit conversion to Rvalue, and returns
5598// non-nullptr Expr result on success. Otherwise, it returns nullptr
5599// and may output an error.
5601 const CUDALaunchBoundsAttr &AL,
5602 const unsigned Idx) {
5604 return nullptr;
5605
5606 // Accept template arguments for now as they depend on something else.
5607 // We'll get to check them when they eventually get instantiated.
5608 if (E->isValueDependent())
5609 return E;
5610
5611 std::optional<llvm::APSInt> I = llvm::APSInt(64);
5612 if (!(I = E->getIntegerConstantExpr(S.Context))) {
5613 S.Diag(E->getExprLoc(), diag::err_attribute_argument_n_type)
5614 << &AL << Idx << AANT_ArgumentIntegerConstant << E->getSourceRange();
5615 return nullptr;
5616 }
5617 // Make sure we can fit it in 32 bits.
5618 if (!I->isIntN(32)) {
5619 S.Diag(E->getExprLoc(), diag::err_ice_too_large)
5620 << toString(*I, 10, false) << 32 << /* Unsigned */ 1;
5621 return nullptr;
5622 }
5623 if (*I < 0)
5624 S.Diag(E->getExprLoc(), diag::warn_attribute_argument_n_negative)
5625 << &AL << Idx << E->getSourceRange();
5626
5627 // We may need to perform implicit conversion of the argument.
5629 S.Context, S.Context.getConstType(S.Context.IntTy), /*consume*/ false);
5630 ExprResult ValArg = S.PerformCopyInitialization(Entity, SourceLocation(), E);
5631 assert(!ValArg.isInvalid() &&
5632 "Unexpected PerformCopyInitialization() failure.");
5633
5634 return ValArg.getAs<Expr>();
5635}
5636
5637CUDALaunchBoundsAttr *
5639 Expr *MinBlocks, Expr *MaxBlocks) {
5640 CUDALaunchBoundsAttr TmpAttr(Context, CI, MaxThreads, MinBlocks, MaxBlocks);
5641 MaxThreads = makeLaunchBoundsArgExpr(*this, MaxThreads, TmpAttr, 0);
5642 if (!MaxThreads)
5643 return nullptr;
5644
5645 if (MinBlocks) {
5646 MinBlocks = makeLaunchBoundsArgExpr(*this, MinBlocks, TmpAttr, 1);
5647 if (!MinBlocks)
5648 return nullptr;
5649 }
5650
5651 if (MaxBlocks) {
5652 // '.maxclusterrank' ptx directive requires .target sm_90 or higher.
5653 auto SM = getOffloadArch(Context.getTargetInfo());
5655 Diag(MaxBlocks->getBeginLoc(), diag::warn_cuda_maxclusterrank_sm_90)
5656 << OffloadArchToString(SM) << CI << MaxBlocks->getSourceRange();
5657 // Ignore it by setting MaxBlocks to null;
5658 MaxBlocks = nullptr;
5659 } else {
5660 MaxBlocks = makeLaunchBoundsArgExpr(*this, MaxBlocks, TmpAttr, 2);
5661 if (!MaxBlocks)
5662 return nullptr;
5663 }
5664 }
5665
5666 return ::new (Context)
5667 CUDALaunchBoundsAttr(Context, CI, MaxThreads, MinBlocks, MaxBlocks);
5668}
5669
5671 Expr *MaxThreads, Expr *MinBlocks,
5672 Expr *MaxBlocks) {
5673 if (auto *Attr = CreateLaunchBoundsAttr(CI, MaxThreads, MinBlocks, MaxBlocks))
5674 D->addAttr(Attr);
5675}
5676
5677static void handleLaunchBoundsAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5678 if (!AL.checkAtLeastNumArgs(S, 1) || !AL.checkAtMostNumArgs(S, 3))
5679 return;
5680
5681 S.AddLaunchBoundsAttr(D, AL, AL.getArgAsExpr(0),
5682 AL.getNumArgs() > 1 ? AL.getArgAsExpr(1) : nullptr,
5683 AL.getNumArgs() > 2 ? AL.getArgAsExpr(2) : nullptr);
5684}
5685
5687 const ParsedAttr &AL) {
5688 if (!AL.isArgIdent(0)) {
5689 S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
5690 << AL << /* arg num = */ 1 << AANT_ArgumentIdentifier;
5691 return;
5692 }
5693
5694 ParamIdx ArgumentIdx;
5696 D, AL, 2, AL.getArgAsExpr(1), ArgumentIdx,
5697 /*CanIndexImplicitThis=*/false,
5698 /*CanIndexVariadicArguments=*/true))
5699 return;
5700
5701 ParamIdx TypeTagIdx;
5703 D, AL, 3, AL.getArgAsExpr(2), TypeTagIdx,
5704 /*CanIndexImplicitThis=*/false,
5705 /*CanIndexVariadicArguments=*/true))
5706 return;
5707
5708 bool IsPointer = AL.getAttrName()->getName() == "pointer_with_type_tag";
5709 if (IsPointer) {
5710 // Ensure that buffer has a pointer type.
5711 unsigned ArgumentIdxAST = ArgumentIdx.getASTIndex();
5712 if (ArgumentIdxAST >= getFunctionOrMethodNumParams(D) ||
5713 !getFunctionOrMethodParamType(D, ArgumentIdxAST)->isPointerType())
5714 S.Diag(AL.getLoc(), diag::err_attribute_pointers_only) << AL << 0;
5715 }
5716
5717 D->addAttr(::new (S.Context) ArgumentWithTypeTagAttr(
5718 S.Context, AL, AL.getArgAsIdent(0)->getIdentifierInfo(), ArgumentIdx,
5719 TypeTagIdx, IsPointer));
5720}
5721
5723 const ParsedAttr &AL) {
5724 if (!AL.isArgIdent(0)) {
5725 S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
5726 << AL << 1 << AANT_ArgumentIdentifier;
5727 return;
5728 }
5729
5730 if (!AL.checkExactlyNumArgs(S, 1))
5731 return;
5732
5733 if (!isa<VarDecl>(D)) {
5734 S.Diag(AL.getLoc(), diag::err_attribute_wrong_decl_type)
5736 return;
5737 }
5738
5739 IdentifierInfo *PointerKind = AL.getArgAsIdent(0)->getIdentifierInfo();
5740 TypeSourceInfo *MatchingCTypeLoc = nullptr;
5741 S.GetTypeFromParser(AL.getMatchingCType(), &MatchingCTypeLoc);
5742 assert(MatchingCTypeLoc && "no type source info for attribute argument");
5743
5744 D->addAttr(::new (S.Context) TypeTagForDatatypeAttr(
5745 S.Context, AL, PointerKind, MatchingCTypeLoc, AL.getLayoutCompatible(),
5746 AL.getMustBeNull()));
5747}
5748
5749static void handleXRayLogArgsAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5750 ParamIdx ArgCount;
5751
5753 ArgCount,
5754 true /* CanIndexImplicitThis */))
5755 return;
5756
5757 // ArgCount isn't a parameter index [0;n), it's a count [1;n]
5758 D->addAttr(::new (S.Context)
5759 XRayLogArgsAttr(S.Context, AL, ArgCount.getSourceIndex()));
5760}
5761
5763 const ParsedAttr &AL) {
5764 if (S.Context.getTargetInfo().getTriple().isOSAIX()) {
5765 S.Diag(AL.getLoc(), diag::err_aix_attr_unsupported) << AL;
5766 return;
5767 }
5768 uint32_t Count = 0, Offset = 0;
5769 StringRef Section;
5770 if (!S.checkUInt32Argument(AL, AL.getArgAsExpr(0), Count, 0, true))
5771 return;
5772 if (AL.getNumArgs() >= 2) {
5773 Expr *Arg = AL.getArgAsExpr(1);
5774 if (!S.checkUInt32Argument(AL, Arg, Offset, 1, true))
5775 return;
5776 if (Count < Offset) {
5777 S.Diag(S.getAttrLoc(AL), diag::err_attribute_argument_out_of_range)
5778 << &AL << 0 << Count << Arg->getBeginLoc();
5779 return;
5780 }
5781 }
5782 if (AL.getNumArgs() == 3) {
5783 SourceLocation LiteralLoc;
5784 if (!S.checkStringLiteralArgumentAttr(AL, 2, Section, &LiteralLoc))
5785 return;
5786 if (llvm::Error E = S.isValidSectionSpecifier(Section)) {
5787 S.Diag(LiteralLoc,
5788 diag::err_attribute_patchable_function_entry_invalid_section)
5789 << toString(std::move(E));
5790 return;
5791 }
5792 if (Section.empty()) {
5793 S.Diag(LiteralLoc,
5794 diag::err_attribute_patchable_function_entry_invalid_section)
5795 << "section must not be empty";
5796 return;
5797 }
5798 }
5799 D->addAttr(::new (S.Context) PatchableFunctionEntryAttr(S.Context, AL, Count,
5800 Offset, Section));
5801}
5802
5803static void handleBuiltinAliasAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5804 if (!AL.isArgIdent(0)) {
5805 S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
5806 << AL << 1 << AANT_ArgumentIdentifier;
5807 return;
5808 }
5809
5811 unsigned BuiltinID = Ident->getBuiltinID();
5812 StringRef AliasName = cast<FunctionDecl>(D)->getIdentifier()->getName();
5813
5814 bool IsAArch64 = S.Context.getTargetInfo().getTriple().isAArch64();
5815 bool IsARM = S.Context.getTargetInfo().getTriple().isARM();
5816 bool IsRISCV = S.Context.getTargetInfo().getTriple().isRISCV();
5817 bool IsSPIRV = S.Context.getTargetInfo().getTriple().isSPIRV();
5818 bool IsHLSL = S.Context.getLangOpts().HLSL;
5819 if ((IsAArch64 && !S.ARM().SveAliasValid(BuiltinID, AliasName)) ||
5820 (IsARM && !S.ARM().MveAliasValid(BuiltinID, AliasName) &&
5821 !S.ARM().CdeAliasValid(BuiltinID, AliasName)) ||
5822 (IsRISCV && !S.RISCV().isAliasValid(BuiltinID, AliasName)) ||
5823 (!IsAArch64 && !IsARM && !IsRISCV && !IsHLSL && !IsSPIRV)) {
5824 S.Diag(AL.getLoc(), diag::err_attribute_builtin_alias) << AL;
5825 return;
5826 }
5827
5828 D->addAttr(::new (S.Context) BuiltinAliasAttr(S.Context, AL, Ident));
5829}
5830
5831static void handleNullableTypeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5832 if (AL.isUsedAsTypeAttr())
5833 return;
5834
5835 if (auto *CRD = dyn_cast<CXXRecordDecl>(D);
5836 !CRD || !(CRD->isClass() || CRD->isStruct())) {
5837 S.Diag(AL.getRange().getBegin(), diag::err_attribute_wrong_decl_type)
5839 return;
5840 }
5841
5843}
5844
5845static void handlePreferredTypeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5846 if (!AL.hasParsedType()) {
5847 S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 1;
5848 return;
5849 }
5850
5851 TypeSourceInfo *ParmTSI = nullptr;
5852 QualType QT = S.GetTypeFromParser(AL.getTypeArg(), &ParmTSI);
5853 assert(ParmTSI && "no type source info for attribute argument");
5854 S.RequireCompleteType(ParmTSI->getTypeLoc().getBeginLoc(), QT,
5855 diag::err_incomplete_type);
5856
5857 D->addAttr(::new (S.Context) PreferredTypeAttr(S.Context, AL, ParmTSI));
5858}
5859
5860//===----------------------------------------------------------------------===//
5861// Microsoft specific attribute handlers.
5862//===----------------------------------------------------------------------===//
5863
5865 StringRef UuidAsWritten, MSGuidDecl *GuidDecl) {
5866 if (const auto *UA = D->getAttr<UuidAttr>()) {
5867 if (declaresSameEntity(UA->getGuidDecl(), GuidDecl))
5868 return nullptr;
5869 if (!UA->getGuid().empty()) {
5870 Diag(UA->getLocation(), diag::err_mismatched_uuid);
5871 Diag(CI.getLoc(), diag::note_previous_uuid);
5872 D->dropAttr<UuidAttr>();
5873 }
5874 }
5875
5876 return ::new (Context) UuidAttr(Context, CI, UuidAsWritten, GuidDecl);
5877}
5878
5879static void handleUuidAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5880 if (!S.LangOpts.CPlusPlus) {
5881 S.Diag(AL.getLoc(), diag::err_attribute_not_supported_in_lang)
5882 << AL << AttributeLangSupport::C;
5883 return;
5884 }
5885
5886 StringRef OrigStrRef;
5887 SourceLocation LiteralLoc;
5888 if (!S.checkStringLiteralArgumentAttr(AL, 0, OrigStrRef, &LiteralLoc))
5889 return;
5890
5891 // GUID format is "XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX" or
5892 // "{XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX}", normalize to the former.
5893 StringRef StrRef = OrigStrRef;
5894 if (StrRef.size() == 38 && StrRef.front() == '{' && StrRef.back() == '}')
5895 StrRef = StrRef.drop_front().drop_back();
5896
5897 // Validate GUID length.
5898 if (StrRef.size() != 36) {
5899 S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid);
5900 return;
5901 }
5902
5903 for (unsigned i = 0; i < 36; ++i) {
5904 if (i == 8 || i == 13 || i == 18 || i == 23) {
5905 if (StrRef[i] != '-') {
5906 S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid);
5907 return;
5908 }
5909 } else if (!isHexDigit(StrRef[i])) {
5910 S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid);
5911 return;
5912 }
5913 }
5914
5915 // Convert to our parsed format and canonicalize.
5916 MSGuidDecl::Parts Parsed;
5917 StrRef.substr(0, 8).getAsInteger(16, Parsed.Part1);
5918 StrRef.substr(9, 4).getAsInteger(16, Parsed.Part2);
5919 StrRef.substr(14, 4).getAsInteger(16, Parsed.Part3);
5920 for (unsigned i = 0; i != 8; ++i)
5921 StrRef.substr(19 + 2 * i + (i >= 2 ? 1 : 0), 2)
5922 .getAsInteger(16, Parsed.Part4And5[i]);
5923 MSGuidDecl *Guid = S.Context.getMSGuidDecl(Parsed);
5924
5925 // FIXME: It'd be nice to also emit a fixit removing uuid(...) (and, if it's
5926 // the only thing in the [] list, the [] too), and add an insertion of
5927 // __declspec(uuid(...)). But sadly, neither the SourceLocs of the commas
5928 // separating attributes nor of the [ and the ] are in the AST.
5929 // Cf "SourceLocations of attribute list delimiters - [[ ... , ... ]] etc"
5930 // on cfe-dev.
5931 if (AL.isMicrosoftAttribute()) // Check for [uuid(...)] spelling.
5932 S.Diag(AL.getLoc(), diag::warn_atl_uuid_deprecated);
5933
5934 UuidAttr *UA = S.mergeUuidAttr(D, AL, OrigStrRef, Guid);
5935 if (UA)
5936 D->addAttr(UA);
5937}
5938
5939static void handleMSInheritanceAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5940 if (!S.LangOpts.CPlusPlus) {
5941 S.Diag(AL.getLoc(), diag::err_attribute_not_supported_in_lang)
5942 << AL << AttributeLangSupport::C;
5943 return;
5944 }
5945 MSInheritanceAttr *IA = S.mergeMSInheritanceAttr(
5946 D, AL, /*BestCase=*/true, (MSInheritanceModel)AL.getSemanticSpelling());
5947 if (IA) {
5948 D->addAttr(IA);
5950 }
5951}
5952
5953static void handleDeclspecThreadAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5954 const auto *VD = cast<VarDecl>(D);
5956 S.Diag(AL.getLoc(), diag::err_thread_unsupported);
5957 return;
5958 }
5959 if (VD->getTSCSpec() != TSCS_unspecified) {
5960 S.Diag(AL.getLoc(), diag::err_declspec_thread_on_thread_variable);
5961 return;
5962 }
5963 if (VD->hasLocalStorage()) {
5964 S.Diag(AL.getLoc(), diag::err_thread_non_global) << "__declspec(thread)";
5965 return;
5966 }
5967 D->addAttr(::new (S.Context) ThreadAttr(S.Context, AL));
5968}
5969
5970static void handleMSConstexprAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5972 S.Diag(AL.getLoc(), diag::warn_unknown_attribute_ignored)
5973 << AL << AL.getRange();
5974 return;
5975 }
5976 auto *FD = cast<FunctionDecl>(D);
5977 if (FD->isConstexprSpecified() || FD->isConsteval()) {
5978 S.Diag(AL.getLoc(), diag::err_ms_constexpr_cannot_be_applied)
5979 << FD->isConsteval() << FD;
5980 return;
5981 }
5982 if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
5983 if (!S.getLangOpts().CPlusPlus20 && MD->isVirtual()) {
5984 S.Diag(AL.getLoc(), diag::err_ms_constexpr_cannot_be_applied)
5985 << /*virtual*/ 2 << MD;
5986 return;
5987 }
5988 }
5989 D->addAttr(::new (S.Context) MSConstexprAttr(S.Context, AL));
5990}
5991
5992static void handleAbiTagAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5994 for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) {
5995 StringRef Tag;
5996 if (!S.checkStringLiteralArgumentAttr(AL, I, Tag))
5997 return;
5998 Tags.push_back(Tag);
5999 }
6000
6001 if (const auto *NS = dyn_cast<NamespaceDecl>(D)) {
6002 if (!NS->isInline()) {
6003 S.Diag(AL.getLoc(), diag::warn_attr_abi_tag_namespace) << 0;
6004 return;
6005 }
6006 if (NS->isAnonymousNamespace()) {
6007 S.Diag(AL.getLoc(), diag::warn_attr_abi_tag_namespace) << 1;
6008 return;
6009 }
6010 if (AL.getNumArgs() == 0)
6011 Tags.push_back(NS->getName());
6012 } else if (!AL.checkAtLeastNumArgs(S, 1))
6013 return;
6014
6015 // Store tags sorted and without duplicates.
6016 llvm::sort(Tags);
6017 Tags.erase(llvm::unique(Tags), Tags.end());
6018
6019 D->addAttr(::new (S.Context)
6020 AbiTagAttr(S.Context, AL, Tags.data(), Tags.size()));
6021}
6022
6023static bool hasBTFDeclTagAttr(Decl *D, StringRef Tag) {
6024 for (const auto *I : D->specific_attrs<BTFDeclTagAttr>()) {
6025 if (I->getBTFDeclTag() == Tag)
6026 return true;
6027 }
6028 return false;
6029}
6030
6031static void handleBTFDeclTagAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6032 StringRef Str;
6033 if (!S.checkStringLiteralArgumentAttr(AL, 0, Str))
6034 return;
6035 if (hasBTFDeclTagAttr(D, Str))
6036 return;
6037
6038 D->addAttr(::new (S.Context) BTFDeclTagAttr(S.Context, AL, Str));
6039}
6040
6041BTFDeclTagAttr *Sema::mergeBTFDeclTagAttr(Decl *D, const BTFDeclTagAttr &AL) {
6042 if (hasBTFDeclTagAttr(D, AL.getBTFDeclTag()))
6043 return nullptr;
6044 return ::new (Context) BTFDeclTagAttr(Context, AL, AL.getBTFDeclTag());
6045}
6046
6047static void handleInterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6048 // Dispatch the interrupt attribute based on the current target.
6049 switch (S.Context.getTargetInfo().getTriple().getArch()) {
6050 case llvm::Triple::msp430:
6051 S.MSP430().handleInterruptAttr(D, AL);
6052 break;
6053 case llvm::Triple::mipsel:
6054 case llvm::Triple::mips:
6055 S.MIPS().handleInterruptAttr(D, AL);
6056 break;
6057 case llvm::Triple::m68k:
6058 S.M68k().handleInterruptAttr(D, AL);
6059 break;
6060 case llvm::Triple::x86:
6061 case llvm::Triple::x86_64:
6062 S.X86().handleAnyInterruptAttr(D, AL);
6063 break;
6064 case llvm::Triple::avr:
6065 S.AVR().handleInterruptAttr(D, AL);
6066 break;
6067 case llvm::Triple::riscv32:
6068 case llvm::Triple::riscv64:
6069 S.RISCV().handleInterruptAttr(D, AL);
6070 break;
6071 default:
6072 S.ARM().handleInterruptAttr(D, AL);
6073 break;
6074 }
6075}
6076
6077static void handleLayoutVersion(Sema &S, Decl *D, const ParsedAttr &AL) {
6078 uint32_t Version;
6079 Expr *VersionExpr = AL.getArgAsExpr(0);
6080 if (!S.checkUInt32Argument(AL, AL.getArgAsExpr(0), Version))
6081 return;
6082
6083 // TODO: Investigate what happens with the next major version of MSVC.
6084 if (Version != LangOptions::MSVC2015 / 100) {
6085 S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
6086 << AL << Version << VersionExpr->getSourceRange();
6087 return;
6088 }
6089
6090 // The attribute expects a "major" version number like 19, but new versions of
6091 // MSVC have moved to updating the "minor", or less significant numbers, so we
6092 // have to multiply by 100 now.
6093 Version *= 100;
6094
6095 D->addAttr(::new (S.Context) LayoutVersionAttr(S.Context, AL, Version));
6096}
6097
6099 const AttributeCommonInfo &CI) {
6100 if (D->hasAttr<DLLExportAttr>()) {
6101 Diag(CI.getLoc(), diag::warn_attribute_ignored) << "'dllimport'";
6102 return nullptr;
6103 }
6104
6105 if (D->hasAttr<DLLImportAttr>())
6106 return nullptr;
6107
6108 return ::new (Context) DLLImportAttr(Context, CI);
6109}
6110
6112 const AttributeCommonInfo &CI) {
6113 if (DLLImportAttr *Import = D->getAttr<DLLImportAttr>()) {
6114 Diag(Import->getLocation(), diag::warn_attribute_ignored) << Import;
6115 D->dropAttr<DLLImportAttr>();
6116 }
6117
6118 if (D->hasAttr<DLLExportAttr>())
6119 return nullptr;
6120
6121 return ::new (Context) DLLExportAttr(Context, CI);
6122}
6123
6124static void handleDLLAttr(Sema &S, Decl *D, const ParsedAttr &A) {
6127 S.Diag(A.getRange().getBegin(), diag::warn_attribute_ignored) << A;
6128 return;
6129 }
6130
6131 if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
6132 if (FD->isInlined() && A.getKind() == ParsedAttr::AT_DLLImport &&
6134 // MinGW doesn't allow dllimport on inline functions.
