Thanks to visit codestin.com
Credit goes to developers.llamaindex.ai

Skip to content

Databricks

Integrate with Databricks LLMs APIs.

If you’re opening this Notebook on colab, you will probably need to install LlamaIndex 🦙.

% pip install llama-index-llms-databricks
!pip install llama-index
from llama_index.llms.databricks import Databricks
None of PyTorch, TensorFlow >= 2.0, or Flax have been found. Models won't be available and only tokenizers, configuration and file/data utilities can be used.
Terminal window
export DATABRICKS_TOKEN=<your api key>
export DATABRICKS_SERVING_ENDPOINT=<your api serving endpoint>

Alternatively, you can pass your API key and serving endpoint to the LLM when you init it:

llm = Databricks(
model="databricks-dbrx-instruct",
api_key="your_api_key",
api_base="https://[your-work-space].cloud.databricks.com/serving-endpoints/",
)

A list of available LLM models can be found here.

response = llm.complete("Explain the importance of open source LLMs")
print(response)
from llama_index.core.llms import ChatMessage
messages = [
ChatMessage(
role="system", content="You are a pirate with a colorful personality"
),
ChatMessage(role="user", content="What is your name"),
]
resp = llm.chat(messages)
print(resp)

Using stream_complete endpoint

response = llm.stream_complete("Explain the importance of open source LLMs")
for r in response:
print(r.delta, end="")

Using stream_chat endpoint

from llama_index.core.llms import ChatMessage
messages = [
ChatMessage(
role="system", content="You are a pirate with a colorful personality"
),
ChatMessage(role="user", content="What is your name"),
]
resp = llm.stream_chat(messages)
for r in resp:
print(r.delta, end="")