bevy_ecs/system/combinator.rs
1use alloc::{format, vec::Vec};
2use bevy_utils::prelude::DebugName;
3use core::marker::PhantomData;
4
5use crate::{
6 component::{CheckChangeTicks, Tick},
7 prelude::World,
8 query::FilteredAccessSet,
9 schedule::InternedSystemSet,
10 system::{input::SystemInput, SystemIn, SystemParamValidationError},
11 world::unsafe_world_cell::UnsafeWorldCell,
12};
13
14use super::{IntoSystem, ReadOnlySystem, RunSystemError, System};
15
16/// Customizes the behavior of a [`CombinatorSystem`].
17///
18/// # Examples
19///
20/// ```
21/// use bevy_ecs::prelude::*;
22/// use bevy_ecs::system::{CombinatorSystem, Combine, RunSystemError};
23///
24/// // A system combinator that performs an exclusive-or (XOR)
25/// // operation on the output of two systems.
26/// pub type Xor<A, B> = CombinatorSystem<XorMarker, A, B>;
27///
28/// // This struct is used to customize the behavior of our combinator.
29/// pub struct XorMarker;
30///
31/// impl<A, B> Combine<A, B> for XorMarker
32/// where
33/// A: System<In = (), Out = bool>,
34/// B: System<In = (), Out = bool>,
35/// {
36/// type In = ();
37/// type Out = bool;
38///
39/// fn combine<T>(
40/// _input: Self::In,
41/// data: &mut T,
42/// a: impl FnOnce(A::In, &mut T) -> Result<A::Out, RunSystemError>,
43/// b: impl FnOnce(B::In, &mut T) -> Result<B::Out, RunSystemError>,
44/// ) -> Result<Self::Out, RunSystemError> {
45/// Ok(a((), data)? ^ b((), data)?)
46/// }
47/// }
48///
49/// # #[derive(Resource, PartialEq, Eq)] struct A(u32);
50/// # #[derive(Resource, PartialEq, Eq)] struct B(u32);
51/// # #[derive(Resource, Default)] struct RanFlag(bool);
52/// # let mut world = World::new();
53/// # world.init_resource::<RanFlag>();
54/// #
55/// # let mut app = Schedule::default();
56/// app.add_systems(my_system.run_if(Xor::new(
57/// IntoSystem::into_system(resource_equals(A(1))),
58/// IntoSystem::into_system(resource_equals(B(1))),
59/// // The name of the combined system.
60/// "a ^ b".into(),
61/// )));
62/// # fn my_system(mut flag: ResMut<RanFlag>) { flag.0 = true; }
63/// #
64/// # world.insert_resource(A(0));
65/// # world.insert_resource(B(0));
66/// # app.run(&mut world);
67/// # // Neither condition passes, so the system does not run.
68/// # assert!(!world.resource::<RanFlag>().0);
69/// #
70/// # world.insert_resource(A(1));
71/// # app.run(&mut world);
72/// # // Only the first condition passes, so the system runs.
73/// # assert!(world.resource::<RanFlag>().0);
74/// # world.resource_mut::<RanFlag>().0 = false;
75/// #
76/// # world.insert_resource(B(1));
77/// # app.run(&mut world);
78/// # // Both conditions pass, so the system does not run.
79/// # assert!(!world.resource::<RanFlag>().0);
80/// #
81/// # world.insert_resource(A(0));
82/// # app.run(&mut world);
83/// # // Only the second condition passes, so the system runs.
84/// # assert!(world.resource::<RanFlag>().0);
85/// # world.resource_mut::<RanFlag>().0 = false;
86/// ```
87#[diagnostic::on_unimplemented(
88 message = "`{Self}` can not combine systems `{A}` and `{B}`",
89 label = "invalid system combination",
90 note = "the inputs and outputs of `{A}` and `{B}` are not compatible with this combiner"
91)]
92pub trait Combine<A: System, B: System> {
93 /// The [input](System::In) type for a [`CombinatorSystem`].
94 type In: SystemInput;
95
96 /// The [output](System::Out) type for a [`CombinatorSystem`].
97 type Out;
98
99 /// When used in a [`CombinatorSystem`], this function customizes how
100 /// the two composite systems are invoked and their outputs are combined.