6135 S.Diag(A.getRange().getBegin(), diag::warn_attribute_ignored_on_inline)
6136 << A;
6137 return;
6138 }
6139 }
6140
6141 if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
6143 MD->getParent()->isLambda()) {
6144 S.Diag(A.getRange().getBegin(), diag::err_attribute_dll_lambda) << A;
6145 return;
6146 }
6147 }
6148
6149 Attr *NewAttr = A.getKind() == ParsedAttr::AT_DLLExport
6150 ? (Attr *)S.mergeDLLExportAttr(D, A)
6151 : (Attr *)S.mergeDLLImportAttr(D, A);
6152 if (NewAttr)
6153 D->addAttr(NewAttr);
6154}
6155
6156MSInheritanceAttr *
6158 bool BestCase,
6159 MSInheritanceModel Model) {
6160 if (MSInheritanceAttr *IA = D->getAttr<MSInheritanceAttr>()) {
6161 if (IA->getInheritanceModel() == Model)
6162 return nullptr;
6163 Diag(IA->getLocation(), diag::err_mismatched_ms_inheritance)
6164 << 1 /*previous declaration*/;
6165 Diag(CI.getLoc(), diag::note_previous_ms_inheritance);
6166 D->dropAttr<MSInheritanceAttr>();
6167 }
6168
6169 auto *RD = cast<CXXRecordDecl>(D);
6170 if (RD->hasDefinition()) {
6171 if (checkMSInheritanceAttrOnDefinition(RD, CI.getRange(), BestCase,
6172 Model)) {
6173 return nullptr;
6174 }
6175 } else {
6177 Diag(CI.getLoc(), diag::warn_ignored_ms_inheritance)
6178 << 1 /*partial specialization*/;
6179 return nullptr;
6180 }
6181 if (RD->getDescribedClassTemplate()) {
6182 Diag(CI.getLoc(), diag::warn_ignored_ms_inheritance)
6183 << 0 /*primary template*/;
6184 return nullptr;
6185 }
6186 }
6187
6188 return ::new (Context) MSInheritanceAttr(Context, CI, BestCase);
6189}
6190
6191static void handleCapabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6192 // The capability attributes take a single string parameter for the name of
6193 // the capability they represent. The lockable attribute does not take any
6194 // parameters. However, semantically, both attributes represent the same
6195 // concept, and so they use the same semantic attribute. Eventually, the
6196 // lockable attribute will be removed.
6197 //
6198 // For backward compatibility, any capability which has no specified string
6199 // literal will be considered a "mutex."
6200 StringRef N("mutex");
6201 SourceLocation LiteralLoc;
6202 if (AL.getKind() == ParsedAttr::AT_Capability &&
6203 !S.checkStringLiteralArgumentAttr(AL, 0, N, &LiteralLoc))
6204 return;
6205
6206 D->addAttr(::new (S.Context) CapabilityAttr(S.Context, AL, N));
6207}
6208
6210 const ParsedAttr &AL) {
6211 // Do not permit 'reentrant_capability' without 'capability(..)'. Note that
6212 // the check here requires 'capability' to be before 'reentrant_capability'.
6213 // This helps enforce a canonical style. Also avoids placing an additional
6214 // branch into ProcessDeclAttributeList().
6215 if (!D->hasAttr<CapabilityAttr>()) {
6216 S.Diag(AL.getLoc(), diag::warn_thread_attribute_requires_preceded)
6217 << AL << cast<NamedDecl>(D) << "'capability'";
6218 return;
6219 }
6220
6221 D->addAttr(::new (S.Context) ReentrantCapabilityAttr(S.Context, AL));
6222}
6223
6224static void handleAssertCapabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6226 if (!checkLockFunAttrCommon(S, D, AL, Args))
6227 return;
6228
6229 D->addAttr(::new (S.Context)
6230 AssertCapabilityAttr(S.Context, AL, Args.data(), Args.size()));
6231}
6232
6234 const ParsedAttr &AL) {
6235 if (const auto *ParmDecl = dyn_cast<ParmVarDecl>(D);
6236 ParmDecl && !checkFunParamsAreScopedLockable(S, ParmDecl, AL))
6237 return;
6238
6240 if (!checkLockFunAttrCommon(S, D, AL, Args))
6241 return;
6242
6243 D->addAttr(::new (S.Context) AcquireCapabilityAttr(S.Context, AL, Args.data(),
6244 Args.size()));
6245}
6246
6248 const ParsedAttr &AL) {
6250 if (!checkTryLockFunAttrCommon(S, D, AL, Args))
6251 return;
6252
6253 D->addAttr(::new (S.Context) TryAcquireCapabilityAttr(
6254 S.Context, AL, AL.getArgAsExpr(0), Args.data(), Args.size()));
6255}
6256
6258 const ParsedAttr &AL) {
6259 if (const auto *ParmDecl = dyn_cast<ParmVarDecl>(D);
6260 ParmDecl && !checkFunParamsAreScopedLockable(S, ParmDecl, AL))
6261 return;
6262 // Check that all arguments are lockable objects.
6264 checkAttrArgsAreCapabilityObjs(S, D, AL, Args, 0, true);
6265
6266 D->addAttr(::new (S.Context) ReleaseCapabilityAttr(S.Context, AL, Args.data(),
6267 Args.size()));
6268}
6269
6271 const ParsedAttr &AL) {
6272 if (const auto *ParmDecl = dyn_cast<ParmVarDecl>(D);
6273 ParmDecl && !checkFunParamsAreScopedLockable(S, ParmDecl, AL))
6274 return;
6275
6276 if (!AL.checkAtLeastNumArgs(S, 1))
6277 return;
6278
6279 // check that all arguments are lockable objects
6281 checkAttrArgsAreCapabilityObjs(S, D, AL, Args);
6282 if (Args.empty())
6283 return;
6284
6285 RequiresCapabilityAttr *RCA = ::new (S.Context)
6286 RequiresCapabilityAttr(S.Context, AL, Args.data(), Args.size());
6287
6288 D->addAttr(RCA);
6289}
6290
6291static void handleDeprecatedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6292 if (const auto *NSD = dyn_cast<NamespaceDecl>(D)) {
6293 if (NSD->isAnonymousNamespace()) {
6294 S.Diag(AL.getLoc(), diag::warn_deprecated_anonymous_namespace);
6295 // Do not want to attach the attribute to the namespace because that will
6296 // cause confusing diagnostic reports for uses of declarations within the
6297 // namespace.
6298 return;
6299 }
6302 S.Diag(AL.getRange().getBegin(), diag::warn_deprecated_ignored_on_using)
6303 << AL;
6304 return;
6305 }
6306
6307 // Handle the cases where the attribute has a text message.
6308 StringRef Str, Replacement;
6309 if (AL.isArgExpr(0) && AL.getArgAsExpr(0) &&
6310 !S.checkStringLiteralArgumentAttr(AL, 0, Str))
6311 return;
6312
6313 // Support a single optional message only for Declspec and [[]] spellings.
6315 AL.checkAtMostNumArgs(S, 1);
6316 else if (AL.isArgExpr(1) && AL.getArgAsExpr(1) &&
6317 !S.checkStringLiteralArgumentAttr(AL, 1, Replacement))
6318 return;
6319
6320 if (!S.getLangOpts().CPlusPlus14 && AL.isCXX11Attribute() && !AL.isGNUScope())
6321 S.Diag(AL.getLoc(), diag::ext_cxx14_attr) << AL;
6322
6323 D->addAttr(::new (S.Context) DeprecatedAttr(S.Context, AL, Str, Replacement));
6324}
6325
6326static bool isGlobalVar(const Decl *D) {
6327 if (const auto *S = dyn_cast<VarDecl>(D))
6328 return S->hasGlobalStorage();
6329 return false;
6330}
6331
6332static bool isSanitizerAttributeAllowedOnGlobals(StringRef Sanitizer) {
6333 return Sanitizer == "address" || Sanitizer == "hwaddress" ||
6334 Sanitizer == "memtag";
6335}
6336
6337static void handleNoSanitizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6338 if (!AL.checkAtLeastNumArgs(S, 1))
6339 return;
6340
6341 std::vector<StringRef> Sanitizers;
6342
6343 for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) {
6344 StringRef SanitizerName;
6345 SourceLocation LiteralLoc;
6346
6347 if (!S.checkStringLiteralArgumentAttr(AL, I, SanitizerName, &LiteralLoc))
6348 return;
6349
6350 if (parseSanitizerValue(SanitizerName, /*AllowGroups=*/true) ==
6351 SanitizerMask() &&
6352 SanitizerName != "coverage")
6353 S.Diag(LiteralLoc, diag::warn_unknown_sanitizer_ignored) << SanitizerName;
6354 else if (isGlobalVar(D) && !isSanitizerAttributeAllowedOnGlobals(SanitizerName))
6355 S.Diag(D->getLocation(), diag::warn_attribute_type_not_supported_global)
6356 << AL << SanitizerName;
6357 Sanitizers.push_back(SanitizerName);
6358 }
6359
6360 D->addAttr(::new (S.Context) NoSanitizeAttr(S.Context, AL, Sanitizers.data(),
6361 Sanitizers.size()));
6362}
6363
6365getNoSanitizeAttrInfo(const ParsedAttr &NoSanitizeSpecificAttr) {
6366 // FIXME: Rather than create a NoSanitizeSpecificAttr, this creates a
6367 // NoSanitizeAttr object; but we need to calculate the correct spelling list
6368 // index rather than incorrectly assume the index for NoSanitizeSpecificAttr
6369 // has the same spellings as the index for NoSanitizeAttr. We don't have a
6370 // general way to "translate" between the two, so this hack attempts to work
6371 // around the issue with hard-coded indices. This is critical for calling
6372 // getSpelling() or prettyPrint() on the resulting semantic attribute object
6373 // without failing assertions.
6374 unsigned TranslatedSpellingIndex = 0;
6375 if (NoSanitizeSpecificAttr.isStandardAttributeSyntax())
6376 TranslatedSpellingIndex = 1;
6377
6378 AttributeCommonInfo Info = NoSanitizeSpecificAttr;
6379 Info.setAttributeSpellingListIndex(TranslatedSpellingIndex);
6380 return Info;
6381}
6382
6384 const ParsedAttr &AL) {
6385 StringRef SanitizerName = "address";
6387 D->addAttr(::new (S.Context)
6388 NoSanitizeAttr(S.Context, Info, &SanitizerName, 1));
6389}
6390
6391static void handleNoSanitizeThreadAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6392 StringRef SanitizerName = "thread";
6394 D->addAttr(::new (S.Context)
6395 NoSanitizeAttr(S.Context, Info, &SanitizerName, 1));
6396}
6397
6398static void handleNoSanitizeMemoryAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6399 StringRef SanitizerName = "memory";
6401 D->addAttr(::new (S.Context)
6402 NoSanitizeAttr(S.Context, Info, &SanitizerName, 1));
6403}
6404
6405static void handleInternalLinkageAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6406 if (InternalLinkageAttr *Internal = S.mergeInternalLinkageAttr(D, AL))
6407 D->addAttr(Internal);
6408}
6409
6410static void handleZeroCallUsedRegsAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6411 // Check that the argument is a string literal.
6412 StringRef KindStr;
6413 SourceLocation LiteralLoc;
6414 if (!S.checkStringLiteralArgumentAttr(AL, 0, KindStr, &LiteralLoc))
6415 return;
6416
6417 ZeroCallUsedRegsAttr::ZeroCallUsedRegsKind Kind;
6418 if (!ZeroCallUsedRegsAttr::ConvertStrToZeroCallUsedRegsKind(KindStr, Kind)) {
6419 S.Diag(LiteralLoc, diag::warn_attribute_type_not_supported)
6420 << AL << KindStr;
6421 return;
6422 }
6423
6424 D->dropAttr<ZeroCallUsedRegsAttr>();
6425 D->addAttr(ZeroCallUsedRegsAttr::Create(S.Context, Kind, AL));
6426}
6427
6428static void handleCountedByAttrField(Sema &S, Decl *D, const ParsedAttr &AL) {
6429 auto *FD = dyn_cast<FieldDecl>(D);
6430 assert(FD);
6431
6432 auto *CountExpr = AL.getArgAsExpr(0);
6433 if (!CountExpr)
6434 return;
6435
6436 bool CountInBytes;
6437 bool OrNull;
6438 switch (AL.getKind()) {
6439 case ParsedAttr::AT_CountedBy:
6440 CountInBytes = false;
6441 OrNull = false;
6442 break;
6443 case ParsedAttr::AT_CountedByOrNull:
6444 CountInBytes = false;
6445 OrNull = true;
6446 break;
6447 case ParsedAttr::AT_SizedBy:
6448 CountInBytes = true;
6449 OrNull = false;
6450 break;
6451 case ParsedAttr::AT_SizedByOrNull:
6452 CountInBytes = true;
6453 OrNull = true;
6454 break;
6455 default:
6456 llvm_unreachable("unexpected counted_by family attribute");
6457 }
6458
6459 if (S.CheckCountedByAttrOnField(FD, CountExpr, CountInBytes, OrNull))
6460 return;
6461
6463 FD->getType(), CountExpr, CountInBytes, OrNull);
6464 FD->setType(CAT);
6465}
6466
6468 const ParsedAttr &AL) {
6469 StringRef KindStr;
6470 SourceLocation LiteralLoc;
6471 if (!S.checkStringLiteralArgumentAttr(AL, 0, KindStr, &LiteralLoc))
6472 return;
6473
6474 FunctionReturnThunksAttr::Kind Kind;
6475 if (!FunctionReturnThunksAttr::ConvertStrToKind(KindStr, Kind)) {
6476 S.Diag(LiteralLoc, diag::warn_attribute_type_not_supported)
6477 << AL << KindStr;
6478 return;
6479 }
6480 // FIXME: it would be good to better handle attribute merging rather than
6481 // silently replacing the existing attribute, so long as it does not break
6482 // the expected codegen tests.
6483 D->dropAttr<FunctionReturnThunksAttr>();
6484 D->addAttr(FunctionReturnThunksAttr::Create(S.Context, Kind, AL));
6485}
6486
6488 const ParsedAttr &AL) {
6489 assert(isa<TypedefNameDecl>(D) && "This attribute only applies to a typedef");
6491}
6492
6493static void handleNoMergeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6494 auto *VDecl = dyn_cast<VarDecl>(D);
6495 if (VDecl && !VDecl->isFunctionPointerType()) {
6496 S.Diag(AL.getLoc(), diag::warn_attribute_ignored_non_function_pointer)
6497 << AL << VDecl;
6498 return;
6499 }
6500 D->addAttr(NoMergeAttr::Create(S.Context, AL));
6501}
6502
6503static void handleNoUniqueAddressAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6504 D->addAttr(NoUniqueAddressAttr::Create(S.Context, AL));
6505}
6506
6507static void handleDestroyAttr(Sema &S, Decl *D, const ParsedAttr &A) {
6508 if (!cast<VarDecl>(D)->hasGlobalStorage()) {
6509 S.Diag(D->getLocation(), diag::err_destroy_attr_on_non_static_var)
6510 << (A.getKind() == ParsedAttr::AT_AlwaysDestroy);
6511 return;
6512 }
6513
6514 if (A.getKind() == ParsedAttr::AT_AlwaysDestroy)
6516 else
6518}
6519
6520static void handleUninitializedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6521 assert(cast<VarDecl>(D)->getStorageDuration() == SD_Automatic &&
6522 "uninitialized is only valid on automatic duration variables");
6523 D->addAttr(::new (S.Context) UninitializedAttr(S.Context, AL));
6524}
6525
6526static void handleMIGServerRoutineAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6527 // Check that the return type is a `typedef int kern_return_t` or a typedef
6528 // around it, because otherwise MIG convention checks make no sense.
6529 // BlockDecl doesn't store a return type, so it's annoying to check,
6530 // so let's skip it for now.
6531 if (!isa<BlockDecl>(D)) {
6533 bool IsKernReturnT = false;
6534 while (const auto *TT = T->getAs<TypedefType>()) {
6535 IsKernReturnT = (TT->getDecl()->getName() == "kern_return_t");
6536 T = TT->desugar();
6537 }
6538 if (!IsKernReturnT || T.getCanonicalType() != S.getASTContext().IntTy) {
6539 S.Diag(D->getBeginLoc(),
6540 diag::warn_mig_server_routine_does_not_return_kern_return_t);
6541 return;
6542 }
6543 }
6544
6546}
6547
6548static void handleMSAllocatorAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6549 // Warn if the return type is not a pointer or reference type.
6550 if (auto *FD = dyn_cast<FunctionDecl>(D)) {
6551 QualType RetTy = FD->getReturnType();
6552 if (!RetTy->isPointerOrReferenceType()) {
6553 S.Diag(AL.getLoc(), diag::warn_declspec_allocator_nonpointer)
6554 << AL.getRange() << RetTy;
6555 return;
6556 }
6557 }
6558
6560}
6561
6562static void handleAcquireHandleAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6563 if (AL.isUsedAsTypeAttr())
6564 return;
6565 // Warn if the parameter is definitely not an output parameter.
6566 if (const auto *PVD = dyn_cast<ParmVarDecl>(D)) {
6567 if (PVD->getType()->isIntegerType()) {
6568 S.Diag(AL.getLoc(), diag::err_attribute_output_parameter)
6569 << AL.getRange();
6570 return;
6571 }
6572 }
6573 StringRef Argument;
6574 if (!S.checkStringLiteralArgumentAttr(AL, 0, Argument))
6575 return;
6576 D->addAttr(AcquireHandleAttr::Create(S.Context, Argument, AL));
6577}
6578
6579template<typename Attr>
6580static void handleHandleAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6581 StringRef Argument;
6582 if (!S.checkStringLiteralArgumentAttr(AL, 0, Argument))
6583 return;
6584 D->addAttr(Attr::Create(S.Context, Argument, AL));
6585}
6586
6587template<typename Attr>
6588static void handleUnsafeBufferUsage(Sema &S, Decl *D, const ParsedAttr &AL) {
6589 D->addAttr(Attr::Create(S.Context, AL));
6590}
6591
6592static void handleCFGuardAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6593 // The guard attribute takes a single identifier argument.
6594
6595 if (!AL.isArgIdent(0)) {
6596 S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
6597 << AL << AANT_ArgumentIdentifier;
6598 return;
6599 }
6600
6601 CFGuardAttr::GuardArg Arg;
6603 if (!CFGuardAttr::ConvertStrToGuardArg(II->getName(), Arg)) {
6604 S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << II;
6605 return;
6606 }
6607
6608 D->addAttr(::new (S.Context) CFGuardAttr(S.Context, AL, Arg));
6609}
6610
6611
6612template <typename AttrTy>
6613static const AttrTy *findEnforceTCBAttrByName(Decl *D, StringRef Name) {
6614 auto Attrs = D->specific_attrs<AttrTy>();
6615 auto I = llvm::find_if(Attrs,
6616 [Name](const AttrTy *A) {
6617 return A->getTCBName() == Name;
6618 });
6619 return I == Attrs.end() ? nullptr : *I;
6620}
6621
6622template <typename AttrTy, typename ConflictingAttrTy>
6623static void handleEnforceTCBAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6624 StringRef Argument;
6625 if (!S.checkStringLiteralArgumentAttr(AL, 0, Argument))
6626 return;
6627
6628 // A function cannot be have both regular and leaf membership in the same TCB.
6629 if (const ConflictingAttrTy *ConflictingAttr =
6631 // We could attach a note to the other attribute but in this case
6632 // there's no need given how the two are very close to each other.
6633 S.Diag(AL.getLoc(), diag::err_tcb_conflicting_attributes)
6634 << AL.getAttrName()->getName() << ConflictingAttr->getAttrName()->getName()
6635 << Argument;
6636
6637 // Error recovery: drop the non-leaf attribute so that to suppress
6638 // all future warnings caused by erroneous attributes. The leaf attribute
6639 // needs to be kept because it can only suppresses warnings, not cause them.
6640 D->dropAttr<EnforceTCBAttr>();
6641 return;
6642 }
6643
6644 D->addAttr(AttrTy::Create(S.Context, Argument, AL));
6645}
6646
6647template <typename AttrTy, typename ConflictingAttrTy>
6648static AttrTy *mergeEnforceTCBAttrImpl(Sema &S, Decl *D, const AttrTy &AL) {
6649 // Check if the new redeclaration has different leaf-ness in the same TCB.
6650 StringRef TCBName = AL.getTCBName();
6651 if (const ConflictingAttrTy *ConflictingAttr =
6653 S.Diag(ConflictingAttr->getLoc(), diag::err_tcb_conflicting_attributes)
6654 << ConflictingAttr->getAttrName()->getName()
6655 << AL.getAttrName()->getName() << TCBName;
6656
6657 // Add a note so that the user could easily find the conflicting attribute.
6658 S.Diag(AL.getLoc(), diag::note_conflicting_attribute);
6659
6660 // More error recovery.
6661 D->dropAttr<EnforceTCBAttr>();
6662 return nullptr;
6663 }
6664
6665 ASTContext &Context = S.getASTContext();
6666 return ::new(Context) AttrTy(Context, AL, AL.getTCBName());
6667}
6668
6669EnforceTCBAttr *Sema::mergeEnforceTCBAttr(Decl *D, const EnforceTCBAttr &AL) {
6671 *this, D, AL);
6672}
6673
6675 Decl *D, const EnforceTCBLeafAttr &AL) {
6677 *this, D, AL);
6678}
6679
6681 const ParsedAttr &AL) {
6683 const uint32_t NumArgs = AL.getNumArgs();
6684 if (NumArgs > 4) {
6685 S.Diag(AL.getLoc(), diag::err_attribute_too_many_arguments) << AL << 4;
6686 AL.setInvalid();
6687 }
6688
6689 if (NumArgs == 0) {
6690 S.Diag(AL.getLoc(), diag::err_attribute_too_few_arguments) << AL;
6691 AL.setInvalid();
6692 return;
6693 }
6694
6695 if (D->getAttr<VTablePointerAuthenticationAttr>()) {
6696 S.Diag(AL.getLoc(), diag::err_duplicated_vtable_pointer_auth) << Decl;
6697 AL.setInvalid();
6698 }
6699
6700 auto KeyType = VTablePointerAuthenticationAttr::VPtrAuthKeyType::DefaultKey;
6701 if (AL.isArgIdent(0)) {
6702 IdentifierLoc *IL = AL.getArgAsIdent(0);
6703 if (!VTablePointerAuthenticationAttr::ConvertStrToVPtrAuthKeyType(
6704 IL->getIdentifierInfo()->getName(), KeyType)) {
6705 S.Diag(IL->getLoc(), diag::err_invalid_authentication_key)
6706 << IL->getIdentifierInfo();
6707 AL.setInvalid();
6708 }
6709 if (KeyType == VTablePointerAuthenticationAttr::DefaultKey &&
6710 !S.getLangOpts().PointerAuthCalls) {
6711 S.Diag(AL.getLoc(), diag::err_no_default_vtable_pointer_auth) << 0;
6712 AL.setInvalid();
6713 }
6714 } else {
6715 S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
6716 << AL << AANT_ArgumentIdentifier;
6717 return;
6718 }
6719
6720 auto AddressDiversityMode = VTablePointerAuthenticationAttr::
6721 AddressDiscriminationMode::DefaultAddressDiscrimination;
6722 if (AL.getNumArgs() > 1) {
6723 if (AL.isArgIdent(1)) {
6724 IdentifierLoc *IL = AL.getArgAsIdent(1);
6725 if (!VTablePointerAuthenticationAttr::
6726 ConvertStrToAddressDiscriminationMode(
6727 IL->getIdentifierInfo()->getName(), AddressDiversityMode)) {
6728 S.Diag(IL->getLoc(), diag::err_invalid_address_discrimination)
6729 << IL->getIdentifierInfo();
6730 AL.setInvalid();
6731 }
6732 if (AddressDiversityMode ==
6733 VTablePointerAuthenticationAttr::DefaultAddressDiscrimination &&
6734 !S.getLangOpts().PointerAuthCalls) {
6735 S.Diag(IL->getLoc(), diag::err_no_default_vtable_pointer_auth) << 1;
6736 AL.setInvalid();
6737 }
6738 } else {
6739 S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
6740 << AL << AANT_ArgumentIdentifier;
6741 }
6742 }
6743
6744 auto ED = VTablePointerAuthenticationAttr::ExtraDiscrimination::
6745 DefaultExtraDiscrimination;
6746 if (AL.getNumArgs() > 2) {
6747 if (AL.isArgIdent(2)) {
6748 IdentifierLoc *IL = AL.getArgAsIdent(2);
6749 if (!VTablePointerAuthenticationAttr::ConvertStrToExtraDiscrimination(
6750 IL->getIdentifierInfo()->getName(), ED)) {
6751 S.Diag(IL->getLoc(), diag::err_invalid_extra_discrimination)
6752 << IL->getIdentifierInfo();
6753 AL.setInvalid();
6754 }
6755 if (ED == VTablePointerAuthenticationAttr::DefaultExtraDiscrimination &&
6756 !S.getLangOpts().PointerAuthCalls) {
6757 S.Diag(AL.getLoc(), diag::err_no_default_vtable_pointer_auth) << 2;
6758 AL.setInvalid();
6759 }
6760 } else {
6761 S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
6762 << AL << AANT_ArgumentIdentifier;
6763 }
6764 }
6765
6766 uint32_t CustomDiscriminationValue = 0;
6767 if (ED == VTablePointerAuthenticationAttr::CustomDiscrimination) {
6768 if (NumArgs < 4) {
6769 S.Diag(AL.getLoc(), diag::err_missing_custom_discrimination) << AL << 4;
6770 AL.setInvalid();
6771 return;
6772 }
6773 if (NumArgs > 4) {
6774 S.Diag(AL.getLoc(), diag::err_attribute_too_many_arguments) << AL << 4;
6775 AL.setInvalid();
6776 }
6777
6778 if (!AL.isArgExpr(3) || !S.checkUInt32Argument(AL, AL.getArgAsExpr(3),
6779 CustomDiscriminationValue)) {
6780 S.Diag(AL.getLoc(), diag::err_invalid_custom_discrimination);
6781 AL.setInvalid();
6782 }
6783 } else if (NumArgs > 3) {
6784 S.Diag(AL.getLoc(), diag::err_attribute_too_many_arguments) << AL << 3;
6785 AL.setInvalid();
6786 }
6787
6788 Decl->addAttr(::new (S.Context) VTablePointerAuthenticationAttr(
6789 S.Context, AL, KeyType, AddressDiversityMode, ED,
6790 CustomDiscriminationValue));
6791}
6792
6793//===----------------------------------------------------------------------===//
6794// Top Level Sema Entry Points
6795//===----------------------------------------------------------------------===//
6796
6797// Returns true if the attribute must delay setting its arguments until after
6798// template instantiation, and false otherwise.
6800 // Only attributes that accept expression parameter packs can delay arguments.
6801 if (!AL.acceptsExprPack())
6802 return false;
6803
6804 bool AttrHasVariadicArg = AL.hasVariadicArg();
6805 unsigned AttrNumArgs = AL.getNumArgMembers();
6806 for (size_t I = 0; I < std::min(AL.getNumArgs(), AttrNumArgs); ++I) {
6807 bool IsLastAttrArg = I == (AttrNumArgs - 1);
6808 // If the argument is the last argument and it is variadic it can contain
6809 // any expression.
6810 if (IsLastAttrArg && AttrHasVariadicArg)
6811 return false;
6812 Expr *E = AL.getArgAsExpr(I);
6813 bool ArgMemberCanHoldExpr = AL.isParamExpr(I);
6814 // If the expression is a pack expansion then arguments must be delayed
6815 // unless the argument is an expression and it is the last argument of the
6816 // attribute.
6818 return !(IsLastAttrArg && ArgMemberCanHoldExpr);
6819 // Last case is if the expression is value dependent then it must delay
6820 // arguments unless the corresponding argument is able to hold the
6821 // expression.
6822 if (E->isValueDependent() && !ArgMemberCanHoldExpr)
6823 return true;
6824 }
6825 return false;
6826}
6827
6828/// ProcessDeclAttribute - Apply the specific attribute to the specified decl if
6829/// the attribute applies to decls. If the attribute is a type attribute, just
6830/// silently ignore it if a GNU attribute.
6831static void
6833 const Sema::ProcessDeclAttributeOptions &Options) {
6835 return;
6836
6837 // Ignore C++11 attributes on declarator chunks: they appertain to the type
6838 // instead. Note, isCXX11Attribute() will look at whether the attribute is
6839 // [[]] or alignas, while isC23Attribute() will only look at [[]]. This is
6840 // important for ensuring that alignas in C23 is properly handled on a
6841 // structure member declaration because it is a type-specifier-qualifier in
6842 // C but still applies to the declaration rather than the type.
6843 if ((S.getLangOpts().CPlusPlus ? AL.isCXX11Attribute()
6844 : AL.isC23Attribute()) &&
6845 !Options.IncludeCXX11Attributes)
6846 return;
6847
6848 // Unknown attributes are automatically warned on. Target-specific attributes
6849 // which do not apply to the current target architecture are treated as
6850 // though they were unknown attributes.
6853 if (AL.isRegularKeywordAttribute()) {
6854 S.Diag(AL.getLoc(), diag::err_keyword_not_supported_on_target)
6855 << AL.getAttrName() << AL.getRange();
6856 } else if (AL.isDeclspecAttribute()) {
6857 S.Diag(AL.getLoc(), diag::warn_unhandled_ms_attribute_ignored)
6858 << AL.getAttrName() << AL.getRange();
6859 } else {
6861 }
6862 return;
6863 }
6864
6865 // Check if argument population must delayed to after template instantiation.
6866 bool MustDelayArgs = MustDelayAttributeArguments(AL);
6867
6868 // Argument number check must be skipped if arguments are delayed.
6869 if (S.checkCommonAttributeFeatures(D, AL, MustDelayArgs))
6870 return;
6871
6872 if (MustDelayArgs) {
6874 return;
6875 }
6876
6877 switch (AL.getKind()) {
6878 default:
6880 break;
6881 if (!AL.isStmtAttr()) {
6882 assert(AL.isTypeAttr() && "Non-type attribute not handled");
6883 }
6884 if (AL.isTypeAttr()) {
6885 if (Options.IgnoreTypeAttributes)
6886 break;
6888 // Non-[[]] type attributes are handled in processTypeAttrs(); silently
6889 // move on.
6890 break;
6891 }
6892
6893 // According to the C and C++ standards, we should never see a
6894 // [[]] type attribute on a declaration. However, we have in the past
6895 // allowed some type attributes to "slide" to the `DeclSpec`, so we need
6896 // to continue to support this legacy behavior. We only do this, however,
6897 // if
6898 // - we actually have a `DeclSpec`, i.e. if we're looking at a
6899 // `DeclaratorDecl`, or
6900 // - we are looking at an alias-declaration, where historically we have
6901 // allowed type attributes after the identifier to slide to the type.
6904 // Suggest moving the attribute to the type instead, but only for our
6905 // own vendor attributes; moving other vendors' attributes might hurt
6906 // portability.
6907 if (AL.isClangScope()) {
6908 S.Diag(AL.getLoc(), diag::warn_type_attribute_deprecated_on_decl)
6909 << AL << D->getLocation();
6910 }
6911
6912 // Allow this type attribute to be handled in processTypeAttrs();
6913 // silently move on.
6914 break;
6915 }
6916
6917 if (AL.getKind() == ParsedAttr::AT_Regparm) {
6918 // `regparm` is a special case: It's a type attribute but we still want
6919 // to treat it as if it had been written on the declaration because that
6920 // way we'll be able to handle it directly in `processTypeAttr()`.
6921 // If we treated `regparm` it as if it had been written on the
6922 // `DeclSpec`, the logic in `distributeFunctionTypeAttrFromDeclSepc()`
6923 // would try to move it to the declarator, but that doesn't work: We
6924 // can't remove the attribute from the list of declaration attributes
6925 // because it might be needed by other declarators in the same
6926 // declaration.
6927 break;
6928 }
6929
6930 if (AL.getKind() == ParsedAttr::AT_VectorSize) {
6931 // `vector_size` is a special case: It's a type attribute semantically,
6932 // but GCC expects the [[]] syntax to be written on the declaration (and
6933 // warns that the attribute has no effect if it is placed on the
6934 // decl-specifier-seq).
6935 // Silently move on and allow the attribute to be handled in
6936 // processTypeAttr().
6937 break;
6938 }
6939
6940 if (AL.getKind() == ParsedAttr::AT_NoDeref) {
6941 // FIXME: `noderef` currently doesn't work correctly in [[]] syntax.
6942 // See https://github.com/llvm/llvm-project/issues/55790 for details.
6943 // We allow processTypeAttrs() to emit a warning and silently move on.
6944 break;
6945 }
6946 }
6947 // N.B., ClangAttrEmitter.cpp emits a diagnostic helper that ensures a
6948 // statement attribute is not written on a declaration, but this code is
6949 // needed for type attributes as well as statement attributes in Attr.td
6950 // that do not list any subjects.
6951 S.Diag(AL.getLoc(), diag::err_attribute_invalid_on_decl)
6952 << AL << AL.isRegularKeywordAttribute() << D->getLocation();
6953 break;
6954 case ParsedAttr::AT_Interrupt:
6955 handleInterruptAttr(S, D, AL);
6956 break;
6957 case ParsedAttr::AT_ARMInterruptSaveFP:
6958 S.ARM().handleInterruptSaveFPAttr(D, AL);
6959 break;
6960 case ParsedAttr::AT_X86ForceAlignArgPointer:
6962 break;
6963 case ParsedAttr::AT_ReadOnlyPlacement:
6965 break;
6966 case ParsedAttr::AT_DLLExport:
6967 case ParsedAttr::AT_DLLImport:
6968 handleDLLAttr(S, D, AL);
6969 break;
6970 case ParsedAttr::AT_AMDGPUFlatWorkGroupSize:
6972 break;
6973 case ParsedAttr::AT_AMDGPUWavesPerEU:
6975 break;
6976 case ParsedAttr::AT_AMDGPUNumSGPR:
6978 break;
6979 case ParsedAttr::AT_AMDGPUNumVGPR:
6981 break;
6982 case ParsedAttr::AT_AMDGPUMaxNumWorkGroups:
6984 break;
6985 case ParsedAttr::AT_AVRSignal:
6986 S.AVR().handleSignalAttr(D, AL);
6987 break;
6988 case ParsedAttr::AT_BPFPreserveAccessIndex:
6990 break;
6991 case ParsedAttr::AT_BPFPreserveStaticOffset:
6993 break;
6994 case ParsedAttr::AT_BTFDeclTag:
6995 handleBTFDeclTagAttr(S, D, AL);
6996 break;
6997 case ParsedAttr::AT_WebAssemblyExportName:
6999 break;
7000 case ParsedAttr::AT_WebAssemblyImportModule:
7002 break;
7003 case ParsedAttr::AT_WebAssemblyImportName:
7005 break;
7006 case ParsedAttr::AT_IBOutlet:
7007 S.ObjC().handleIBOutlet(D, AL);
7008 break;
7009 case ParsedAttr::AT_IBOutletCollection:
7010 S.ObjC().handleIBOutletCollection(D, AL);
7011 break;
7012 case ParsedAttr::AT_IFunc:
7013 handleIFuncAttr(S, D, AL);
7014 break;
7015 case ParsedAttr::AT_Alias:
7016 handleAliasAttr(S, D, AL);
7017 break;
7018 case ParsedAttr::AT_Aligned:
7019 handleAlignedAttr(S, D, AL);
7020 break;
7021 case ParsedAttr::AT_AlignValue:
7022 handleAlignValueAttr(S, D, AL);
7023 break;
7024 case ParsedAttr::AT_AllocSize:
7025 handleAllocSizeAttr(S, D, AL);
7026 break;
7027 case ParsedAttr::AT_AlwaysInline:
7028 handleAlwaysInlineAttr(S, D, AL);
7029 break;
7030 case ParsedAttr::AT_AnalyzerNoReturn:
7032 break;
7033 case ParsedAttr::AT_TLSModel:
7034 handleTLSModelAttr(S, D, AL);
7035 break;
7036 case ParsedAttr::AT_Annotate:
7037 handleAnnotateAttr(S, D, AL);
7038 break;
7039 case ParsedAttr::AT_Availability:
7040 handleAvailabilityAttr(S, D, AL);
7041 break;
7042 case ParsedAttr::AT_CarriesDependency:
7043 handleDependencyAttr(S, scope, D, AL);
7044 break;
7045 case ParsedAttr::AT_CPUDispatch:
7046 case ParsedAttr::AT_CPUSpecific:
7047 handleCPUSpecificAttr(S, D, AL);
7048 break;
7049 case ParsedAttr::AT_Common:
7050 handleCommonAttr(S, D, AL);
7051 break;
7052 case ParsedAttr::AT_CUDAConstant:
7053 handleConstantAttr(S, D, AL);
7054 break;
7055 case ParsedAttr::AT_PassObjectSize:
7056 handlePassObjectSizeAttr(S, D, AL);
7057 break;
7058 case ParsedAttr::AT_Constructor:
7059 handleConstructorAttr(S, D, AL);
7060 break;
7061 case ParsedAttr::AT_Deprecated:
7062 handleDeprecatedAttr(S, D, AL);
7063 break;
7064 case ParsedAttr::AT_Destructor:
7065 handleDestructorAttr(S, D, AL);
7066 break;
7067 case ParsedAttr::AT_EnableIf:
7068 handleEnableIfAttr(S, D, AL);
7069 break;
7070 case ParsedAttr::AT_Error:
7071 handleErrorAttr(S, D, AL);
7072 break;
7073 case ParsedAttr::AT_ExcludeFromExplicitInstantiation:
7075 break;
7076 case ParsedAttr::AT_DiagnoseIf:
7077 handleDiagnoseIfAttr(S, D, AL);
7078 break;
7079 case ParsedAttr::AT_DiagnoseAsBuiltin:
7081 break;
7082 case ParsedAttr::AT_NoBuiltin:
7083 handleNoBuiltinAttr(S, D, AL);
7084 break;
7085 case ParsedAttr::AT_CFIUncheckedCallee:
7087 break;
7088 case ParsedAttr::AT_ExtVectorType:
7089 handleExtVectorTypeAttr(S, D, AL);
7090 break;
7091 case ParsedAttr::AT_ExternalSourceSymbol:
7093 break;
7094 case ParsedAttr::AT_MinSize:
7095 handleMinSizeAttr(S, D, AL);
7096 break;
7097 case ParsedAttr::AT_OptimizeNone:
7098 handleOptimizeNoneAttr(S, D, AL);
7099 break;
7100 case ParsedAttr::AT_EnumExtensibility:
7102 break;
7103 case ParsedAttr::AT_SYCLExternal:
7105 break;
7106 case ParsedAttr::AT_SYCLKernelEntryPoint:
7108 break;
7109 case ParsedAttr::AT_SYCLSpecialClass:
7111 break;
7112 case ParsedAttr::AT_Format:
7113 handleFormatAttr(S, D, AL);
7114 break;
7115 case ParsedAttr::AT_FormatMatches:
7116 handleFormatMatchesAttr(S, D, AL);
7117 break;
7118 case ParsedAttr::AT_FormatArg:
7119 handleFormatArgAttr(S, D, AL);
7120 break;
7121 case ParsedAttr::AT_Callback:
7122 handleCallbackAttr(S, D, AL);
7123 break;
7124 case ParsedAttr::AT_LifetimeCaptureBy:
7126 break;
7127 case ParsedAttr::AT_CalledOnce:
7128 handleCalledOnceAttr(S, D, AL);
7129 break;
7130 case ParsedAttr::AT_CUDAGlobal:
7131 handleGlobalAttr(S, D, AL);
7132 break;
7133 case ParsedAttr::AT_CUDADevice:
7134 handleDeviceAttr(S, D, AL);
7135 break;
7136 case ParsedAttr::AT_CUDAGridConstant:
7137 handleGridConstantAttr(S, D, AL);
7138 break;
7139 case ParsedAttr::AT_HIPManaged:
7140 handleManagedAttr(S, D, AL);
7141 break;
7142 case ParsedAttr::AT_GNUInline:
7143 handleGNUInlineAttr(S, D, AL);
7144 break;
7145 case ParsedAttr::AT_CUDALaunchBounds:
7146 handleLaunchBoundsAttr(S, D, AL);
7147 break;
7148 case ParsedAttr::AT_Restrict:
7149 handleRestrictAttr(S, D, AL);
7150 break;
7151 case ParsedAttr::AT_Mode:
7152 handleModeAttr(S, D, AL);
7153 break;
7154 case ParsedAttr::AT_NonString:
7155 handleNonStringAttr(S, D, AL);
7156 break;
7157 case ParsedAttr::AT_NonNull:
7158 if (auto *PVD = dyn_cast<ParmVarDecl>(D))
7159 handleNonNullAttrParameter(S, PVD, AL);
7160 else
7161 handleNonNullAttr(S, D, AL);
7162 break;
7163 case ParsedAttr::AT_ReturnsNonNull:
7164 handleReturnsNonNullAttr(S, D, AL);
7165 break;
7166 case ParsedAttr::AT_NoEscape:
7167 handleNoEscapeAttr(S, D, AL);
7168 break;
7169 case ParsedAttr::AT_MaybeUndef:
7171 break;
7172 case ParsedAttr::AT_AssumeAligned:
7173 handleAssumeAlignedAttr(S, D, AL);
7174 break;
7175 case ParsedAttr::AT_AllocAlign:
7176 handleAllocAlignAttr(S, D, AL);
7177 break;
7178 case ParsedAttr::AT_Ownership:
7179 handleOwnershipAttr(S, D, AL);
7180 break;
7181 case ParsedAttr::AT_Naked:
7182 handleNakedAttr(S, D, AL);
7183 break;
7184 case ParsedAttr::AT_NoReturn:
7185 handleNoReturnAttr(S, D, AL);
7186 break;
7187 case ParsedAttr::AT_CXX11NoReturn:
7189 break;
7190 case ParsedAttr::AT_AnyX86NoCfCheck:
7191 handleNoCfCheckAttr(S, D, AL);
7192 break;
7193 case ParsedAttr::AT_NoThrow:
7194 if (!AL.isUsedAsTypeAttr())
7196 break;
7197 case ParsedAttr::AT_CUDAShared:
7198 handleSharedAttr(S, D, AL);
7199 break;
7200 case ParsedAttr::AT_VecReturn:
7201 handleVecReturnAttr(S, D, AL);
7202 break;
7203 case ParsedAttr::AT_ObjCOwnership:
7204 S.ObjC().handleOwnershipAttr(D, AL);
7205 break;
7206 case ParsedAttr::AT_ObjCPreciseLifetime:
7208 break;
7209 case ParsedAttr::AT_ObjCReturnsInnerPointer:
7211 break;
7212 case ParsedAttr::AT_ObjCRequiresSuper:
7213 S.ObjC().handleRequiresSuperAttr(D, AL);
7214 break;
7215 case ParsedAttr::AT_ObjCBridge:
7216 S.ObjC().handleBridgeAttr(D, AL);
7217 break;
7218 case ParsedAttr::AT_ObjCBridgeMutable:
7219 S.ObjC().handleBridgeMutableAttr(D, AL);
7220 break;
7221 case ParsedAttr::AT_ObjCBridgeRelated:
7222 S.ObjC().handleBridgeRelatedAttr(D, AL);
7223 break;
7224 case ParsedAttr::AT_ObjCDesignatedInitializer:
7226 break;
7227 case ParsedAttr::AT_ObjCRuntimeName:
7228 S.ObjC().handleRuntimeName(D, AL);
7229 break;
7230 case ParsedAttr::AT_ObjCBoxable:
7231 S.ObjC().handleBoxable(D, AL);
7232 break;
7233 case ParsedAttr::AT_NSErrorDomain:
7234 S.ObjC().handleNSErrorDomain(D, AL);
7235 break;
7236 case ParsedAttr::AT_CFConsumed:
7237 case ParsedAttr::AT_NSConsumed:
7238 case ParsedAttr::AT_OSConsumed:
7239 S.ObjC().AddXConsumedAttr(D, AL,
7241 /*IsTemplateInstantiation=*/false);
7242 break;
7243 case ParsedAttr::AT_OSReturnsRetainedOnZero:
7245 S, D, AL, S.ObjC().isValidOSObjectOutParameter(D),
7246 diag::warn_ns_attribute_wrong_parameter_type,
7247 /*Extra Args=*/AL, /*pointer-to-OSObject-pointer*/ 3, AL.getRange());
7248 break;
7249 case ParsedAttr::AT_OSReturnsRetainedOnNonZero:
7251 S, D, AL, S.ObjC().isValidOSObjectOutParameter(D),
7252 diag::warn_ns_attribute_wrong_parameter_type,
7253 /*Extra Args=*/AL, /*pointer-to-OSObject-poointer*/ 3, AL.getRange());
7254 break;
7255 case ParsedAttr::AT_NSReturnsAutoreleased:
7256 case ParsedAttr::AT_NSReturnsNotRetained:
7257 case ParsedAttr::AT_NSReturnsRetained:
7258 case ParsedAttr::AT_CFReturnsNotRetained:
7259 case ParsedAttr::AT_CFReturnsRetained:
7260 case ParsedAttr::AT_OSReturnsNotRetained:
7261 case ParsedAttr::AT_OSReturnsRetained:
7263 break;
7264 case ParsedAttr::AT_WorkGroupSizeHint:
7266 break;
7267 case ParsedAttr::AT_ReqdWorkGroupSize:
7269 break;
7270 case ParsedAttr::AT_OpenCLIntelReqdSubGroupSize:
7271 S.OpenCL().handleSubGroupSize(D, AL);
7272 break;
7273 case ParsedAttr::AT_VecTypeHint:
7274 handleVecTypeHint(S, D, AL);
7275 break;
7276 case ParsedAttr::AT_InitPriority:
7277 handleInitPriorityAttr(S, D, AL);
7278 break;
7279 case ParsedAttr::AT_Packed:
7280 handlePackedAttr(S, D, AL);
7281 break;
7282 case ParsedAttr::AT_PreferredName:
7283 handlePreferredName(S, D, AL);
7284 break;
7285 case ParsedAttr::AT_NoSpecializations:
7286 handleNoSpecializations(S, D, AL);
7287 break;
7288 case ParsedAttr::AT_Section:
7289 handleSectionAttr(S, D, AL);
7290 break;
7291 case ParsedAttr::AT_CodeModel:
7292 handleCodeModelAttr(S, D, AL);
7293 break;
7294 case ParsedAttr::AT_RandomizeLayout:
7295 handleRandomizeLayoutAttr(S, D, AL);
7296 break;
7297 case ParsedAttr::AT_NoRandomizeLayout:
7299 break;
7300 case ParsedAttr::AT_CodeSeg:
7301 handleCodeSegAttr(S, D, AL);
7302 break;
7303 case ParsedAttr::AT_Target:
7304 handleTargetAttr(S, D, AL);
7305 break;
7306 case ParsedAttr::AT_TargetVersion:
7307 handleTargetVersionAttr(S, D, AL);
7308 break;
7309 case ParsedAttr::AT_TargetClones:
7310 handleTargetClonesAttr(S, D, AL);
7311 break;
7312 case ParsedAttr::AT_MinVectorWidth:
7313 handleMinVectorWidthAttr(S, D, AL);
7314 break;
7315 case ParsedAttr::AT_Unavailable:
7317 break;
7318 case ParsedAttr::AT_OMPAssume:
7319 S.OpenMP().handleOMPAssumeAttr(D, AL);
7320 break;
7321 case ParsedAttr::AT_ObjCDirect:
7322 S.ObjC().handleDirectAttr(D, AL);
7323 break;
7324 case ParsedAttr::AT_ObjCDirectMembers:
7325 S.ObjC().handleDirectMembersAttr(D, AL);
7327 break;
7328 case ParsedAttr::AT_ObjCExplicitProtocolImpl:
7330 break;
7331 case ParsedAttr::AT_Unused:
7332 handleUnusedAttr(S, D, AL);
7333 break;
7334 case ParsedAttr::AT_Visibility:
7335 handleVisibilityAttr(S, D, AL, false);
7336 break;
7337 case ParsedAttr::AT_TypeVisibility:
7338 handleVisibilityAttr(S, D, AL, true);
7339 break;
7340 case ParsedAttr::AT_WarnUnusedResult:
7341 handleWarnUnusedResult(S, D, AL);
7342 break;
7343 case ParsedAttr::AT_WeakRef:
7344 handleWeakRefAttr(S, D, AL);
7345 break;
7346 case ParsedAttr::AT_WeakImport:
7347 handleWeakImportAttr(S, D, AL);
7348 break;