101 ///
102 /// See the trait-level docs for [`Combine`] for an example implementation.
103 fn combine<T>(
104 input: <Self::In as SystemInput>::Inner<'_>,
105 data: &mut T,
106 a: impl FnOnce(SystemIn<'_, A>, &mut T) -> Result<A::Out, RunSystemError>,
107 b: impl FnOnce(SystemIn<'_, B>, &mut T) -> Result<B::Out, RunSystemError>,
108 ) -> Result<Self::Out, RunSystemError>;
109}
110
111/// A [`System`] defined by combining two other systems.
112/// The behavior of this combinator is specified by implementing the [`Combine`] trait.
113/// For a full usage example, see the docs for [`Combine`].
114pub struct CombinatorSystem<Func, A, B> {
115 _marker: PhantomData<fn() -> Func>,
116 a: A,
117 b: B,
118 name: DebugName,
119}
120
121impl<Func, A, B> CombinatorSystem<Func, A, B> {
122 /// Creates a new system that combines two inner systems.
123 ///
124 /// The returned system will only be usable if `Func` implements [`Combine<A, B>`].
125 pub fn new(a: A, b: B, name: DebugName) -> Self {
126 Self {
127 _marker: PhantomData,
128 a,
129 b,
130 name,
131 }
132 }
133}
134
135impl<A, B, Func> System for CombinatorSystem<Func, A, B>
136where
137 Func: Combine<A, B> + 'static,
138 A: System,
139 B: System,
140{
141 type In = Func::In;
142 type Out = Func::Out;
143
144 fn name(&self) -> DebugName {
145 self.name.clone()
146 }
147
148 #[inline]
149 fn flags(&self) -> super::SystemStateFlags {
150 self.a.flags() | self.b.flags()
151 }
152
153 unsafe fn run_unsafe(
154 &mut self,
155 input: SystemIn<'_, Self>,
156 world: UnsafeWorldCell,
157 ) -> Result<Self::Out, RunSystemError> {
158 struct PrivateUnsafeWorldCell<'w>(UnsafeWorldCell<'w>);
159
160 Func::combine(
161 input,
162 &mut PrivateUnsafeWorldCell(world),
163 // SAFETY: The world accesses for both underlying systems have been registered,
164 // so the caller will guarantee that no other systems will conflict with `a` or `b`.
165 // If either system has `is_exclusive()`, then the combined system also has `is_exclusive`.
166 // Since we require a `combine` to pass in a mutable reference to `world` and that's a private type
167 // passed to a function as an unbound non-'static generic argument, they can never be called in parallel
168 // or re-entrantly because that would require forging another instance of `PrivateUnsafeWorldCell`.
169 // This means that the world accesses in the two closures will not conflict with each other.
170 |input, world| unsafe { self.a.run_unsafe(input, world.0) },
171 // `Self::validate_param_unsafe` already validated the first system,
172 // but we still need to validate the second system once the first one runs.
173 // SAFETY: See the comment above.
174 |input, world| unsafe {
175 self.b.validate_param_unsafe(world.0)?;
176 self.b.run_unsafe(input, world.0)
177 },
178 )
179 }
180
181 #[cfg(feature = "hotpatching")]
182 #[inline]
183 fn refresh_hotpatch(&mut self) {
184 self.a.refresh_hotpatch();
185 self.b.refresh_hotpatch();
186 }
187
188 #[inline]
189 fn apply_deferred(&mut self, world: &mut World) {
190 self.a.apply_deferred(world);
191 self.b.apply_deferred(world);
192 }
193
194 #[inline]
195 fn queue_deferred(&mut self, mut world: crate::world::DeferredWorld) {
196 self.a.queue_deferred(world.reborrow());
197 self.b.queue_deferred(world);
198 }
199
200 #[inline]
201 unsafe fn validate_param_unsafe(
202 &mut self,
203 world: UnsafeWorldCell,
204 ) -> Result<(), SystemParamValidationError> {
205 // We only validate parameters for the first system,
206 // since it may make changes to the world that affect
207 // whether the second system has valid parameters.
208 // The second system will be validated in `Self::run_unsafe`.