7349 case ParsedAttr::AT_TransparentUnion:
7351 break;
7352 case ParsedAttr::AT_ObjCMethodFamily:
7353 S.ObjC().handleMethodFamilyAttr(D, AL);
7354 break;
7355 case ParsedAttr::AT_ObjCNSObject:
7356 S.ObjC().handleNSObject(D, AL);
7357 break;
7358 case ParsedAttr::AT_ObjCIndependentClass:
7359 S.ObjC().handleIndependentClass(D, AL);
7360 break;
7361 case ParsedAttr::AT_Blocks:
7362 S.ObjC().handleBlocksAttr(D, AL);
7363 break;
7364 case ParsedAttr::AT_Sentinel:
7365 handleSentinelAttr(S, D, AL);
7366 break;
7367 case ParsedAttr::AT_Cleanup:
7368 handleCleanupAttr(S, D, AL);
7369 break;
7370 case ParsedAttr::AT_NoDebug:
7371 handleNoDebugAttr(S, D, AL);
7372 break;
7373 case ParsedAttr::AT_CmseNSEntry:
7374 S.ARM().handleCmseNSEntryAttr(D, AL);
7375 break;
7376 case ParsedAttr::AT_StdCall:
7377 case ParsedAttr::AT_CDecl:
7378 case ParsedAttr::AT_FastCall:
7379 case ParsedAttr::AT_ThisCall:
7380 case ParsedAttr::AT_Pascal:
7381 case ParsedAttr::AT_RegCall:
7382 case ParsedAttr::AT_SwiftCall:
7383 case ParsedAttr::AT_SwiftAsyncCall:
7384 case ParsedAttr::AT_VectorCall:
7385 case ParsedAttr::AT_MSABI:
7386 case ParsedAttr::AT_SysVABI:
7387 case ParsedAttr::AT_Pcs:
7388 case ParsedAttr::AT_IntelOclBicc:
7389 case ParsedAttr::AT_PreserveMost:
7390 case ParsedAttr::AT_PreserveAll:
7391 case ParsedAttr::AT_AArch64VectorPcs:
7392 case ParsedAttr::AT_AArch64SVEPcs:
7393 case ParsedAttr::AT_M68kRTD:
7394 case ParsedAttr::AT_PreserveNone:
7395 case ParsedAttr::AT_RISCVVectorCC:
7396 case ParsedAttr::AT_RISCVVLSCC:
7397 handleCallConvAttr(S, D, AL);
7398 break;
7399 case ParsedAttr::AT_DeviceKernel:
7400 handleDeviceKernelAttr(S, D, AL);
7401 break;
7402 case ParsedAttr::AT_Suppress:
7403 handleSuppressAttr(S, D, AL);
7404 break;
7405 case ParsedAttr::AT_Owner:
7406 case ParsedAttr::AT_Pointer:
7408 break;
7409 case ParsedAttr::AT_OpenCLAccess:
7410 S.OpenCL().handleAccessAttr(D, AL);
7411 break;
7412 case ParsedAttr::AT_OpenCLNoSVM:
7413 S.OpenCL().handleNoSVMAttr(D, AL);
7414 break;
7415 case ParsedAttr::AT_SwiftContext:
7417 break;
7418 case ParsedAttr::AT_SwiftAsyncContext:
7420 break;
7421 case ParsedAttr::AT_SwiftErrorResult:
7423 break;
7424 case ParsedAttr::AT_SwiftIndirectResult:
7426 break;
7427 case ParsedAttr::AT_InternalLinkage:
7428 handleInternalLinkageAttr(S, D, AL);
7429 break;
7430 case ParsedAttr::AT_ZeroCallUsedRegs:
7432 break;
7433 case ParsedAttr::AT_FunctionReturnThunks:
7435 break;
7436 case ParsedAttr::AT_NoMerge:
7437 handleNoMergeAttr(S, D, AL);
7438 break;
7439 case ParsedAttr::AT_NoUniqueAddress:
7440 handleNoUniqueAddressAttr(S, D, AL);
7441 break;
7442
7443 case ParsedAttr::AT_AvailableOnlyInDefaultEvalMethod:
7445 break;
7446
7447 case ParsedAttr::AT_CountedBy:
7448 case ParsedAttr::AT_CountedByOrNull:
7449 case ParsedAttr::AT_SizedBy:
7450 case ParsedAttr::AT_SizedByOrNull:
7451 handleCountedByAttrField(S, D, AL);
7452 break;
7453
7454 // Microsoft attributes:
7455 case ParsedAttr::AT_LayoutVersion:
7456 handleLayoutVersion(S, D, AL);
7457 break;
7458 case ParsedAttr::AT_Uuid:
7459 handleUuidAttr(S, D, AL);
7460 break;
7461 case ParsedAttr::AT_MSInheritance:
7462 handleMSInheritanceAttr(S, D, AL);
7463 break;
7464 case ParsedAttr::AT_Thread:
7465 handleDeclspecThreadAttr(S, D, AL);
7466 break;
7467 case ParsedAttr::AT_MSConstexpr:
7468 handleMSConstexprAttr(S, D, AL);
7469 break;
7470 case ParsedAttr::AT_HybridPatchable:
7472 break;
7473
7474 // HLSL attributes:
7475 case ParsedAttr::AT_RootSignature:
7476 S.HLSL().handleRootSignatureAttr(D, AL);
7477 break;
7478 case ParsedAttr::AT_HLSLNumThreads:
7479 S.HLSL().handleNumThreadsAttr(D, AL);
7480 break;
7481 case ParsedAttr::AT_HLSLWaveSize:
7482 S.HLSL().handleWaveSizeAttr(D, AL);
7483 break;
7484 case ParsedAttr::AT_HLSLVkExtBuiltinInput:
7486 break;
7487 case ParsedAttr::AT_HLSLVkConstantId:
7488 S.HLSL().handleVkConstantIdAttr(D, AL);
7489 break;
7490 case ParsedAttr::AT_HLSLVkBinding:
7491 S.HLSL().handleVkBindingAttr(D, AL);
7492 break;
7493 case ParsedAttr::AT_HLSLGroupSharedAddressSpace:
7495 break;
7496 case ParsedAttr::AT_HLSLPackOffset:
7497 S.HLSL().handlePackOffsetAttr(D, AL);
7498 break;
7499 case ParsedAttr::AT_HLSLShader:
7500 S.HLSL().handleShaderAttr(D, AL);
7501 break;
7502 case ParsedAttr::AT_HLSLResourceBinding:
7504 break;
7505 case ParsedAttr::AT_HLSLParamModifier:
7506 S.HLSL().handleParamModifierAttr(D, AL);
7507 break;
7508 case ParsedAttr::AT_HLSLUnparsedSemantic:
7509 S.HLSL().handleSemanticAttr(D, AL);
7510 break;
7511
7512 case ParsedAttr::AT_AbiTag:
7513 handleAbiTagAttr(S, D, AL);
7514 break;
7515 case ParsedAttr::AT_CFGuard:
7516 handleCFGuardAttr(S, D, AL);
7517 break;
7518
7519 // Thread safety attributes:
7520 case ParsedAttr::AT_PtGuardedVar:
7521 handlePtGuardedVarAttr(S, D, AL);
7522 break;
7523 case ParsedAttr::AT_NoSanitize:
7524 handleNoSanitizeAttr(S, D, AL);
7525 break;
7526 case ParsedAttr::AT_NoSanitizeAddress:
7528 break;
7529 case ParsedAttr::AT_NoSanitizeThread:
7531 break;
7532 case ParsedAttr::AT_NoSanitizeMemory:
7534 break;
7535 case ParsedAttr::AT_GuardedBy:
7536 handleGuardedByAttr(S, D, AL);
7537 break;
7538 case ParsedAttr::AT_PtGuardedBy:
7539 handlePtGuardedByAttr(S, D, AL);
7540 break;
7541 case ParsedAttr::AT_LockReturned:
7542 handleLockReturnedAttr(S, D, AL);
7543 break;
7544 case ParsedAttr::AT_LocksExcluded:
7545 handleLocksExcludedAttr(S, D, AL);
7546 break;
7547 case ParsedAttr::AT_AcquiredBefore:
7548 handleAcquiredBeforeAttr(S, D, AL);
7549 break;
7550 case ParsedAttr::AT_AcquiredAfter:
7551 handleAcquiredAfterAttr(S, D, AL);
7552 break;
7553
7554 // Capability analysis attributes.
7555 case ParsedAttr::AT_Capability:
7556 case ParsedAttr::AT_Lockable:
7557 handleCapabilityAttr(S, D, AL);
7558 break;
7559 case ParsedAttr::AT_ReentrantCapability:
7561 break;
7562 case ParsedAttr::AT_RequiresCapability:
7564 break;
7565
7566 case ParsedAttr::AT_AssertCapability:
7568 break;
7569 case ParsedAttr::AT_AcquireCapability:
7571 break;
7572 case ParsedAttr::AT_ReleaseCapability:
7574 break;
7575 case ParsedAttr::AT_TryAcquireCapability:
7577 break;
7578
7579 // Consumed analysis attributes.
7580 case ParsedAttr::AT_Consumable:
7581 handleConsumableAttr(S, D, AL);
7582 break;
7583 case ParsedAttr::AT_CallableWhen:
7584 handleCallableWhenAttr(S, D, AL);
7585 break;
7586 case ParsedAttr::AT_ParamTypestate:
7587 handleParamTypestateAttr(S, D, AL);
7588 break;
7589 case ParsedAttr::AT_ReturnTypestate:
7590 handleReturnTypestateAttr(S, D, AL);
7591 break;
7592 case ParsedAttr::AT_SetTypestate:
7593 handleSetTypestateAttr(S, D, AL);
7594 break;
7595 case ParsedAttr::AT_TestTypestate:
7596 handleTestTypestateAttr(S, D, AL);
7597 break;
7598
7599 // Type safety attributes.
7600 case ParsedAttr::AT_ArgumentWithTypeTag:
7602 break;
7603 case ParsedAttr::AT_TypeTagForDatatype:
7605 break;
7606
7607 // Swift attributes.
7608 case ParsedAttr::AT_SwiftAsyncName:
7609 S.Swift().handleAsyncName(D, AL);
7610 break;
7611 case ParsedAttr::AT_SwiftAttr:
7612 S.Swift().handleAttrAttr(D, AL);
7613 break;
7614 case ParsedAttr::AT_SwiftBridge:
7615 S.Swift().handleBridge(D, AL);
7616 break;
7617 case ParsedAttr::AT_SwiftError:
7618 S.Swift().handleError(D, AL);
7619 break;
7620 case ParsedAttr::AT_SwiftName:
7621 S.Swift().handleName(D, AL);
7622 break;
7623 case ParsedAttr::AT_SwiftNewType:
7624 S.Swift().handleNewType(D, AL);
7625 break;
7626 case ParsedAttr::AT_SwiftAsync:
7627 S.Swift().handleAsyncAttr(D, AL);
7628 break;
7629 case ParsedAttr::AT_SwiftAsyncError:
7630 S.Swift().handleAsyncError(D, AL);
7631 break;
7632
7633 // XRay attributes.
7634 case ParsedAttr::AT_XRayLogArgs:
7635 handleXRayLogArgsAttr(S, D, AL);
7636 break;
7637
7638 case ParsedAttr::AT_PatchableFunctionEntry:
7640 break;
7641
7642 case ParsedAttr::AT_AlwaysDestroy:
7643 case ParsedAttr::AT_NoDestroy:
7644 handleDestroyAttr(S, D, AL);
7645 break;
7646
7647 case ParsedAttr::AT_Uninitialized:
7648 handleUninitializedAttr(S, D, AL);
7649 break;
7650
7651 case ParsedAttr::AT_ObjCExternallyRetained:
7653 break;
7654
7655 case ParsedAttr::AT_MIGServerRoutine:
7657 break;
7658
7659 case ParsedAttr::AT_MSAllocator:
7660 handleMSAllocatorAttr(S, D, AL);
7661 break;
7662
7663 case ParsedAttr::AT_ArmBuiltinAlias:
7664 S.ARM().handleBuiltinAliasAttr(D, AL);
7665 break;
7666
7667 case ParsedAttr::AT_ArmLocallyStreaming:
7669 break;
7670
7671 case ParsedAttr::AT_ArmNew:
7672 S.ARM().handleNewAttr(D, AL);
7673 break;
7674
7675 case ParsedAttr::AT_AcquireHandle:
7676 handleAcquireHandleAttr(S, D, AL);
7677 break;
7678
7679 case ParsedAttr::AT_ReleaseHandle:
7681 break;
7682
7683 case ParsedAttr::AT_UnsafeBufferUsage:
7685 break;
7686
7687 case ParsedAttr::AT_UseHandle:
7689 break;
7690
7691 case ParsedAttr::AT_EnforceTCB:
7693 break;
7694
7695 case ParsedAttr::AT_EnforceTCBLeaf:
7697 break;
7698
7699 case ParsedAttr::AT_BuiltinAlias:
7700 handleBuiltinAliasAttr(S, D, AL);
7701 break;
7702
7703 case ParsedAttr::AT_PreferredType:
7704 handlePreferredTypeAttr(S, D, AL);
7705 break;
7706
7707 case ParsedAttr::AT_UsingIfExists:
7709 break;
7710
7711 case ParsedAttr::AT_TypeNullable:
7712 handleNullableTypeAttr(S, D, AL);
7713 break;
7714
7715 case ParsedAttr::AT_VTablePointerAuthentication:
7717 break;
7718 }
7719}
7720
7721static bool isKernelDecl(Decl *D) {
7722 const FunctionType *FnTy = D->getFunctionType();
7723 return D->hasAttr<DeviceKernelAttr>() ||
7724 (FnTy && FnTy->getCallConv() == CallingConv::CC_DeviceKernel) ||
7725 D->hasAttr<CUDAGlobalAttr>();
7726}
7727
7729 Scope *S, Decl *D, const ParsedAttributesView &AttrList,
7730 const ProcessDeclAttributeOptions &Options) {
7731 if (AttrList.empty())
7732 return;
7733
7734 for (const ParsedAttr &AL : AttrList)
7735 ProcessDeclAttribute(*this, S, D, AL, Options);
7736
7737 // FIXME: We should be able to handle these cases in TableGen.
7738 // GCC accepts
7739 // static int a9 __attribute__((weakref));
7740 // but that looks really pointless. We reject it.
7741 if (D->hasAttr<WeakRefAttr>() && !D->hasAttr<AliasAttr>()) {
7742 Diag(AttrList.begin()->getLoc(), diag::err_attribute_weakref_without_alias)
7743 << cast<NamedDecl>(D);
7744 D->dropAttr<WeakRefAttr>();
7745 return;
7746 }
7747
7748 // FIXME: We should be able to handle this in TableGen as well. It would be
7749 // good to have a way to specify "these attributes must appear as a group",
7750 // for these. Additionally, it would be good to have a way to specify "these
7751 // attribute must never appear as a group" for attributes like cold and hot.
7752 if (!(D->hasAttr<DeviceKernelAttr>() ||
7753 (D->hasAttr<CUDAGlobalAttr>() &&
7754 Context.getTargetInfo().getTriple().isSPIRV()))) {
7755 // These attributes cannot be applied to a non-kernel function.
7756 if (const auto *A = D->getAttr<ReqdWorkGroupSizeAttr>()) {
7757 // FIXME: This emits a different error message than
7758 // diag::err_attribute_wrong_decl_type + ExpectedKernelFunction.
7759 Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A;
7760 D->setInvalidDecl();
7761 } else if (const auto *A = D->getAttr<WorkGroupSizeHintAttr>()) {
7762 Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A;
7763 D->setInvalidDecl();
7764 } else if (const auto *A = D->getAttr<VecTypeHintAttr>()) {
7765 Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A;
7766 D->setInvalidDecl();
7767 } else if (const auto *A = D->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) {
7768 Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A;
7769 D->setInvalidDecl();
7770 }
7771 }
7772 if (!isKernelDecl(D)) {
7773 if (const auto *A = D->getAttr<AMDGPUFlatWorkGroupSizeAttr>()) {
7774 Diag(D->getLocation(), diag::err_attribute_wrong_decl_type)
7775 << A << A->isRegularKeywordAttribute() << ExpectedKernelFunction;
7776 D->setInvalidDecl();
7777 } else if (const auto *A = D->getAttr<AMDGPUWavesPerEUAttr>()) {
7778 Diag(D->getLocation(), diag::err_attribute_wrong_decl_type)
7779 << A << A->isRegularKeywordAttribute() << ExpectedKernelFunction;
7780 D->setInvalidDecl();
7781 } else if (const auto *A = D->getAttr<AMDGPUNumSGPRAttr>()) {
7782 Diag(D->getLocation(), diag::err_attribute_wrong_decl_type)
7783 << A << A->isRegularKeywordAttribute() << ExpectedKernelFunction;
7784 D->setInvalidDecl();
7785 } else if (const auto *A = D->getAttr<AMDGPUNumVGPRAttr>()) {
7786 Diag(D->getLocation(), diag::err_attribute_wrong_decl_type)
7787 << A << A->isRegularKeywordAttribute() << ExpectedKernelFunction;
7788 D->setInvalidDecl();
7789 }
7790 }
7791
7792 // Do not permit 'constructor' or 'destructor' attributes on __device__ code.
7793 if (getLangOpts().CUDAIsDevice && D->hasAttr<CUDADeviceAttr>() &&
7794 (D->hasAttr<ConstructorAttr>() || D->hasAttr<DestructorAttr>()) &&
7795 !getLangOpts().GPUAllowDeviceInit) {
7796 Diag(D->getLocation(), diag::err_cuda_ctor_dtor_attrs)
7797 << (D->hasAttr<ConstructorAttr>() ? "constructors" : "destructors");
7798 D->setInvalidDecl();
7799 }
7800
7801 // Do this check after processing D's attributes because the attribute
7802 // objc_method_family can change whether the given method is in the init
7803 // family, and it can be applied after objc_designated_initializer. This is a
7804 // bit of a hack, but we need it to be compatible with versions of clang that
7805 // processed the attribute list in the wrong order.
7806 if (D->hasAttr<ObjCDesignatedInitializerAttr>() &&
7807 cast<ObjCMethodDecl>(D)->getMethodFamily() != OMF_init) {
7808 Diag(D->getLocation(), diag::err_designated_init_attr_non_init);
7809 D->dropAttr<ObjCDesignatedInitializerAttr>();
7810 }
7811}
7812
7814 const ParsedAttributesView &AttrList) {
7815 for (const ParsedAttr &AL : AttrList)
7816 if (AL.getKind() == ParsedAttr::AT_TransparentUnion) {
7817 handleTransparentUnionAttr(*this, D, AL);
7818 break;
7819 }
7820
7821 // For BPFPreserveAccessIndexAttr, we want to populate the attributes
7822 // to fields and inner records as well.
7823 if (D && D->hasAttr<BPFPreserveAccessIndexAttr>())
7825}
7826
7828 AccessSpecDecl *ASDecl, const ParsedAttributesView &AttrList) {
7829 for (const ParsedAttr &AL : AttrList) {
7830 if (AL.getKind() == ParsedAttr::AT_Annotate) {
7831 ProcessDeclAttribute(*this, nullptr, ASDecl, AL,
7833 } else {
7834 Diag(AL.getLoc(), diag::err_only_annotate_after_access_spec);
7835 return true;
7836 }
7837 }
7838 return false;
7839}
7840
7841/// checkUnusedDeclAttributes - Check a list of attributes to see if it
7842/// contains any decl attributes that we should warn about.
7844 for (const ParsedAttr &AL : A) {
7845 // Only warn if the attribute is an unignored, non-type attribute.
7846 if (AL.isUsedAsTypeAttr() || AL.isInvalid())
7847 continue;
7848 if (AL.getKind() == ParsedAttr::IgnoredAttribute)
7849 continue;
7850
7851 if (AL.getKind() == ParsedAttr::UnknownAttribute) {
7853 } else {
7854 S.Diag(AL.getLoc(), diag::warn_attribute_not_on_decl) << AL
7855 << AL.getRange();
7856 }
7857 }
7858}
7859
7867
7870 StringRef ScopeName = AL.getNormalizedScopeName();
7871 std::optional<StringRef> CorrectedScopeName =
7872 AL.tryGetCorrectedScopeName(ScopeName);
7873 if (CorrectedScopeName) {
7874 ScopeName = *CorrectedScopeName;
7875 }
7876
7877 StringRef AttrName = AL.getNormalizedAttrName(ScopeName);
7878 std::optional<StringRef> CorrectedAttrName = AL.tryGetCorrectedAttrName(
7879 ScopeName, AttrName, Context.getTargetInfo(), getLangOpts());
7880 if (CorrectedAttrName) {
7881 AttrName = *CorrectedAttrName;
7882 }
7883
7884 if (CorrectedScopeName || CorrectedAttrName) {
7885 std::string CorrectedFullName =
7886 AL.getNormalizedFullName(ScopeName, AttrName);
7888 Diag(CorrectedScopeName ? NR.getBegin() : AL.getRange().getBegin(),
7889 diag::warn_unknown_attribute_ignored_suggestion);
7890
7891 D << AL << CorrectedFullName;
7892
7893 if (AL.isExplicitScope()) {
7894 D << FixItHint::CreateReplacement(NR, CorrectedFullName) << NR;
7895 } else {
7896 if (CorrectedScopeName) {
7898 ScopeName);
7899 }
7900 if (CorrectedAttrName) {
7901 D << FixItHint::CreateReplacement(AL.getRange(), AttrName);
7902 }
7903 }
7904 } else {
7905 Diag(NR.getBegin(), diag::warn_unknown_attribute_ignored) << AL << NR;
7906 }
7907}
7908
7910 SourceLocation Loc) {
7911 assert(isa<FunctionDecl>(ND) || isa<VarDecl>(ND));
7912 NamedDecl *NewD = nullptr;
7913 if (auto *FD = dyn_cast<FunctionDecl>(ND)) {
7914 FunctionDecl *NewFD;
7915 // FIXME: Missing call to CheckFunctionDeclaration().
7916 // FIXME: Mangling?
7917 // FIXME: Is the qualifier info correct?
7918 // FIXME: Is the DeclContext correct?
7919 NewFD = FunctionDecl::Create(
7920 FD->getASTContext(), FD->getDeclContext(), Loc, Loc,
7922 getCurFPFeatures().isFPConstrained(), false /*isInlineSpecified*/,
7925 NewD = NewFD;
7926
7927 if (FD->getQualifier())
7928 NewFD->setQualifierInfo(FD->getQualifierLoc());
7929
7930 // Fake up parameter variables; they are declared as if this were
7931 // a typedef.
7932 QualType FDTy = FD->getType();
7933 if (const auto *FT = FDTy->getAs<FunctionProtoType>()) {
7935 for (const auto &AI : FT->param_types()) {
7936 ParmVarDecl *Param = BuildParmVarDeclForTypedef(NewFD, Loc, AI);
7937 Param->setScopeInfo(0, Params.size());
7938 Params.push_back(Param);
7939 }
7940 NewFD->setParams(Params);
7941 }
7942 } else if (auto *VD = dyn_cast<VarDecl>(ND)) {
7943 NewD = VarDecl::Create(VD->getASTContext(), VD->getDeclContext(),
7944 VD->getInnerLocStart(), VD->getLocation(), II,
7945 VD->getType(), VD->getTypeSourceInfo(),
7946 VD->getStorageClass());
7947 if (VD->getQualifier())
7948 cast<VarDecl>(NewD)->setQualifierInfo(VD->getQualifierLoc());
7949 }
7950 return NewD;
7951}
7952
7954 if (W.getAlias()) { // clone decl, impersonate __attribute(weak,alias(...))
7955 IdentifierInfo *NDId = ND->getIdentifier();
7956 NamedDecl *NewD = DeclClonePragmaWeak(ND, W.getAlias(), W.getLocation());
7957 NewD->addAttr(
7958 AliasAttr::CreateImplicit(Context, NDId->getName(), W.getLocation()));
7959 NewD->addAttr(WeakAttr::CreateImplicit(Context, W.getLocation()));
7960 WeakTopLevelDecl.push_back(NewD);
7961 // FIXME: "hideous" code from Sema::LazilyCreateBuiltin
7962 // to insert Decl at TU scope, sorry.
7963 DeclContext *SavedContext = CurContext;
7964 CurContext = Context.getTranslationUnitDecl();
7967 PushOnScopeChains(NewD, S);
7968 CurContext = SavedContext;
7969 } else { // just add weak to existing
7970 ND->addAttr(WeakAttr::CreateImplicit(Context, W.getLocation()));
7971 }
7972}
7973
7975 // It's valid to "forward-declare" #pragma weak, in which case we
7976 // have to do this.
7978 if (WeakUndeclaredIdentifiers.empty())
7979 return;
7980 NamedDecl *ND = nullptr;
7981 if (auto *VD = dyn_cast<VarDecl>(D))
7982 if (VD->isExternC())
7983 ND = VD;
7984 if (auto *FD = dyn_cast<FunctionDecl>(D))
7985 if (FD->isExternC())
7986 ND = FD;
7987 if (!ND)
7988 return;
7989 if (IdentifierInfo *Id = ND->getIdentifier()) {
7990 auto I = WeakUndeclaredIdentifiers.find(Id);
7991 if (I != WeakUndeclaredIdentifiers.end()) {
7992 auto &WeakInfos = I->second;
7993 for (const auto &W : WeakInfos)
7994 DeclApplyPragmaWeak(S, ND, W);
7995 std::remove_reference_t<decltype(WeakInfos)> EmptyWeakInfos;
7996 WeakInfos.swap(EmptyWeakInfos);
7997 }
7998 }
7999}
8000
8001/// ProcessDeclAttributes - Given a declarator (PD) with attributes indicated in
8002/// it, apply them to D. This is a bit tricky because PD can have attributes
8003/// specified in many different places, and we need to find and apply them all.
8005 // Ordering of attributes can be important, so we take care to process
8006 // attributes in the order in which they appeared in the source code.
8007
8008 auto ProcessAttributesWithSliding =
8009 [&](const ParsedAttributesView &Src,
8010 const ProcessDeclAttributeOptions &Options) {
8011 ParsedAttributesView NonSlidingAttrs;
8012 for (ParsedAttr &AL : Src) {
8013 // FIXME: this sliding is specific to standard attributes and should
8014 // eventually be deprecated and removed as those are not intended to
8015 // slide to anything.
8016 if ((AL.isStandardAttributeSyntax() || AL.isAlignas()) &&
8017 AL.slidesFromDeclToDeclSpecLegacyBehavior()) {
8018 // Skip processing the attribute, but do check if it appertains to
8019 // the declaration. This is needed for the `MatrixType` attribute,
8020 // which, despite being a type attribute, defines a `SubjectList`
8021 // that only allows it to be used on typedef declarations.
8022 AL.diagnoseAppertainsTo(*this, D);
8023 } else {
8024 NonSlidingAttrs.addAtEnd(&AL);
8025 }
8026 }
8027 ProcessDeclAttributeList(S, D, NonSlidingAttrs, Options);
8028 };
8029
8030 // First, process attributes that appeared on the declaration itself (but
8031 // only if they don't have the legacy behavior of "sliding" to the DeclSepc).
8032 ProcessAttributesWithSliding(PD.getDeclarationAttributes(), {});
8033
8034 // Apply decl attributes from the DeclSpec if present.
8035 ProcessAttributesWithSliding(PD.getDeclSpec().getAttributes(),
8037 .WithIncludeCXX11Attributes(false)
8038 .WithIgnoreTypeAttributes(true));
8039
8040 // Walk the declarator structure, applying decl attributes that were in a type
8041 // position to the decl itself. This handles cases like:
8042 // int *__attr__(x)** D;
8043 // when X is a decl attribute.
8044 for (unsigned i = 0, e = PD.getNumTypeObjects(); i != e; ++i) {
8047 .WithIncludeCXX11Attributes(false)
8048 .WithIgnoreTypeAttributes(true));
8049 }
8050
8051 // Finally, apply any attributes on the decl itself.
8053
8054 // Apply additional attributes specified by '#pragma clang attribute'.
8055 AddPragmaAttributes(S, D);
8056
8057 // Look for API notes that map to attributes.
8058 ProcessAPINotes(D);
8059}
8060
8061/// Is the given declaration allowed to use a forbidden type?
8062/// If so, it'll still be annotated with an attribute that makes it
8063/// illegal to actually use.
8065 const DelayedDiagnostic &diag,
8066 UnavailableAttr::ImplicitReason &reason) {
8067 // Private ivars are always okay. Unfortunately, people don't
8068 // always properly make their ivars private, even in system headers.
8069 // Plus we need to make fields okay, too.
8070 if (!isa<FieldDecl>(D) && !isa<ObjCPropertyDecl>(D) &&
8072 return false;
8073
8074 // Silently accept unsupported uses of __weak in both user and system
8075 // declarations when it's been disabled, for ease of integration with
8076 // -fno-objc-arc files. We do have to take some care against attempts
8077 // to define such things; for now, we've only done that for ivars
8078 // and properties.
8080 if (diag.getForbiddenTypeDiagnostic() == diag::err_arc_weak_disabled ||
8081 diag.getForbiddenTypeDiagnostic() == diag::err_arc_weak_no_runtime) {
8082 reason = UnavailableAttr::IR_ForbiddenWeak;
8083 return true;
8084 }
8085 }
8086
8087 // Allow all sorts of things in system headers.
8089 // Currently, all the failures dealt with this way are due to ARC
8090 // restrictions.
8091 reason = UnavailableAttr::IR_ARCForbiddenType;
8092 return true;
8093 }
8094
8095 return false;
8096}
8097
8098/// Handle a delayed forbidden-type diagnostic.
8100 Decl *D) {
8101 auto Reason = UnavailableAttr::IR_None;
8102 if (D && isForbiddenTypeAllowed(S, D, DD, Reason)) {
8103 assert(Reason && "didn't set reason?");
8104 D->addAttr(UnavailableAttr::CreateImplicit(S.Context, "", Reason, DD.Loc));
8105 return;
8106 }
8107 if (S.getLangOpts().ObjCAutoRefCount)
8108 if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
8109 // FIXME: we may want to suppress diagnostics for all
8110 // kind of forbidden type messages on unavailable functions.
8111 if (FD->hasAttr<UnavailableAttr>() &&
8113 diag::err_arc_array_param_no_ownership) {
8114 DD.Triggered = true;
8115 return;
8116 }
8117 }
8118
8121 DD.Triggered = true;
8122}
8123
8124
8129
8130 // When delaying diagnostics to run in the context of a parsed
8131 // declaration, we only want to actually emit anything if parsing
8132 // succeeds.
8133 if (!decl) return;
8134
8135 // We emit all the active diagnostics in this pool or any of its
8136 // parents. In general, we'll get one pool for the decl spec
8137 // and a child pool for each declarator; in a decl group like:
8138 // deprecated_typedef foo, *bar, baz();
8139 // only the declarator pops will be passed decls. This is correct;
8140 // we really do need to consider delayed diagnostics from the decl spec
8141 // for each of the different declarations.
8142 const DelayedDiagnosticPool *pool = &poppedPool;
8143 do {
8144 bool AnyAccessFailures = false;
8146 i = pool->pool_begin(), e = pool->pool_end(); i != e; ++i) {
8147 // This const_cast is a bit lame. Really, Triggered should be mutable.
8148 DelayedDiagnostic &diag = const_cast<DelayedDiagnostic&>(*i);
8149 if (diag.Triggered)
8150 continue;
8151
8152 switch (diag.Kind) {
8154 // Don't bother giving deprecation/unavailable diagnostics if
8155 // the decl is invalid.
8156 if (!decl->isInvalidDecl())
8158 break;
8159
8161 // Only produce one access control diagnostic for a structured binding
8162 // declaration: we don't need to tell the user that all the fields are
8163 // inaccessible one at a time.
8164 if (AnyAccessFailures && isa<DecompositionDecl>(decl))
8165 continue;
8167 if (diag.Triggered)
8168 AnyAccessFailures = true;
8169 break;
8170
8173 break;
8174 }
8175 }
8176 } while ((pool = pool->getParent()));
8177}
8178
8181 assert(curPool && "re-emitting in undelayed context not supported");
8182 curPool->steal(pool);
8183}
Defines the clang::ASTContext interface.
#define V(N, I)
static SmallString< 64 > normalizeName(StringRef AttrName, StringRef ScopeName, AttributeCommonInfo::Syntax SyntaxUsed)
static OffloadArch getOffloadArch(CodeGenModule &CGM)
Defines the C++ Decl subclasses, other than those for templates (found in DeclTemplate....
This file defines the classes used to store parsed information about declaration-specifiers and decla...
Defines the C++ template declaration subclasses.
Defines the classes clang::DelayedDiagnostic and clang::AccessedEntity.
Defines the clang::Expr interface and subclasses for C++ expressions.
TokenType getType() const
Returns the token's type, e.g.
Defines the clang::IdentifierInfo, clang::IdentifierTable, and clang::Selector interfaces.
#define X(type, name)
Definition Value.h:97
Defines the clang::LangOptions interface.
llvm::MachO::Target Target
Definition MachO.h:51
llvm::MachO::Record Record
Definition MachO.h:31
#define SM(sm)
static unsigned getNumAttributeArgs(const ParsedAttr &AL)
Defines the clang::Preprocessor interface.
static std::string toString(const clang::SanitizerSet &Sanitizers)
Produce a string containing comma-separated names of sanitizers in Sanitizers set.
This file declares semantic analysis functions specific to AMDGPU.
This file declares semantic analysis functions specific to ARM.
This file declares semantic analysis functions specific to AVR.
This file declares semantic analysis functions specific to BPF.
This file declares semantic analysis for CUDA constructs.
static void handleCleanupAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleAlignedAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleWeakImportAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleHandleAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static bool checkGuardedByAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL, Expr *&Arg)
static void handleCodeSegAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static const RecordDecl * getRecordDecl(QualType QT)
Checks that the passed in QualType either is of RecordType or points to RecordType.
static void handlePatchableFunctionEntryAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleCountedByAttrField(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleFormatAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleUninitializedAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleRequiresCapabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleDeviceKernelAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleBTFDeclTagAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleOptimizeNoneAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleEnableIfAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleSectionAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleStandardNoReturnAttr(Sema &S, Decl *D, const ParsedAttr &A)
static void handleMIGServerRoutineAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleGuardedByAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleZeroCallUsedRegsAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleDiagnoseAsBuiltinAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleEnumExtensibilityAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static T * mergeVisibilityAttr(Sema &S, Decl *D, const AttributeCommonInfo &CI, typename T::VisibilityType value)
static void handleFormatMatchesAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleLayoutVersion(Sema &S, Decl *D, const ParsedAttr &AL)
static bool checkForConsumableClass(Sema &S, const CXXMethodDecl *MD, const ParsedAttr &AL)
static void handleDLLAttr(Sema &S, Decl *D, const ParsedAttr &A)
static void handleConstantAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleAlignValueAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static Expr * makeAttributeArgExpr(Sema &S, Expr *E, const Attribute &Attr, const unsigned Idx)
static void handleLifetimeCaptureByAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleNoCfCheckAttr(Sema &S, Decl *D, const ParsedAttr &Attrs)
static void handleNoSpecializations(Sema &S, Decl *D, const ParsedAttr &AL)
static bool threadSafetyCheckIsSmartPointer(Sema &S, const RecordDecl *Record)
static void handleReturnsNonNullAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void checkUnusedDeclAttributes(Sema &S, const ParsedAttributesView &A)
checkUnusedDeclAttributes - Check a list of attributes to see if it contains any decl attributes that...
static void handleGNUInlineAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleWorkGroupSize(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleBuiltinAliasAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleTransparentUnionAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleVTablePointerAuthentication(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleEnforceTCBAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void checkAttrArgsAreCapabilityObjs(Sema &S, Decl *D, const ParsedAttr &AL, SmallVectorImpl< Expr * > &Args, unsigned Sidx=0, bool ParamIdxOk=false)
Checks that all attribute arguments, starting from Sidx, resolve to a capability object.
static void handleErrorAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static bool checkCodeSegName(Sema &S, SourceLocation LiteralLoc, StringRef CodeSegName)
static void handleAvailabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleTryAcquireCapabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleGridConstantAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleSetTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleFormatArgAttr(Sema &S, Decl *D, const ParsedAttr &AL)
Handle attribute((format_arg((idx)))) attribute based on http://gcc.gnu.org/onlinedocs/gcc/Function-A...
static void ProcessDeclAttribute(Sema &S, Scope *scope, Decl *D, const ParsedAttr &AL, const Sema::ProcessDeclAttributeOptions &Options)
ProcessDeclAttribute - Apply the specific attribute to the specified decl if the attribute applies to...
static void handleTargetAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleXRayLogArgsAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handlePassObjectSizeAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleNoMergeAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleManagedAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleNonStringAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleParamTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleUnsafeBufferUsage(Sema &S, Decl *D, const ParsedAttr &AL)
static bool attrNonNullArgCheck(Sema &S, QualType T, const ParsedAttr &AL, SourceRange AttrParmRange, SourceRange TypeRange, bool isReturnValue=false)
static void handleAcquireCapabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleCPUSpecificAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handlePackedAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleIFuncAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleAbiTagAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleCapabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleAttrWithMessage(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleWeakRefAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleExtVectorTypeAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static bool isValidCodeModelAttr(llvm::Triple &Triple, StringRef Str)
static void handleCalledOnceAttr(Sema &S, Decl *D, const ParsedAttr &AL)
Handle 'called_once' attribute.
static void handleLockReturnedAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static bool checkFunctionConditionAttr(Sema &S, Decl *D, const ParsedAttr &AL, Expr *&Cond, StringRef &Msg)
static void handleAcquiredAfterAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleExternalSourceSymbolAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleNonNullAttrParameter(Sema &S, ParmVarDecl *D, const ParsedAttr &AL)
static bool checkParamIsIntegerType(Sema &S, const Decl *D, const AttrInfo &AI, unsigned AttrArgNo)
Checks to be sure that the given parameter number is in bounds, and is an integral type.
static bool checkFunParamsAreScopedLockable(Sema &S, const ParmVarDecl *ParamDecl, const ParsedAttr &AL)
static bool checkRecordTypeForCapability(Sema &S, QualType Ty)
static void handleArgumentWithTypeTagAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static bool checkAcquireOrderAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL, SmallVectorImpl< Expr * > &Args)
static void handleLocksExcludedAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleMSAllocatorAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static AttrTy * mergeEnforceTCBAttrImpl(Sema &S, Decl *D, const AttrTy &AL)
static void handleConstructorAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleAllocSizeAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleConsumableAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleNoSanitizeAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleReturnTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleTargetClonesAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static bool isKernelDecl(Decl *D)
static void handleAllocAlignAttr(Sema &S, Decl *D, const ParsedAttr &AL)
FormatAttrKind
@ CFStringFormat
@ IgnoredFormat
@ InvalidFormat
@ StrftimeFormat
@ SupportedFormat
@ NSStringFormat
static void handlePreferredTypeAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleDeviceAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handlePtGuardedByAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleAlwaysInlineAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleAssertCapabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleVisibilityAttr(Sema &S, Decl *D, const ParsedAttr &AL, bool isTypeVisibility)
static void handleAnnotateAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static FormatAttrKind getFormatAttrKind(StringRef Format)
getFormatAttrKind - Map from format attribute names to supported format types.
static void handleNullableTypeAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleUuidAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleAcquireHandleAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleNoSanitizeAddressAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleMSConstexprAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleCommonAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleTestTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static bool checkTryLockFunAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL, SmallVectorImpl< Expr * > &Args)
static void parseModeAttrArg(Sema &S, StringRef Str, unsigned &DestWidth, bool &IntegerMode, bool &ComplexMode, FloatModeKind &ExplicitType)
parseModeAttrArg - Parses attribute mode string and returns parsed type attribute.
static void handleExcludeFromExplicitInstantiationAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleCFIUncheckedCalleeAttr(Sema &S, Decl *D, const ParsedAttr &Attrs)
static void handleLaunchBoundsAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static bool checkAvailabilityAttr(Sema &S, SourceRange Range, IdentifierInfo *Platform, VersionTuple Introduced, VersionTuple Deprecated, VersionTuple Obsoleted)
static void handleDependencyAttr(Sema &S, Scope *Scope, Decl *D, const ParsedAttr &AL)
static void handleNoBuiltinAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleLifetimeCategoryAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleNoUniqueAddressAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static bool validateAlignasAppliedType(Sema &S, Decl *D, const AlignedAttr &Attr, SourceLocation AttrLoc)
Perform checking of type validity.
static void handleNakedAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleFunctionReturnThunksAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleDeprecatedAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static unsigned getNumAttributeArgs(const ParsedAttr &AL)
static void handleGlobalAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleSentinelAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleCodeModelAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleCallableWhenAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static bool hasBTFDeclTagAttr(Decl *D, StringRef Tag)
static void handleDelayedForbiddenType(Sema &S, DelayedDiagnostic &DD, Decl *D)
Handle a delayed forbidden-type diagnostic.
static bool checkLockFunAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL, SmallVectorImpl< Expr * > &Args)
static void handleAssumeAlignedAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleSharedAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleMSInheritanceAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleVecTypeHint(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleRestrictAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleMinVectorWidthAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleUnusedAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static Expr * makeLaunchBoundsArgExpr(Sema &S, Expr *E, const CUDALaunchBoundsAttr &AL, const unsigned Idx)
static void handleDeclspecThreadAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleInterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleCallbackAttr(Sema &S, Decl *D, const ParsedAttr &AL)
Handle attribute((callback(CalleeIdx, PayloadIdx0, ...))) attributes.
static AttributeCommonInfo getNoSanitizeAttrInfo(const ParsedAttr &NoSanitizeSpecificAttr)
static void handleInitPriorityAttr(Sema &S, Decl *D, const ParsedAttr &AL)
Handle attribute((init_priority(priority))) attributes based on http://gcc.gnu.org/onlinedocs/gcc/C_0...
static void handlePtGuardedVarAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static bool checkRecordDeclForAttr(const RecordDecl *RD)
static void handleNoSanitizeThreadAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleDestroyAttr(Sema &S, Decl *D, const ParsedAttr &A)
static bool isKnownToAlwaysThrow(const FunctionDecl *FD)
static void handleTypeTagForDatatypeAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleRandomizeLayoutAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void markUsedForAliasOrIfunc(Sema &S, Decl *D, const ParsedAttr &AL, StringRef Str)
static bool isCapabilityExpr(Sema &S, const Expr *Ex)
static void handleNoDebugAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleSuppressAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleNoReturnAttr(Sema &S, Decl *D, const ParsedAttr &Attrs)
static void handleNoSanitizeMemoryAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static const AttrTy * findEnforceTCBAttrByName(Decl *D, StringRef Name)
static void handleNoEscapeAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleAvailableOnlyInDefaultEvalMethod(Sema &S, Decl *D, const ParsedAttr &AL)
static bool MustDelayAttributeArguments(const ParsedAttr &AL)
static void handleNoRandomizeLayoutAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleTargetVersionAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleWarnUnusedResult(Sema &S, Decl *D, const ParsedAttr &AL)
static bool checkRecordTypeForScopedCapability(Sema &S, QualType Ty)
static bool isIntOrBool(Expr *Exp)
Check if the passed-in expression is of type int or bool.
static bool versionsMatch(const VersionTuple &X, const VersionTuple &Y, bool BeforeIsOkay)
Check whether the two versions match.
static bool isSanitizerAttributeAllowedOnGlobals(StringRef Sanitizer)
static bool handleFormatAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL, FormatAttrCommon *Info)
Handle attribute((format(type,idx,firstarg))) attributes based on http://gcc.gnu.org/onlinedocs/gcc/F...
static void handleCallConvAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleMinSizeAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static ExprResult sharedGetConstructorDestructorAttrExpr(Sema &S, const ParsedAttr &AL)
static void handleOwnershipAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static bool checkTypedefTypeForCapability(QualType Ty)
static void handleAcquiredBeforeAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleReleaseCapabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static bool typeHasCapability(Sema &S, QualType Ty)
static void handleAnalyzerNoReturnAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static bool isFunctionLike(const Type &T)
static void handleDiagnoseIfAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleCFGuardAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleReentrantCapabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleNonNullAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static bool threadSafetyCheckIsPointer(Sema &S, const Decl *D, const ParsedAttr &AL)
Check if passed in Decl is a pointer type.
static bool isForbiddenTypeAllowed(Sema &S, Decl *D, const DelayedDiagnostic &diag, UnavailableAttr::ImplicitReason &reason)
Is the given declaration allowed to use a forbidden type?
static void handleInternalLinkageAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleModeAttr(Sema &S, Decl *D, const ParsedAttr &AL)
handleModeAttr - This attribute modifies the width of a decl with primitive type.
static void handleDestructorAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handlePreferredName(Sema &S, Decl *D, const ParsedAttr &AL)
static bool checkPositiveIntArgument(Sema &S, const AttrInfo &AI, const Expr *Expr, int &Val, unsigned Idx=UINT_MAX)
Wrapper around checkUInt32Argument, with an extra check to be sure that the result will fit into a re...
static void handleVecReturnAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static bool isGlobalVar(const Decl *D)
static void handleTLSModelAttr(Sema &S, Decl *D, const ParsedAttr &AL)
static void handleAliasAttr(Sema &S, Decl *D, const ParsedAttr &AL)
This file declares semantic analysis for HLSL constructs.
This file declares semantic analysis functions specific to M68k.
This file declares semantic analysis functions specific to MIPS.
This file declares semantic analysis functions specific to MSP430.
This file declares semantic analysis for Objective-C.
This file declares semantic analysis routines for OpenCL.
This file declares semantic analysis for OpenMP constructs and clauses.
This file declares semantic analysis functions specific to RISC-V.
This file declares semantic analysis for SYCL constructs.
This file declares semantic analysis functions specific to Swift.
This file declares semantic analysis functions specific to Wasm.
This file declares semantic analysis functions specific to X86.
Defines the clang::SourceLocation class and associated facilities.
Defines the SourceManager interface.
static QualType getPointeeType(const MemRegion *R)
C Language Family Type Representation.
APValue - This class implements a discriminated union of [uninitialized] [APSInt] [APFloat],...
Definition APValue.h:122
virtual void AssignInheritanceModel(CXXRecordDecl *RD)
Callback invoked when an MSInheritanceAttr has been attached to a CXXRecordDecl.
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition ASTContext.h:220
MSGuidDecl * getMSGuidDecl(MSGuidDeclParts Parts) const
Return a declaration for the global GUID object representing the given GUID value.
SourceManager & getSourceManager()
Definition ASTContext.h:833
TypedefDecl * getObjCInstanceTypeDecl()
Retrieve the typedef declaration corresponding to the Objective-C "instancetype" type.
DeclarationNameTable DeclarationNames
Definition ASTContext.h:776
MangleContext * createMangleContext(const TargetInfo *T=nullptr)
If T is null pointer, assume the target in ASTContext.
bool hasSameType(QualType T1, QualType T2) const
Determine whether the given types T1 and T2 are equivalent.
QualType getPointerType(QualType T) const
Return the uniqued reference to the type for a pointer to the specified type.
IdentifierTable & Idents
Definition ASTContext.h:772
const LangOptions & getLangOpts() const
Definition ASTContext.h:926
QualType getConstType(QualType T) const
Return the uniqued reference to the type for a const qualified type.
QualType getBaseElementType(const ArrayType *VAT) const
Return the innermost element type of an array type.
const TargetInfo * getAuxTargetInfo() const
Definition ASTContext.h:892
TypeSourceInfo * getTrivialTypeSourceInfo(QualType T, SourceLocation Loc=SourceLocation()) const
Allocate a TypeSourceInfo where all locations have been initialized to a given location,...
CanQualType IntTy
QualType getObjCObjectPointerType(QualType OIT) const
Return a ObjCObjectPointerType type for the given ObjCObjectType.
CanQualType OverloadTy
const ArrayType * getAsArrayType(QualType T) const
Type Query functions.
uint64_t getTypeSize(QualType T) const
Return the size of the specified (complete) type T, in bits.
CanQualType VoidTy
QualType getTypedefType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier Qualifier, const TypedefNameDecl *Decl, QualType UnderlyingType=QualType(), std::optional< bool > TypeMatchesDeclOrNone=std::nullopt) const
Return the unique reference to the type for the specified typedef-name decl.
const TargetInfo & getTargetInfo() const
Definition ASTContext.h:891
TargetCXXABI::Kind getCXXABIKind() const
Return the C++ ABI kind that should be used.
unsigned getTypeAlign(QualType T) const
Return the ABI-specified alignment of a (complete) type T, in bits.
Represents an access specifier followed by colon ':'.
Definition DeclCXX.h:86
PtrTy get() const
Definition Ownership.h:171
bool isInvalid() const
Definition Ownership.h:167
Attr - This represents one attribute.
Definition Attr.h:44
SourceLocation getScopeLoc() const
void setAttributeSpellingListIndex(unsigned V)
std::string getNormalizedFullName() const
Gets the normalized full name, which consists of both scope and name and with surrounding underscores...
unsigned getAttributeSpellingListIndex() const
const IdentifierInfo * getScopeName() const
StringRef getNormalizedAttrName(StringRef ScopeName) const
std::optional< StringRef > tryGetCorrectedAttrName(StringRef ScopeName, StringRef AttrName, const TargetInfo &Target, const LangOptions &LangOpts) const
SourceRange getNormalizedRange() const
std::optional< StringRef > tryGetCorrectedScopeName(StringRef ScopeName) const
SourceLocation getLoc() const
const IdentifierInfo * getAttrName() const
StringRef getNormalizedScopeName() const
bool isStandardAttributeSyntax() const
The attribute is spelled [[]] in either C or C++ mode, including standard attributes spelled with a k...
Type source information for an attributed type.
Definition TypeLoc.h:1017
TypeLoc getModifiedLoc() const
The modified type, which is generally canonically different from the attribute type.
Definition TypeLoc.h:1031
Pointer to a block type.
Definition TypeBase.h:3542
This class is used for builtin types like 'int'.
Definition TypeBase.h:3164
static bool isBuiltinFunc(llvm::StringRef Name)
Returns true if this is a libc/libm function without the '__builtin_' prefix.
Definition Builtins.cpp:123
Represents a static or instance method of a struct/union/class.
Definition DeclCXX.h:2129
QualType getFunctionObjectParameterType() const
Definition DeclCXX.h:2279
Represents a C++ struct/union/class.
Definition DeclCXX.h:258
CXXRecordDecl * getDefinition() const
Definition DeclCXX.h:548
bool hasDefinition() const
Definition DeclCXX.h:561
MSInheritanceModel calculateInheritanceModel() const
Calculate what the inheritance model would be for this class.
CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
Definition Expr.h:2877
static CallExpr * Create(const ASTContext &Ctx, Expr *Fn, ArrayRef< Expr * > Args, QualType Ty, ExprValueKind VK, SourceLocation RParenLoc, FPOptionsOverride FPFeatures, unsigned MinNumArgs=0, ADLCallKind UsesADL=NotADL)
Create a call expression.
Definition Expr.cpp:1513
CharUnits - This is an opaque type for sizes expressed in character units.
Definition CharUnits.h:38
QuantityType getQuantity() const
getQuantity - Get the raw integer representation of this quantity.
Definition CharUnits.h:185
Declaration of a class template.
static ConstantExpr * Create(const ASTContext &Context, Expr *E, const APValue &Result)
Definition Expr.cpp:346
const RelatedTargetVersionMapping * getVersionMapping(OSEnvPair Kind) const
The results of name lookup within a DeclContext.
Definition DeclBase.h:1382
DeclContext - This is used only as base class of specific decl types that can act as declaration cont...
Definition DeclBase.h:1449
DeclContext * getParent()
getParent - Returns the containing DeclContext.
Definition DeclBase.h:2109
bool isFileContext() const
Definition DeclBase.h:2180
DeclContext * getRedeclContext()
getRedeclContext - Retrieve the context in which an entity conflicts with other entities of the same ...
A reference to a declared variable, function, enum, etc.
Definition Expr.h:1270
DeclarationNameInfo getNameInfo() const
Definition Expr.h:1342
static DeclRefExpr * Create(const ASTContext &Context, NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc, ValueDecl *D, bool RefersToEnclosingVariableOrCapture, SourceLocation NameLoc, QualType T, ExprValueKind VK, NamedDecl *FoundD=nullptr, const TemplateArgumentListInfo *TemplateArgs=nullptr, NonOdrUseReason NOUR=NOUR_None)
Definition Expr.cpp:484
bool hasQualifier() const
Determine whether this declaration reference was preceded by a C++ nested-name-specifier,...
Definition Expr.h:1359
ValueDecl * getDecl()
Definition Expr.h:1338
ParsedAttributes & getAttributes()
Definition DeclSpec.h:843
Decl - This represents one declaration (or definition), e.g.
Definition DeclBase.h:86
TemplateDecl * getDescribedTemplate() const
If this is a declaration that describes some template, this method returns that template declaration.
Definition DeclBase.cpp:263
T * getAttr() const
Definition DeclBase.h:573
bool hasAttrs() const
Definition DeclBase.h:518
ASTContext & getASTContext() const LLVM_READONLY
Definition DeclBase.cpp:524
void addAttr(Attr *A)
void setInvalidDecl(bool Invalid=true)
setInvalidDecl - Indicates the Decl had a semantic error.
Definition DeclBase.cpp:156
const FunctionType * getFunctionType(bool BlocksToo=true) const
Looks through the Decl's underlying type to extract a FunctionType when possible.
FunctionDecl * getAsFunction() LLVM_READONLY
Returns the function itself, or the templated function if this is a function template.
Definition DeclBase.cpp:251
bool canBeWeakImported(bool &IsDefinition) const
Determines whether this symbol can be weak-imported, e.g., whether it would be well-formed to add the...
Definition DeclBase.cpp:819
bool isInvalidDecl() const
Definition DeclBase.h:588
llvm::iterator_range< specific_attr_iterator< T > > specific_attrs() const
Definition DeclBase.h:559
SourceLocation getLocation() const
Definition DeclBase.h:439
redecl_range redecls() const
Returns an iterator range for all the redeclarations of the same decl.
Definition DeclBase.h:1049
DeclContext * getDeclContext()
Definition DeclBase.h:448
SourceLocation getBeginLoc() const LLVM_READONLY
Definition DeclBase.h:431
void dropAttr()
Definition DeclBase.h:556
AttrVec & getAttrs()
Definition DeclBase.h:524
void setDeclContext(DeclContext *DC)
setDeclContext - Set both the semantic and lexical DeclContext to DC.
Definition DeclBase.cpp:360
bool hasAttr() const
Definition DeclBase.h:577
void setLexicalDeclContext(DeclContext *DC)
Definition DeclBase.cpp:364
virtual Decl * getCanonicalDecl()
Retrieves the "canonical" declaration of the given declaration.
Definition DeclBase.h:978
virtual SourceRange getSourceRange() const LLVM_READONLY
Source range that this declaration covers.
Definition DeclBase.h:427
DeclarationName getCXXOperatorName(OverloadedOperatorKind Op)
Get the name of the overloadable C++ operator corresponding to Op.
The name of a declaration.
SourceLocation getTypeSpecStartLoc() const
Definition Decl.cpp:1988
SourceLocation getBeginLoc() const LLVM_READONLY
Definition Decl.h:830
const AssociatedConstraint & getTrailingRequiresClause() const
Get the constraint-expression introduced by the trailing requires-clause in the function/member decla...
Definition Decl.h:854
void setQualifierInfo(NestedNameSpecifierLoc QualifierLoc)
Definition Decl.cpp:2000
NestedNameSpecifierLoc getQualifierLoc() const
Retrieve the nested-name-specifier (with source-location information) that qualifies the name of this...
Definition Decl.h:844
NestedNameSpecifier getQualifier() const
Retrieve the nested-name-specifier that qualifies the name of this declaration, if it was present in ...
Definition Decl.h:836
TypeSourceInfo * getTypeSourceInfo() const
Definition Decl.h:808
Information about one declarator, including the parsed type information and the identifier.
Definition DeclSpec.h:1874
const DeclaratorChunk & getTypeObject(unsigned i) const
Return the specified TypeInfo from this declarator.
Definition DeclSpec.h:2372
const DeclSpec & getDeclSpec() const
getDeclSpec - Return the declaration-specifier that this declarator was declared with.
Definition DeclSpec.h:2021
const ParsedAttributes & getAttributes() const
Definition DeclSpec.h:2657
unsigned getNumTypeObjects() const
Return the number of types applied to this declarator.
Definition DeclSpec.h:2368
const ParsedAttributesView & getDeclarationAttributes() const
Definition DeclSpec.h:2660
Concrete class used by the front-end to report problems and issues.
Definition Diagnostic.h:232
bool isIgnored(unsigned DiagID, SourceLocation Loc) const
Determine whether the diagnostic is known to be ignored.
Definition Diagnostic.h:951
const IntrusiveRefCntPtr< DiagnosticIDs > & getDiagnosticIDs() const
Definition Diagnostic.h:592
This represents one expression.
Definition Expr.h:112
bool isIntegerConstantExpr(const ASTContext &Ctx) const
static bool isPotentialConstantExprUnevaluated(Expr *E, const FunctionDecl *FD, SmallVectorImpl< PartialDiagnosticAt > &Diags)
isPotentialConstantExprUnevaluated - Return true if this expression might be usable in a constant exp...
Expr * IgnoreParenCasts() LLVM_READONLY
Skip past any parentheses and casts which might surround this expression until reaching a fixed point...
Definition Expr.cpp:3090
bool isValueDependent() const
Determines whether the value of this expression depends on.
Definition Expr.h:177
bool isTypeDependent() const
Determines whether the type of this expression depends on.
Definition Expr.h:194
bool containsUnexpandedParameterPack() const
Whether this expression contains an unexpanded parameter pack (for C++11 variadic templates).
Definition Expr.h:241
Expr * IgnoreParenImpCasts() LLVM_READONLY
Skip past any parentheses and implicit casts which might surround this expression until reaching a fi...
Definition Expr.cpp:3085
std::optional< llvm::APSInt > getIntegerConstantExpr(const ASTContext &Ctx) const
isIntegerConstantExpr - Return the value if this expression is a valid integer constant expression.
SourceLocation getExprLoc() const LLVM_READONLY
getExprLoc - Return the preferred location for the arrow when diagnosing a problem with a generic exp...
Definition Expr.cpp:273
QualType getType() const
Definition Expr.h:144
Represents difference between two FPOptions values.
Represents a member of a struct/union/class.
Definition Decl.h:3157
Annotates a diagnostic with some code that should be inserted, removed, or replaced to fix the proble...
Definition Diagnostic.h:79
static FixItHint CreateReplacement(CharSourceRange RemoveRange, StringRef Code)
Create a code modification hint that replaces the given source range with the given code string.
Definition Diagnostic.h:140
static FixItHint CreateInsertion(SourceLocation InsertionLoc, StringRef Code, bool BeforePreviousInsertions=false)
Create a code modification hint that inserts the given code string at a specific location.
Definition Diagnostic.h:103
Represents a function declaration or definition.
Definition Decl.h:1999
static FunctionDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation NLoc, DeclarationName N, QualType T, TypeSourceInfo *TInfo, StorageClass SC, bool UsesFPIntrin=false, bool isInlineSpecified=false, bool hasWrittenPrototype=true, ConstexprSpecKind ConstexprKind=ConstexprSpecKind::Unspecified, const AssociatedConstraint &TrailingRequiresClause={})
Definition Decl.h:2188
const ParmVarDecl * getParamDecl(unsigned i) const
Definition Decl.h:2794
Stmt * getBody(const FunctionDecl *&Definition) const
Retrieve the body (definition) of the function.
Definition Decl.cpp:3271
bool isFunctionTemplateSpecialization() const
Determine whether this function is a function template specialization.
Definition Decl.cpp:4146
FunctionTemplateDecl * getDescribedFunctionTemplate() const
Retrieves the function template that is described by this function declaration.
Definition Decl.cpp:4134
bool isThisDeclarationADefinition() const
Returns whether this specific declaration of the function is also a definition that does not contain ...
Definition Decl.h:2313
SourceRange getReturnTypeSourceRange() const
Attempt to compute an informative source range covering the function return type.
Definition Decl.cpp:3965
unsigned getBuiltinID(bool ConsiderWrapperFunctions=false) const
Returns a value indicating whether this function corresponds to a builtin function.
Definition Decl.cpp:3703
param_iterator param_end()
Definition Decl.h:2784
bool isInlined() const
Determine whether this function should be inlined, because it is either marked "inline" or "constexpr...
Definition Decl.h:2918
void setIsMultiVersion(bool V=true)
Sets the multiversion state for this declaration and all of its redeclarations.
Definition Decl.h:2692
bool isNoReturn() const
Determines whether this function is known to be 'noreturn', through an attribute on its declaration o...
Definition Decl.cpp:3592
QualType getReturnType() const
Definition Decl.h:2842
ArrayRef< ParmVarDecl * > parameters() const
Definition Decl.h:2771
bool hasPrototype() const
Whether this function has a prototype, either because one was explicitly written or because it was "i...
Definition Decl.h:2442
param_iterator param_begin()
Definition Decl.h:2783
bool isVariadic() const
Whether this function is variadic.
Definition Decl.cpp:3125
bool isConstexprSpecified() const
Definition Decl.h:2478
bool isExternC() const
Determines whether this function is a function with external, C linkage.
Definition Decl.cpp:3559
TemplateSpecializationKind getTemplateSpecializationKind() const
Determine what kind of template instantiation this function represents.
Definition Decl.cpp:4358
bool isConsteval() const
Definition Decl.h:2481
unsigned getNumParams() const
Return the number of parameters this function must have based on its FunctionType.
Definition Decl.cpp:3767
bool hasBody(const FunctionDecl *&Definition) const
Returns true if the function has a body.
Definition Decl.cpp:3191
bool isInlineSpecified() const
Determine whether the "inline" keyword was specified for this function.
Definition Decl.h:2896
Represents a prototype with parameter type info, e.g.
Definition TypeBase.h:5266
Declaration of a template function.
FunctionType - C99 6.7.5.3 - Function Declarators.
Definition TypeBase.h:4462
CallingConv getCallConv() const
Definition TypeBase.h:4817
QualType getReturnType() const
Definition TypeBase.h:4802
GlobalDecl - represents a global declaration.
Definition GlobalDecl.h:57
One of these records is kept for each identifier that is lexed.
unsigned getBuiltinID() const
Return a value indicating whether this is a builtin function.
bool isStr(const char(&Str)[StrLen]) const
Return true if this is the identifier for the specified string.
StringRef getName() const
Return the actual identifier string.
A simple pair of identifier info and location.
SourceLocation getLoc() const
IdentifierInfo * getIdentifierInfo() const
IdentifierInfo & get(StringRef Name)
Return the identifier token info for the specified named identifier.
Describes an entity that is being initialized.
static InitializedEntity InitializeParameter(ASTContext &Context, ParmVarDecl *Parm)
Create the initialization entity for a parameter.
Keeps track of the various options that can be enabled, which controls the dialect of C or C++ that i...
bool isCompatibleWithMSVC(MSVCMajorVersion MajorVersion) const
void push_back(const T &LocalValue)
Represents the results of name lookup.
Definition Lookup.h:147
A global _GUID constant.
Definition DeclCXX.h:4398
MSGuidDeclParts Parts
Definition DeclCXX.h:4400
Describes a module or submodule.
Definition Module.h:144
This represents a decl that may have a name.
Definition Decl.h:273
IdentifierInfo * getIdentifier() const
Get the identifier that names this declaration, if there is one.
Definition Decl.h:294
bool isCXXInstanceMember() const
Determine whether the given declaration is an instance member of a C++ class.
Definition Decl.cpp:1962
A C++ nested-name-specifier augmented with source location information.
ObjCMethodDecl - Represents an instance or class method declaration.
Definition DeclObjC.h:140
Represents one property declaration in an Objective-C interface.
Definition DeclObjC.h:731
void * getAsOpaquePtr() const
Definition Ownership.h:91
static OpaquePtr getFromOpaquePtr(void *P)
Definition Ownership.h:92
A single parameter index whose accessors require each use to make explicit the parameter index encodi...
Definition Attr.h:290
bool isValid() const
Is this parameter index valid?
Definition Attr.h:350
unsigned getSourceIndex() const
Get the parameter index as it would normally be encoded for attributes at the source level of represe...
Definition Attr.h:358
unsigned getASTIndex() const
Get the parameter index as it would normally be encoded at the AST level of representation: zero-orig...
Definition Attr.h:369
Represents a parameter to a function.
Definition Decl.h:1789
SourceRange getSourceRange() const override LLVM_READONLY
Source range that this declaration covers.
Definition Decl.cpp:2969
ParsedAttr - Represents a syntactic attribute.
Definition ParsedAttr.h:119
bool isPackExpansion() const
Definition ParsedAttr.h:367
const AvailabilityChange & getAvailabilityDeprecated() const
Definition ParsedAttr.h:399
unsigned getSemanticSpelling() const
If the parsed attribute has a semantic equivalent, and it would have a semantic Spelling enumeration ...
bool existsInTarget(const TargetInfo &Target) const
bool checkExactlyNumArgs(class Sema &S, unsigned Num) const
Check if the attribute has exactly as many args as Num.
IdentifierLoc * getArgAsIdent(unsigned Arg) const
Definition ParsedAttr.h:389
bool hasParsedType() const
Definition ParsedAttr.h:337
const AvailabilityChange & getAvailabilityIntroduced() const
Definition ParsedAttr.h:393
void setInvalid(bool b=true) const
Definition ParsedAttr.h:345
bool hasVariadicArg() const
const ParsedAttrInfo & getInfo() const
Definition ParsedAttr.h:613
void handleAttrWithDelayedArgs(Sema &S, Decl *D) const
const Expr * getReplacementExpr() const
Definition ParsedAttr.h:429
bool hasProcessingCache() const
Definition ParsedAttr.h:347
SourceLocation getUnavailableLoc() const
Definition ParsedAttr.h:417
unsigned getProcessingCache() const
Definition ParsedAttr.h:349
const IdentifierLoc * getEnvironment() const
Definition ParsedAttr.h:435
bool acceptsExprPack() const
const Expr * getMessageExpr() const
Definition ParsedAttr.h:423
const ParsedType & getMatchingCType() const
Definition ParsedAttr.h:441
const ParsedType & getTypeArg() const
Definition ParsedAttr.h:459
SourceLocation getStrictLoc() const
Definition ParsedAttr.h:411
bool isTypeAttr() const
unsigned getNumArgs() const
getNumArgs - Return the number of actual arguments to this attribute.
Definition ParsedAttr.h:371
bool isArgIdent(unsigned Arg) const
Definition ParsedAttr.h:385
Expr * getArgAsExpr(unsigned Arg) const
Definition ParsedAttr.h:383
bool getMustBeNull() const
Definition ParsedAttr.h:453
bool checkAtLeastNumArgs(class Sema &S, unsigned Num) const
Check if the attribute has at least as many args as Num.
bool isUsedAsTypeAttr() const
Definition ParsedAttr.h:359
unsigned getNumArgMembers() const
bool isStmtAttr() const
bool isPragmaClangAttribute() const
True if the attribute is specified using 'pragma clang attribute'.
Definition ParsedAttr.h:363
bool slidesFromDeclToDeclSpecLegacyBehavior() const
Returns whether a [[]] attribute, if specified ahead of a declaration, should be applied to the decl-...
AttributeCommonInfo::Kind getKind() const
Definition ParsedAttr.h:610
void setProcessingCache(unsigned value) const
Definition ParsedAttr.h:354
bool isParamExpr(size_t N) const
bool isArgExpr(unsigned Arg) const
Definition ParsedAttr.h:379
bool getLayoutCompatible() const
Definition ParsedAttr.h:447
ArgsUnion getArg(unsigned Arg) const
getArg - Return the specified argument.
Definition ParsedAttr.h:374
SourceLocation getEllipsisLoc() const
Definition ParsedAttr.h:368
bool isInvalid() const
Definition ParsedAttr.h:344
bool checkAtMostNumArgs(class Sema &S, unsigned Num) const
Check if the attribute has at most as many args as Num.
const AvailabilityChange & getAvailabilityObsoleted() const
Definition ParsedAttr.h:405
void addAtEnd(ParsedAttr *newAttr)
Definition ParsedAttr.h:827
PointerType - C99 6.7.5.1 - Pointer Declarators.
Definition TypeBase.h:3328
QualType getPointeeType() const
Definition TypeBase.h:3338
IdentifierTable & getIdentifierTable()
A (possibly-)qualified type.
Definition TypeBase.h:937
bool isNull() const
Return true if this QualType doesn't point to a type yet.
Definition TypeBase.h:1004
const Type * getTypePtr() const
Retrieves a pointer to the underlying (unqualified) type.
Definition TypeBase.h:8287
QualType getCanonicalType() const
Definition TypeBase.h:8339
QualType getUnqualifiedType() const
Retrieve the unqualified variant of the given type, removing as little sugar as possible.
Definition TypeBase.h:8381
const Type * getTypePtrOrNull() const
Definition TypeBase.h:8291
Represents a struct/union/class.
Definition Decl.h:4309
field_iterator field_end() const
Definition Decl.h:4515
field_range fields() const
Definition Decl.h:4512
specific_decl_iterator< FieldDecl > field_iterator
Definition Decl.h:4509
RecordDecl * getDefinitionOrSelf() const
Definition Decl.h:4497
field_iterator field_begin() const
Definition Decl.cpp:5154
Base for LValueReferenceType and RValueReferenceType.
Definition TypeBase.h:3573
Scope - A scope is a transient data structure that is used while parsing the program.
Definition Scope.h:41
unsigned getFlags() const
getFlags - Return the flags for this scope.
Definition Scope.h:271
@ FunctionDeclarationScope
This is a scope that corresponds to the parameters within a function prototype for a function declara...
Definition Scope.h:91
void handleAMDGPUMaxNumWorkGroupsAttr(Decl *D, const ParsedAttr &AL)
void handleAMDGPUFlatWorkGroupSizeAttr(Decl *D, const ParsedAttr &AL)
void handleAMDGPUNumSGPRAttr(Decl *D, const ParsedAttr &AL)
void handleAMDGPUNumVGPRAttr(Decl *D, const ParsedAttr &AL)
void handleAMDGPUWavesPerEUAttr(Decl *D, const ParsedAttr &AL)
void handleInterruptSaveFPAttr(Decl *D, const ParsedAttr &AL)
Definition SemaARM.cpp:1378
bool checkTargetVersionAttr(const StringRef Str, const SourceLocation Loc)
Definition SemaARM.cpp:1582
void handleInterruptAttr(Decl *D, const ParsedAttr &AL)
Definition SemaARM.cpp:1346
void handleBuiltinAliasAttr(Decl *D, const ParsedAttr &AL)
Definition SemaARM.cpp:1231
void handleNewAttr(Decl *D, const ParsedAttr &AL)
Definition SemaARM.cpp:1278
bool SveAliasValid(unsigned BuiltinID, llvm::StringRef AliasName)
Definition SemaARM.cpp:1217
bool MveAliasValid(unsigned BuiltinID, llvm::StringRef AliasName)
Definition SemaARM.cpp:1204
void handleCmseNSEntryAttr(Decl *D, const ParsedAttr &AL)
Definition SemaARM.cpp:1331
bool checkTargetClonesAttr(SmallVectorImpl< StringRef > &Params, SmallVectorImpl< SourceLocation > &Locs, SmallVectorImpl< SmallString< 64 > > &NewParams)
Definition SemaARM.cpp:1599
bool CdeAliasValid(unsigned BuiltinID, llvm::StringRef AliasName)
Definition SemaARM.cpp:1212
void handleSignalAttr(Decl *D, const ParsedAttr &AL)
Definition SemaAVR.cpp:48
void handleInterruptAttr(Decl *D, const ParsedAttr &AL)
Definition SemaAVR.cpp:23
void handlePreserveAIRecord(RecordDecl *RD)
Definition SemaBPF.cpp:169
void handlePreserveAccessIndexAttr(Decl *D, const ParsedAttr &AL)
Definition SemaBPF.cpp:181
A generic diagnostic builder for errors which may or may not be deferred.
Definition SemaBase.h:111
SemaDiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID, bool DeferHint=false)
Emit a diagnostic.
Definition SemaBase.cpp:61
CUDAFunctionTarget IdentifyTarget(const FunctionDecl *D, bool IgnoreImplicitHDAttr=false)
Determines whether the given function is a CUDA device/host/kernel/etc.
Definition SemaCUDA.cpp:134
CUDAFunctionTarget CurrentTarget()
Gets the CUDA target for the current context.
Definition SemaCUDA.h:152
SemaDiagnosticBuilder DiagIfHostCode(SourceLocation Loc, unsigned DiagID)
Creates a SemaDiagnosticBuilder that emits the diagnostic if the current context is "used as host cod...
Definition SemaCUDA.cpp:871
void handleWaveSizeAttr(Decl *D, const ParsedAttr &AL)
void handleSemanticAttr(Decl *D, const ParsedAttr &AL)
void handleShaderAttr(Decl *D, const ParsedAttr &AL)
void handlePackOffsetAttr(Decl *D, const ParsedAttr &AL)
void handleParamModifierAttr(Decl *D, const ParsedAttr &AL)
void handleRootSignatureAttr(Decl *D, const ParsedAttr &AL)
void handleResourceBindingAttr(Decl *D, const ParsedAttr &AL)
void handleNumThreadsAttr(Decl *D, const ParsedAttr &AL)
void handleVkExtBuiltinInputAttr(Decl *D, const ParsedAttr &AL)
void handleVkBindingAttr(Decl *D, const ParsedAttr &AL)
void handleVkConstantIdAttr(Decl *D, const ParsedAttr &AL)
void handleInterruptAttr(Decl *D, const ParsedAttr &AL)
Definition SemaM68k.cpp:23
void handleInterruptAttr(Decl *D, const ParsedAttr &AL)
Definition SemaMIPS.cpp:243
void handleInterruptAttr(Decl *D, const ParsedAttr &AL)
void handleRuntimeName(Decl *D, const ParsedAttr &AL)
void handleNSObject(Decl *D, const ParsedAttr &AL)
bool isValidOSObjectOutParameter(const Decl *D)
void handleNSErrorDomain(Decl *D, const ParsedAttr &Attr)
void handleXReturnsXRetainedAttr(Decl *D, const ParsedAttr &AL)
void handleExternallyRetainedAttr(Decl *D, const ParsedAttr &AL)
void handleMethodFamilyAttr(Decl *D, const ParsedAttr &AL)
void handleIndependentClass(Decl *D, const ParsedAttr &AL)
void handleIBOutlet(Decl *D, const ParsedAttr &AL)
void handleReturnsInnerPointerAttr(Decl *D, const ParsedAttr &Attrs)
void handleSuppresProtocolAttr(Decl *D, const ParsedAttr &AL)
void handleOwnershipAttr(Decl *D, const ParsedAttr &AL)
void handleBlocksAttr(Decl *D, const ParsedAttr &AL)
void handleBridgeMutableAttr(Decl *D, const ParsedAttr &AL)
Sema::RetainOwnershipKind parsedAttrToRetainOwnershipKind(const ParsedAttr &AL)
void handleRequiresSuperAttr(Decl *D, const ParsedAttr &Attrs)
void AddXConsumedAttr(Decl *D, const AttributeCommonInfo &CI, Sema::RetainOwnershipKind K, bool IsTemplateInstantiation)
void handleDesignatedInitializer(Decl *D, const ParsedAttr &AL)
void handleBridgeRelatedAttr(Decl *D, const ParsedAttr &AL)
void handleIBOutletCollection(Decl *D, const ParsedAttr &AL)
bool isCFStringType(QualType T)
void handleDirectAttr(Decl *D, const ParsedAttr &AL)
bool isNSStringType(QualType T, bool AllowNSAttributedString=false)
void handleBoxable(Decl *D, const ParsedAttr &AL)
void handleDirectMembersAttr(Decl *D, const ParsedAttr &AL)
void handleBridgeAttr(Decl *D, const ParsedAttr &AL)
void handlePreciseLifetimeAttr(Decl *D, const ParsedAttr &AL)
void handleSubGroupSize(Decl *D, const ParsedAttr &AL)
void handleNoSVMAttr(Decl *D, const ParsedAttr &AL)
void handleAccessAttr(Decl *D, const ParsedAttr &AL)
void handleOMPAssumeAttr(Decl *D, const ParsedAttr &AL)
bool isAliasValid(unsigned BuiltinID, llvm::StringRef AliasName)
void handleInterruptAttr(Decl *D, const ParsedAttr &AL)
bool checkTargetClonesAttr(SmallVectorImpl< StringRef > &Params, SmallVectorImpl< SourceLocation > &Locs, SmallVectorImpl< SmallString< 64 > > &NewParams)
bool checkTargetVersionAttr(const StringRef Param, const SourceLocation Loc)
void handleKernelEntryPointAttr(Decl *D, const ParsedAttr &AL)
Definition SemaSYCL.cpp:205
void handleKernelAttr(Decl *D, const ParsedAttr &AL)
Definition SemaSYCL.cpp:166
void handleBridge(Decl *D, const ParsedAttr &AL)
Definition SemaSwift.cpp:99
void handleAsyncAttr(Decl *D, const ParsedAttr &AL)
void handleAsyncName(Decl *D, const ParsedAttr &AL)
void handleNewType(Decl *D, const ParsedAttr &AL)
void handleError(Decl *D, const ParsedAttr &AL)
void AddParameterABIAttr(Decl *D, const AttributeCommonInfo &CI, ParameterABI abi)
void handleAsyncError(Decl *D, const ParsedAttr &AL)
void handleName(Decl *D, const ParsedAttr &AL)
void handleAttrAttr(Decl *D, const ParsedAttr &AL)
Definition SemaSwift.cpp:84
void handleWebAssemblyImportNameAttr(Decl *D, const ParsedAttr &AL)
Definition SemaWasm.cpp:370
void handleWebAssemblyImportModuleAttr(Decl *D, const ParsedAttr &AL)
Definition SemaWasm.cpp:353
void handleWebAssemblyExportNameAttr(Decl *D, const ParsedAttr &AL)
Definition SemaWasm.cpp:386
void handleForceAlignArgPointerAttr(Decl *D, const ParsedAttr &AL)
Definition SemaX86.cpp:1041
void handleAnyInterruptAttr(Decl *D, const ParsedAttr &AL)
Definition SemaX86.cpp:972
bool checkTargetClonesAttr(SmallVectorImpl< StringRef > &Params, SmallVectorImpl< SourceLocation > &Locs, SmallVectorImpl< SmallString< 64 > > &NewParams)
Definition SemaX86.cpp:1064
A class which encapsulates the logic for delaying diagnostics during parsing and other processing.
Definition Sema.h:1358
sema::DelayedDiagnosticPool * getCurrentPool() const
Returns the current delayed-diagnostics pool.
Definition Sema.h:1373
void popWithoutEmitting(DelayedDiagnosticsState state)
Leave a delayed-diagnostic state that was previously pushed.
Definition Sema.h:1387
Sema - This implements semantic analysis and AST building for C.
Definition Sema.h:853
SemaAMDGPU & AMDGPU()
Definition Sema.h:1419
BTFDeclTagAttr * mergeBTFDeclTagAttr(Decl *D, const BTFDeclTagAttr &AL)
void LoadExternalWeakUndeclaredIdentifiers()
Load weak undeclared identifiers from the external source.
Definition Sema.cpp:1061
@ LookupOrdinaryName
Ordinary name lookup, which finds ordinary names (functions, variables, typedefs, etc....
Definition Sema.h:9290
EnforceTCBAttr * mergeEnforceTCBAttr(Decl *D, const EnforceTCBAttr &AL)
SemaM68k & M68k()
Definition Sema.h:1469
DelayedDiagnosticsState ParsingDeclState
Definition Sema.h:1353
bool isValidPointerAttrType(QualType T, bool RefOkay=false)
Determine if type T is a valid subject for a nonnull and similar attributes.
static std::enable_if_t< std::is_base_of_v< Attr, AttrInfo >, SourceLocation > getAttrLoc(const AttrInfo &AL)
A helper function to provide Attribute Location for the Attr types AND the ParsedAttr.
Definition Sema.h:4815
SemaOpenMP & OpenMP()
Definition Sema.h:1504
TypeVisibilityAttr * mergeTypeVisibilityAttr(Decl *D, const AttributeCommonInfo &CI, TypeVisibilityAttr::VisibilityType Vis)
void AddAlignedAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E, bool IsPackExpansion)
AddAlignedAttr - Adds an aligned attribute to a particular declaration.
bool checkFunctionOrMethodParameterIndex(const Decl *D, const AttrInfo &AI, unsigned AttrArgNum, const Expr *IdxExpr, ParamIdx &Idx, bool CanIndexImplicitThis=false, bool CanIndexVariadicArguments=false)
Check if IdxExpr is a valid parameter index for a function or instance method D.
Definition Sema.h:5106
void AddAssumeAlignedAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E, Expr *OE)
AddAssumeAlignedAttr - Adds an assume_aligned attribute to a particular declaration.
bool checkSectionName(SourceLocation LiteralLoc, StringRef Str)
void AddPragmaAttributes(Scope *S, Decl *D)
Adds the attributes that have been specified using the '#pragma clang attribute push' directives to t...
SemaCUDA & CUDA()
Definition Sema.h:1444
bool checkCommonAttributeFeatures(const Decl *D, const ParsedAttr &A, bool SkipArgCountCheck=false)
Handles semantic checking for features that are common to all attributes, such as checking whether a ...
bool ProcessAccessDeclAttributeList(AccessSpecDecl *ASDecl, const ParsedAttributesView &AttrList)
Annotation attributes are the only attributes allowed after an access specifier.
DLLImportAttr * mergeDLLImportAttr(Decl *D, const AttributeCommonInfo &CI)
ExtVectorDeclsType ExtVectorDecls
ExtVectorDecls - This is a list all the extended vector types.
Definition Sema.h:4875
void PopParsingDeclaration(ParsingDeclState state, Decl *decl)
ErrorAttr * mergeErrorAttr(Decl *D, const AttributeCommonInfo &CI, StringRef NewUserDiagnostic)
bool CheckFormatStringsCompatible(FormatStringType FST, const StringLiteral *AuthoritativeFormatString, const StringLiteral *TestedFormatString, const Expr *FunctionCallArg=nullptr)
Verify that two format strings (as understood by attribute(format) and attribute(format_matches) are ...
void redelayDiagnostics(sema::DelayedDiagnosticPool &pool)
Given a set of delayed diagnostics, re-emit them as if they had been delayed in the current context i...
SemaSYCL & SYCL()
Definition Sema.h:1529
VisibilityAttr * mergeVisibilityAttr(Decl *D, const AttributeCommonInfo &CI, VisibilityAttr::VisibilityType Vis)
SemaX86 & X86()
Definition Sema.h:1549
ParmVarDecl * BuildParmVarDeclForTypedef(DeclContext *DC, SourceLocation Loc, QualType T)
Synthesizes a variable for a parameter arising from a typedef.
ASTContext & Context
Definition Sema.h:1282
void LazyProcessLifetimeCaptureByParams(FunctionDecl *FD)
DiagnosticsEngine & getDiagnostics() const
Definition Sema.h:921
SemaObjC & ObjC()
Definition Sema.h:1489
void PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext=true)
Add this decl to the scope shadowed decl chains.
ASTContext & getASTContext() const
Definition Sema.h:924
bool CheckCallingConvAttr(const ParsedAttr &attr, CallingConv &CC, const FunctionDecl *FD=nullptr, CUDAFunctionTarget CFT=CUDAFunctionTarget::InvalidTarget)
Check validaty of calling convention attribute attr.
QualType BuildCountAttributedArrayOrPointerType(QualType WrappedTy, Expr *CountExpr, bool CountInBytes, bool OrNull)
void ProcessPragmaWeak(Scope *S, Decl *D)
bool CheckAttrNoArgs(const ParsedAttr &CurrAttr)
bool UnifySection(StringRef SectionName, int SectionFlags, NamedDecl *TheDecl)
Definition SemaAttr.cpp:795
FPOptions & getCurFPFeatures()
Definition Sema.h:919
SourceLocation getLocForEndOfToken(SourceLocation Loc, unsigned Offset=0)
Calls Lexer::getLocForEndOfToken()
Definition Sema.cpp:83
@ UPPC_Expression
An arbitrary expression.
Definition Sema.h:14241
const LangOptions & getLangOpts() const
Definition Sema.h:917
void AddModeAttr(Decl *D, const AttributeCommonInfo &CI, IdentifierInfo *Name, bool InInstantiation=false)
AddModeAttr - Adds a mode attribute to a particular declaration.
SemaBPF & BPF()
Definition Sema.h:1434
Preprocessor & PP
Definition Sema.h:1281
bool DiagnoseUnexpandedParameterPack(SourceLocation Loc, TypeSourceInfo *T, UnexpandedParameterPackContext UPPC)
If the given type contains an unexpanded parameter pack, diagnose the error.
MinSizeAttr * mergeMinSizeAttr(Decl *D, const AttributeCommonInfo &CI)
SemaMSP430 & MSP430()
Definition Sema.h:1479
AssignConvertType CheckAssignmentConstraints(SourceLocation Loc, QualType LHSType, QualType RHSType)
CheckAssignmentConstraints - Perform type checking for assignment, argument passing,...
const LangOptions & LangOpts
Definition Sema.h:1280
static const uint64_t MaximumAlignment
Definition Sema.h:1213
SemaHLSL & HLSL()
Definition Sema.h:1454
AlwaysInlineAttr * mergeAlwaysInlineAttr(Decl *D, const AttributeCommonInfo &CI, const IdentifierInfo *Ident)
SemaMIPS & MIPS()
Definition Sema.h:1474
SemaRISCV & RISCV()
Definition Sema.h:1519
bool CheckCountedByAttrOnField(FieldDecl *FD, Expr *E, bool CountInBytes, bool OrNull)
Check if applying the specified attribute variant from the "counted by" family of attributes to Field...
void ProcessDeclAttributeList(Scope *S, Decl *D, const ParsedAttributesView &AttrList, const ProcessDeclAttributeOptions &Options=ProcessDeclAttributeOptions())
ProcessDeclAttributeList - Apply all the decl attributes in the specified attribute list to the speci...
SemaSwift & Swift()
Definition Sema.h:1534
NamedDecl * getCurFunctionOrMethodDecl() const
getCurFunctionOrMethodDecl - Return the Decl for the current ObjC method or C function we're in,...
Definition Sema.cpp:1659
void AddAllocAlignAttr(Decl *D, const AttributeCommonInfo &CI, Expr *ParamExpr)
AddAllocAlignAttr - Adds an alloc_align attribute to a particular declaration.
bool CheckRegparmAttr(const ParsedAttr &attr, unsigned &value)
Checks a regparm attribute, returning true if it is ill-formed and otherwise setting numParams to the...
void ProcessDeclAttributeDelayed(Decl *D, const ParsedAttributesView &AttrList)
Helper for delayed processing TransparentUnion or BPFPreserveAccessIndexAttr attribute.
bool checkUInt32Argument(const AttrInfo &AI, const Expr *Expr, uint32_t &Val, unsigned Idx=UINT_MAX, bool StrictlyUnsigned=false)
If Expr is a valid integer constant, get the value of the integer expression and return success or fa...
Definition Sema.h:4826
MSInheritanceAttr * mergeMSInheritanceAttr(Decl *D, const AttributeCommonInfo &CI, bool BestCase, MSInheritanceModel Model)
InternalLinkageAttr * mergeInternalLinkageAttr(Decl *D, const ParsedAttr &AL)
bool IsAssignConvertCompatible(AssignConvertType ConvTy)
Definition Sema.h:8004
DeclContext * CurContext
CurContext - This is the current declaration context of parsing.
Definition Sema.h:1417
SemaOpenCL & OpenCL()
Definition Sema.h:1499
ExprResult PerformContextuallyConvertToBool(Expr *From)
PerformContextuallyConvertToBool - Perform a contextual conversion of the expression From to bool (C+...
FunctionDecl * ResolveSingleFunctionTemplateSpecialization(OverloadExpr *ovl, bool Complain=false, DeclAccessPair *Found=nullptr, TemplateSpecCandidateSet *FailedTSC=nullptr, bool ForTypeDeduction=false)
Given an expression that refers to an overloaded function, try to resolve that overloaded function ex...
NamedDecl * DeclClonePragmaWeak(NamedDecl *ND, const IdentifierInfo *II, SourceLocation Loc)
DeclClonePragmaWeak - clone existing decl (maybe definition), #pragma weak needs a non-definition dec...
DLLExportAttr * mergeDLLExportAttr(Decl *D, const AttributeCommonInfo &CI)
CodeSegAttr * mergeCodeSegAttr(Decl *D, const AttributeCommonInfo &CI, StringRef Name)
SectionAttr * mergeSectionAttr(Decl *D, const AttributeCommonInfo &CI, StringRef Name)
bool inTemplateInstantiation() const
Determine whether we are currently performing template instantiation.
Definition Sema.h:13813
SourceManager & getSourceManager() const
Definition Sema.h:922
static FormatStringType GetFormatStringType(StringRef FormatFlavor)
bool checkTargetAttr(SourceLocation LiteralLoc, StringRef Str)
bool ValidateFormatString(FormatStringType FST, const StringLiteral *Str)
Verify that one format string (as understood by attribute(format)) is self-consistent; for instance,...
llvm::Error isValidSectionSpecifier(StringRef Str)
Used to implement to perform semantic checking on attribute((section("foo"))) specifiers.
void AddLaunchBoundsAttr(Decl *D, const AttributeCommonInfo &CI, Expr *MaxThreads, Expr *MinBlocks, Expr *MaxBlocks)
AddLaunchBoundsAttr - Adds a launch_bounds attribute to a particular declaration.
void DiagnoseUnknownAttribute(const ParsedAttr &AL)
OptimizeNoneAttr * mergeOptimizeNoneAttr(Decl *D, const AttributeCommonInfo &CI)
void checkUnusedDeclAttributes(Declarator &D)
checkUnusedDeclAttributes - Given a declarator which is not being used to build a declaration,...
bool CheckAttrTarget(const ParsedAttr &CurrAttr)
EnforceTCBLeafAttr * mergeEnforceTCBLeafAttr(Decl *D, const EnforceTCBLeafAttr &AL)
ExprResult VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result, VerifyICEDiagnoser &Diagnoser, AllowFoldKind CanFold=AllowFoldKind::No)
VerifyIntegerConstantExpression - Verifies that an expression is an ICE, and reports the appropriate ...
ASTConsumer & Consumer
Definition Sema.h:1283
void NoteAllOverloadCandidates(Expr *E, QualType DestType=QualType(), bool TakingAddress=false)
FormatAttr * mergeFormatAttr(Decl *D, const AttributeCommonInfo &CI, IdentifierInfo *Format, int FormatIdx, int FirstArg)
@ AP_PragmaClangAttribute
The availability attribute was applied using 'pragma clang attribute'.
Definition Sema.h:4795
@ AP_InferredFromOtherPlatform
The availability attribute for a specific platform was inferred from an availability attribute for an...
Definition Sema.h:4799
@ AP_Explicit
The availability attribute was specified explicitly next to the declaration.
Definition Sema.h:4792
SmallVector< Decl *, 2 > WeakTopLevelDecl
WeakTopLevelDecl - Translation-unit scoped declarations generated by #pragma weak during processing o...
Definition Sema.h:4863
bool RequireCompleteType(SourceLocation Loc, QualType T, CompleteTypeKind Kind, TypeDiagnoser &Diagnoser)
Ensure that the type T is a complete type.
Scope * TUScope
Translation Unit Scope - useful to Objective-C actions that need to lookup file scope declarations in...
Definition Sema.h:1245
UuidAttr * mergeUuidAttr(Decl *D, const AttributeCommonInfo &CI, StringRef UuidAsWritten, MSGuidDecl *GuidDecl)
ExprResult PerformCopyInitialization(const InitializedEntity &Entity, SourceLocation EqualLoc, ExprResult Init, bool TopLevelOfInitList=false, bool AllowExplicit=false)
Attr * CreateAnnotationAttr(const AttributeCommonInfo &CI, StringRef Annot, MutableArrayRef< Expr * > Args)
CreateAnnotationAttr - Creates an annotation Annot with Args arguments.
Definition Sema.cpp:2933
SemaAVR & AVR()
Definition Sema.h:1429
void handleDelayedAvailabilityCheck(sema::DelayedDiagnostic &DD, Decl *Ctx)
void ProcessDeclAttributes(Scope *S, Decl *D, const Declarator &PD)
ProcessDeclAttributes - Given a declarator (PD) with attributes indicated in it, apply them to D.
void DeclApplyPragmaWeak(Scope *S, NamedDecl *ND, const WeakInfo &W)
DeclApplyPragmaWeak - A declaration (maybe definition) needs #pragma weak applied to it,...
FormatMatchesAttr * mergeFormatMatchesAttr(Decl *D, const AttributeCommonInfo &CI, IdentifierInfo *Format, int FormatIdx, StringLiteral *FormatStr)
AvailabilityAttr * mergeAvailabilityAttr(NamedDecl *D, const AttributeCommonInfo &CI, IdentifierInfo *Platform, bool Implicit, VersionTuple Introduced, VersionTuple Deprecated, VersionTuple Obsoleted, bool IsUnavailable, StringRef Message, bool IsStrict, StringRef Replacement, AvailabilityMergeKind AMK, int Priority, IdentifierInfo *IIEnvironment)
llvm::MapVector< IdentifierInfo *, llvm::SetVector< WeakInfo, llvm::SmallVector< WeakInfo, 1u >, llvm::SmallDenseSet< WeakInfo, 2u, WeakInfo::DenseMapInfoByAliasOnly > > > WeakUndeclaredIdentifiers
WeakUndeclaredIdentifiers - Identifiers contained in #pragma weak before declared.
Definition Sema.h:3539
void ProcessAPINotes(Decl *D)
Map any API notes provided for this declaration to attributes on the declaration.
void CheckAlignasUnderalignment(Decl *D)
void HandleDelayedAccessCheck(sema::DelayedDiagnostic &DD, Decl *Ctx)
DarwinSDKInfo * getDarwinSDKInfoForAvailabilityChecking(SourceLocation Loc, StringRef Platform)
Definition Sema.cpp:112
CUDALaunchBoundsAttr * CreateLaunchBoundsAttr(const AttributeCommonInfo &CI, Expr *MaxThreads, Expr *MinBlocks, Expr *MaxBlocks)
Create an CUDALaunchBoundsAttr attribute.
bool LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation=false, bool ForceNoCPlusPlus=false)
Perform unqualified name lookup starting from a given scope.
static QualType GetTypeFromParser(ParsedType Ty, TypeSourceInfo **TInfo=nullptr)
void AddAlignValueAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E)
AddAlignValueAttr - Adds an align_value attribute to a particular declaration.
SemaWasm & Wasm()
Definition Sema.h:1544
LifetimeCaptureByAttr * ParseLifetimeCaptureByAttr(const ParsedAttr &AL, StringRef ParamName)
bool checkMSInheritanceAttrOnDefinition(CXXRecordDecl *RD, SourceRange Range, bool BestCase, MSInheritanceModel SemanticSpelling)
bool checkStringLiteralArgumentAttr(const AttributeCommonInfo &CI, const Expr *E, StringRef &Str, SourceLocation *ArgLocation=nullptr)
Check if the argument E is a ASCII string literal.
SemaARM & ARM()
Definition Sema.h:1424
bool CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall, const FunctionProtoType *Proto)
CheckFunctionCall - Check a direct function call for various correctness and safety properties not st...
Encodes a location in the source.
bool isValid() const
Return true if this is a valid SourceLocation object.
bool isInSystemMacro(SourceLocation loc) const
Returns whether Loc is expanded from a macro in a system header.
bool isInSystemHeader(SourceLocation Loc) const
Returns if a SourceLocation is in a system header.
A trivial tuple used to represent a source range.
SourceLocation getBegin() const
Stmt - This represents one statement.
Definition Stmt.h:85
SourceRange getSourceRange() const LLVM_READONLY
SourceLocation tokens are not useful in isolation - they are low level value objects created/interpre...
Definition Stmt.cpp:334
SourceLocation getBeginLoc() const LLVM_READONLY
Definition Stmt.cpp:346
StringLiteral - This represents a string literal expression, e.g.
Definition Expr.h:1799
bool isBeingDefined() const
Return true if this decl is currently being defined.
Definition Decl.h:3829
bool isCompleteDefinition() const
Return true if this decl has its body fully specified.
Definition Decl.h:3809
bool isUnion() const
Definition Decl.h:3919
Exposes information about the current target.
Definition TargetInfo.h:226
TargetOptions & getTargetOpts() const
Retrieve the target options.
Definition TargetInfo.h:323
const llvm::Triple & getTriple() const
Returns the target triple of the primary target.
uint64_t getPointerWidth(LangAS AddrSpace) const
Return the width of pointers on this target, for the specified address space.
Definition TargetInfo.h:486
virtual CallingConvCheckResult checkCallingConvention(CallingConv CC) const
Determines whether a given calling convention is valid for the target.
bool isTLSSupported() const
Whether the target supports thread-local storage.
virtual unsigned getRegisterWidth() const
Return the "preferred" register width on this target.
Definition TargetInfo.h:898
virtual bool validateCPUSpecificCPUDispatch(StringRef Name) const
virtual bool hasProtectedVisibility() const
Does this target support "protected" visibility?
virtual unsigned getUnwindWordWidth() const
Definition TargetInfo.h:893
unsigned getCharWidth() const
Definition TargetInfo.h:517
virtual bool shouldDLLImportComdatSymbols() const
Does this target aim for semantic compatibility with Microsoft C++ code using dllimport/export attrib...
const llvm::VersionTuple & getSDKVersion() const
The base class of all kinds of template declarations (e.g., class, function, etc.).
Base wrapper for a particular "section" of type source info.
Definition TypeLoc.h:59
SourceRange getSourceRange() const LLVM_READONLY
Get the full source range.
Definition TypeLoc.h:154
T getAsAdjusted() const
Convert to the specified TypeLoc type, returning a null TypeLoc if this TypeLoc is not of the desired...
Definition TypeLoc.h:2715
SourceLocation getBeginLoc() const
Get the begin source location.
Definition TypeLoc.cpp:193
A container of type source information.
Definition TypeBase.h:8258
TypeLoc getTypeLoc() const
Return the TypeLoc wrapper for the type source info.
Definition TypeLoc.h:272
QualType getType() const
Return the type wrapped by this type source info.
Definition TypeBase.h:8269
The base class of the type hierarchy.
Definition TypeBase.h:1833
bool isSizelessType() const
As an extension, we classify types as one of "sized" or "sizeless"; every type is one or the other.
Definition Type.cpp:2568
bool isBlockPointerType() const
Definition TypeBase.h:8544
bool isVoidType() const
Definition TypeBase.h:8880
bool isBooleanType() const
Definition TypeBase.h:9010
const Type * getPointeeOrArrayElementType() const
If this is a pointer type, return the pointee type.
Definition TypeBase.h:9060
bool isSignedIntegerType() const
Return true if this is an integer type that is signed, according to C99 6.2.5p4 [char,...
Definition Type.cpp:2205
bool isComplexType() const
isComplexType() does not include complex integers (a GCC extension).
Definition Type.cpp:724
CXXRecordDecl * getAsCXXRecordDecl() const
Retrieves the CXXRecordDecl that this type refers to, either because the type is a RecordType or beca...
Definition Type.h:26
RecordDecl * getAsRecordDecl() const
Retrieves the RecordDecl this type refers to.
Definition Type.h:41
bool isArrayType() const
Definition TypeBase.h:8623
bool isCharType() const
Definition Type.cpp:2132
bool isFunctionPointerType() const
Definition TypeBase.h:8591
bool isPointerType() const
Definition TypeBase.h:8524
bool isIntegerType() const
isIntegerType() does not include complex integers (a GCC extension).
Definition TypeBase.h:8924
const T * castAs() const
Member-template castAs<specific type>.
Definition TypeBase.h:9167
bool isReferenceType() const
Definition TypeBase.h:8548
bool isEnumeralType() const
Definition TypeBase.h:8655
const CXXRecordDecl * getPointeeCXXRecordDecl() const
If this is a pointer or reference to a RecordType, return the CXXRecordDecl that the type refers to.
Definition Type.cpp:1909
bool isIntegralType(const ASTContext &Ctx) const
Determine whether this type is an integral type.
Definition Type.cpp:2103
bool isAlignValT() const
Definition Type.cpp:3180
QualType getPointeeType() const
If this is a pointer, ObjC object pointer, or block pointer, this returns the respective pointee.
Definition Type.cpp:752
bool isIntegralOrEnumerationType() const
Determine whether this type is an integral or enumeration type.
Definition TypeBase.h:8998
bool isExtVectorType() const
Definition TypeBase.h:8667
bool isAnyCharacterType() const
Determine whether this type is any of the built-in character types.
Definition Type.cpp:2168
bool isInstantiationDependentType() const
Determine whether this type is an instantiation-dependent type, meaning that the type involves a temp...
Definition TypeBase.h:2790
bool isBitIntType() const
Definition TypeBase.h:8789
bool isDependentType() const
Whether this type is a dependent type, meaning that its definition somehow depends on a template para...
Definition TypeBase.h:2782
bool containsUnexpandedParameterPack() const
Whether this type is or contains an unexpanded parameter pack, used to support C++0x variadic templat...
Definition TypeBase.h:2405
bool isPointerOrReferenceType() const
Definition TypeBase.h:8528
bool isIncompleteType(NamedDecl **Def=nullptr) const
Types are partitioned into 3 broad categories (C99 6.2.5p1): object types, function types,...
Definition Type.cpp:2436
bool hasFloatingRepresentation() const
Determine whether this type has a floating-point representation of some sort, e.g....
Definition Type.cpp:2312
bool isVectorType() const
Definition TypeBase.h:8663
const T * getAsCanonical() const
If this type is canonically the specified type, return its canonical type cast to that specified type...
Definition TypeBase.h:2921
bool isFloatingType() const
Definition Type.cpp:2304
bool isAnyPointerType() const
Definition TypeBase.h:8532
const T * getAs() const
Member-template getAs<specific type>'.
Definition TypeBase.h:9100
const Type * getUnqualifiedDesugaredType() const
Return the specified type with any "sugar" removed from the type, removing any typedefs,...
Definition Type.cpp:653
Base class for declarations which introduce a typedef-name.
Definition Decl.h:3559
static UnaryOperator * Create(const ASTContext &C, Expr *input, Opcode opc, QualType type, ExprValueKind VK, ExprObjectKind OK, SourceLocation l, bool CanOverflow, FPOptionsOverride FPFeatures)
Definition Expr.cpp:5036
Represents a dependent using declaration which was marked with typename.
Definition DeclCXX.h:4037
Represents a dependent using declaration which was not marked with typename.
Definition DeclCXX.h:3940
Represents a C++ using-declaration.
Definition DeclCXX.h:3591
Represent the declaration of a variable (in which case it is an lvalue) a function (in which case it ...
Definition Decl.h:711
void setType(QualType newType)
Definition Decl.h:723
QualType getType() const
Definition Decl.h:722
Represents a variable declaration or definition.
Definition Decl.h:925
static VarDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, const IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, StorageClass S)
Definition Decl.cpp:2151
@ TLS_None
Not a TLS variable.
Definition Decl.h:945
Represents a GCC generic vector type.
Definition TypeBase.h:4175
Captures information about a #pragma weak directive.
Definition Weak.h:25
const IdentifierInfo * getAlias() const
Definition Weak.h:32
SourceLocation getLocation() const
Definition Weak.h:33
A collection of diagnostics which were delayed.
const DelayedDiagnosticPool * getParent() const
void steal(DelayedDiagnosticPool &pool)
Steal the diagnostics from the given pool.
SmallVectorImpl< DelayedDiagnostic >::const_iterator pool_iterator
A diagnostic message which has been conditionally emitted pending the complete parsing of the current...
unsigned getForbiddenTypeDiagnostic() const
The diagnostic ID to emit.
Defines the clang::TargetInfo interface.
#define UINT_MAX
Definition limits.h:64
Enums for the diagnostics of target, target_version and target_clones.
Definition Sema.h:839
const internal::VariadicAllOfMatcher< Type > type
Matches Types in the clang AST.
const internal::VariadicAllOfMatcher< Decl > decl
Matches declarations.
The JSON file list parser is used to communicate input to InstallAPI.
OverloadedOperatorKind
Enumeration specifying the different kinds of C++ overloaded operators.
@ Match
This is not an overload because the signature exactly matches an existing declaration.
Definition Sema.h:815
bool isa(CodeGen::Address addr)
Definition Address.h:330
@ CPlusPlus23
@ ExpectedFunctionMethodOrBlock
@ ExpectedClass
@ ExpectedTypeOrNamespace
@ ExpectedVariableFieldOrTag
@ ExpectedVariableOrField
@ ExpectedUnion
@ ExpectedFunctionOrMethod
@ ExpectedVariable
@ ExpectedFunctionOrClassOrEnum
@ ExpectedVariableOrFunction
@ ExpectedKernelFunction
@ ExpectedFunctionVariableOrClass
@ ExpectedNonMemberFunction
void handleSimpleAttributeOrDiagnose(SemaBase &S, Decl *D, const AttributeCommonInfo &CI, bool PassesCheck, unsigned DiagID, DiagnosticArgs &&...ExtraArgs)
Add an attribute AttrType to declaration D, provided that PassesCheck is true.
Definition Attr.h:179
bool hasDeclarator(const Decl *D)
Return true if the given decl has a declarator that should have been processed by Sema::GetTypeForDec...
Definition Attr.h:46
CUDAFunctionTarget
Definition Cuda.h:60
QualType getFunctionOrMethodResultType(const Decl *D)
Definition Attr.h:98
bool isInstanceMethod(const Decl *D)
Definition Attr.h:120
@ OK_Ordinary
An ordinary object is located at an address in memory.
Definition Specifiers.h:151
AvailabilityMergeKind
Describes the kind of merge to perform for availability attributes (including "deprecated",...
Definition Sema.h:625
@ None
Don't merge availability attributes at all.
Definition Sema.h:627
@ Override
Merge availability attributes for an override, which requires an exact match or a weakening of constr...
Definition Sema.h:633
@ OptionalProtocolImplementation
Merge availability attributes for an implementation of an optional protocol requirement.
Definition Sema.h:639
@ Redeclaration
Merge availability attributes for a redeclaration, which requires an exact match.
Definition Sema.h:630
@ ProtocolImplementation
Merge availability attributes for an implementation of a protocol requirement.
Definition Sema.h:636
@ VectorLength
'vector_length' clause, allowed on 'parallel', 'kernels', 'parallel loop', and 'kernels loop' constru...
void inferNoReturnAttr(Sema &S, const Decl *D)
CudaVersion ToCudaVersion(llvm::VersionTuple)
Definition Cuda.cpp:69
SmallVector< Attr *, 4 > AttrVec
AttrVec - A vector of Attr, which is how they are stored on the AST.
nullptr
This class represents a compute construct, representing a 'Kind' of ‘parallel’, 'serial',...
bool checkAttrMutualExclusion(SemaBase &S, Decl *D, const ParsedAttr &AL)
Diagnose mutually exclusive attributes when present on a given declaration.
Definition Attr.h:129
@ SC_Extern
Definition Specifiers.h:251
@ SC_Register
Definition Specifiers.h:257
@ SC_None
Definition Specifiers.h:250
@ TSCS_unspecified
Definition Specifiers.h:236
Expr * Cond
};
SourceRange getFunctionOrMethodResultSourceRange(const Decl *D)
Definition Attr.h:104
bool isFunctionOrMethodOrBlockForAttrSubject(const Decl *D)
Return true if the given decl has function type (function or function-typed variable) or an Objective...
Definition Attr.h:40
QualType getFunctionOrMethodParamType(const Decl *D, unsigned Idx)
Definition Attr.h:83
@ Internal
Internal linkage, which indicates that the entity can be referred to from within the translation unit...
Definition Linkage.h:35
Language
The language for the input, used to select and validate the language standard and possible actions.
AttributeArgumentNType
These constants match the enumerated choices of err_attribute_argument_n_type and err_attribute_argum...
@ AANT_ArgumentIntegerConstant
@ AANT_ArgumentBuiltinFunction
@ AANT_ArgumentIntOrBool
@ AANT_ArgumentIdentifier
@ AANT_ArgumentString
@ SD_Automatic
Automatic storage duration (most local variables).
Definition Specifiers.h:341
bool isLambdaCallOperator(const CXXMethodDecl *MD)
Definition ASTLambda.h:28
@ Result
The result type of a method or function.
Definition TypeBase.h:905
@ SwiftAsyncContext
This parameter (which must have pointer type) uses the special Swift asynchronous context-pointer ABI...
Definition Specifiers.h:399
@ SwiftErrorResult
This parameter (which must have pointer-to-pointer type) uses the special Swift error-result ABI trea...
Definition Specifiers.h:389
@ SwiftIndirectResult
This parameter (which must have pointer type) is a Swift indirect result parameter.
Definition Specifiers.h:384
@ SwiftContext
This parameter (which must have pointer type) uses the special Swift context-pointer ABI treatment.
Definition Specifiers.h:394
const FunctionProtoType * T
bool isFunctionOrMethodVariadic(const Decl *D)
Definition Attr.h:112
@ Template
We are parsing a template declaration.
Definition Parser.h:81
bool isFuncOrMethodForAttrSubject(const Decl *D)
isFuncOrMethodForAttrSubject - Return true if the given decl has function type (function or function-...
Definition Attr.h:34
ExprResult ExprError()
Definition Ownership.h:265
OffloadArch StringToOffloadArch(llvm::StringRef S)
CudaVersion
Definition Cuda.h:22
LLVM_READONLY bool isHexDigit(unsigned char c)
Return true if this character is an ASCII hex digit: [0-9a-fA-F].
Definition CharInfo.h:144
FormatStringType
Definition Sema.h:496
SanitizerMask parseSanitizerValue(StringRef Value, bool AllowGroups)
Parse a single value from a -fsanitize= or -fno-sanitize= value list.
const char * OffloadArchToString(OffloadArch A)
void handleSimpleAttribute(SemaBase &S, Decl *D, const AttributeCommonInfo &CI)
Applies the given attribute to the Decl without performing any additional semantic checking.
Definition Attr.h:169
std::pair< SourceLocation, PartialDiagnostic > PartialDiagnosticAt
A partial diagnostic along with the source location where this diagnostic occurs.
FloatModeKind
Definition TargetInfo.h:75
@ VK_PRValue
A pr-value expression (in the C++11 taxonomy) produces a temporary value.
Definition Specifiers.h:135
@ VK_LValue
An l-value expression is a reference to an object with independent storage.
Definition Specifiers.h:139
MSInheritanceModel
Assigned inheritance model for a class in the MS C++ ABI.
Definition Specifiers.h:410
bool hasFunctionProto(const Decl *D)
hasFunctionProto - Return true if the given decl has a argument information.
Definition Attr.h:55
unsigned getFunctionOrMethodNumParams(const Decl *D)
getFunctionOrMethodNumParams - Return number of function or method parameters.
Definition Attr.h:64
bool declaresSameEntity(const Decl *D1, const Decl *D2)
Determine whether two declarations declare the same entity.
Definition DeclBase.h:1288
DynamicRecursiveASTVisitorBase< false > DynamicRecursiveASTVisitor
@ TSK_ExplicitSpecialization
This template specialization was declared or defined by an explicit specialization (C++ [temp....
Definition Specifiers.h:198
CallingConv
CallingConv - Specifies the calling convention that a function uses.
Definition Specifiers.h:278
@ CC_X86Pascal
Definition Specifiers.h:284
@ CC_Swift
Definition Specifiers.h:293
@ CC_IntelOclBicc
Definition Specifiers.h:290
@ CC_PreserveMost
Definition Specifiers.h:295
@ CC_Win64
Definition Specifiers.h:285
@ CC_X86ThisCall
Definition Specifiers.h:282
@ CC_AArch64VectorCall
Definition Specifiers.h:297
@ CC_DeviceKernel
Definition Specifiers.h:292
@ CC_AAPCS
Definition Specifiers.h:288
@ CC_PreserveNone
Definition Specifiers.h:300
@ CC_M68kRTD
Definition Specifiers.h:299
@ CC_SwiftAsync
Definition Specifiers.h:294
@ CC_X86RegCall
Definition Specifiers.h:287
@ CC_RISCVVectorCall
Definition Specifiers.h:301
@ CC_X86VectorCall
Definition Specifiers.h:283
@ CC_AArch64SVEPCS
Definition Specifiers.h:298
@ CC_RISCVVLSCall_32
Definition Specifiers.h:302
@ CC_X86StdCall
Definition Specifiers.h:280
@ CC_X86_64SysV
Definition Specifiers.h:286
@ CC_PreserveAll
Definition Specifiers.h:296
@ CC_X86FastCall
Definition Specifiers.h:281
@ CC_AAPCS_VFP
Definition Specifiers.h:289
@ Generic
not a target-specific vector type
Definition TypeBase.h:4136
U cast(CodeGen::Address addr)
Definition Address.h:327
SourceRange getFunctionOrMethodParamRange(const Decl *D, unsigned Idx)
Definition Attr.h:92
OpaquePtr< QualType > ParsedType
An opaque type for threading parsed type information through the parser.
Definition Ownership.h:230
@ Interface
The "__interface" keyword introduces the elaborated-type-specifier.
Definition TypeBase.h:5870
@ None
No keyword precedes the qualified type name.
Definition TypeBase.h:5886
@ Union
The "union" keyword introduces the elaborated-type-specifier.
Definition TypeBase.h:5873
ActionResult< Expr * > ExprResult
Definition Ownership.h:249
@ Other
Other implicit parameter.
Definition Decl.h:1745
IdentifierInfo * Identifier
FormatAttrKind Kind
Represents information about a change in availability for an entity, which is part of the encoding of...
Definition ParsedAttr.h:47
VersionTuple Version
The version number at which the change occurred.
Definition ParsedAttr.h:52
bool isValid() const
Determine whether this availability change is valid.
Definition ParsedAttr.h:58
static constexpr OSEnvPair macOStoMacCatalystPair()
Returns the os-environment mapping pair that's used to represent the macOS -> Mac Catalyst version ma...
static constexpr OSEnvPair iOStoWatchOSPair()
Returns the os-environment mapping pair that's used to represent the iOS -> watchOS version mapping.
static constexpr OSEnvPair iOStoTvOSPair()
Returns the os-environment mapping pair that's used to represent the iOS -> tvOS version mapping.
DeclarationNameInfo - A collector data type for bundling together a DeclarationName and the correspon...
DeclarationName getName() const
getName - Returns the embedded declaration name.
const ParsedAttributesView & getAttrs() const
If there are attributes applied to this declaratorchunk, return them.
Definition DeclSpec.h:1633
uint16_t Part2
...-89ab-...
Definition DeclCXX.h:4377
uint32_t Part1
{01234567-...
Definition DeclCXX.h:4375
uint16_t Part3
...-cdef-...
Definition DeclCXX.h:4379
uint8_t Part4And5[8]
...-0123-456789abcdef}
Definition DeclCXX.h:4381
virtual AttrHandling handleDeclAttribute(Sema &S, Decl *D, const ParsedAttr &Attr) const
If this ParsedAttrInfo knows how to handle this ParsedAttr applied to this Decl then do so and return...
Contains information gathered from parsing the contents of TargetAttr.
Definition TargetInfo.h:60
std::vector< std::string > Features
Definition TargetInfo.h:61