209 // SAFETY: Delegate to other `System` implementations.
210 unsafe { self.a.validate_param_unsafe(world) }
211 }
212
213 fn initialize(&mut self, world: &mut World) -> FilteredAccessSet {
214 let mut a_access = self.a.initialize(world);
215 let b_access = self.b.initialize(world);
216 a_access.extend(b_access);
217 a_access
218 }
219
220 fn check_change_tick(&mut self, check: CheckChangeTicks) {
221 self.a.check_change_tick(check);
222 self.b.check_change_tick(check);
223 }
224
225 fn default_system_sets(&self) -> Vec<InternedSystemSet> {
226 let mut default_sets = self.a.default_system_sets();
227 default_sets.append(&mut self.b.default_system_sets());
228 default_sets
229 }
230
231 fn get_last_run(&self) -> Tick {
232 self.a.get_last_run()
233 }
234
235 fn set_last_run(&mut self, last_run: Tick) {
236 self.a.set_last_run(last_run);
237 self.b.set_last_run(last_run);
238 }
239}
240
241/// SAFETY: Both systems are read-only, so any system created by combining them will only read from the world.
242unsafe impl<Func, A, B> ReadOnlySystem for CombinatorSystem<Func, A, B>
243where
244 Func: Combine<A, B> + 'static,
245 A: ReadOnlySystem,
246 B: ReadOnlySystem,
247{
248}
249
250impl<Func, A, B> Clone for CombinatorSystem<Func, A, B>
251where
252 A: Clone,
253 B: Clone,
254{
255 /// Clone the combined system. The cloned instance must be `.initialize()`d before it can run.
256 fn clone(&self) -> Self {
257 CombinatorSystem::new(self.a.clone(), self.b.clone(), self.name.clone())
258 }
259}
260
261/// An [`IntoSystem`] creating an instance of [`PipeSystem`].
262#[derive(Clone)]
263pub struct IntoPipeSystem<A, B> {
264 a: A,
265 b: B,
266}
267
268impl<A, B> IntoPipeSystem<A, B> {
269 /// Creates a new [`IntoSystem`] that pipes two inner systems.
270 pub const fn new(a: A, b: B) -> Self {
271 Self { a, b }
272 }
273}
274
275#[doc(hidden)]
276pub struct IsPipeSystemMarker;
277
278impl<A, B, IA, OA, IB, OB, MA, MB> IntoSystem<IA, OB, (IsPipeSystemMarker, OA, IB, MA, MB)>
279 for IntoPipeSystem<A, B>
280where
281 IA: SystemInput,
282 A: IntoSystem<IA, OA, MA>,
283 B: IntoSystem<IB, OB, MB>,
284 for<'a> IB: SystemInput<Inner<'a> = OA>,
285{
286 type System = PipeSystem<A::System, B::System>;
287
288 fn into_system(this: Self) -> Self::System {
289 let system_a = IntoSystem::into_system(this.a);
290 let system_b = IntoSystem::into_system(this.b);
291 let name = format!("Pipe({}, {})", system_a.name(), system_b.name());
292 PipeSystem::new(system_a, system_b, DebugName::owned(name))
293 }
294}
295
296/// A [`System`] created by piping the output of the first system into the input of the second.
297///
298/// This can be repeated indefinitely, but system pipes cannot branch: the output is consumed by the receiving system.
299///
300/// Given two systems `A` and `B`, A may be piped into `B` as `A.pipe(B)` if the output type of `A` is
301/// equal to the input type of `B`.
302///
303/// Note that for [`FunctionSystem`](crate::system::FunctionSystem)s the output is the return value
304/// of the function and the input is the first [`SystemParam`](crate::system::SystemParam) if it is
305/// tagged with [`In`](crate::system::In) or `()` if the function has no designated input parameter.
306///
307/// # Examples
308///
309/// ```
310/// use std::num::ParseIntError;
311///
312/// use bevy_ecs::prelude::*;
313///
314/// fn main() {
315/// let mut world = World::default();
316/// world.insert_resource(Message("42".to_string()));
317///
318/// // pipe the `parse_message_system`'s output into the `filter_system`s input
319/// let mut piped_system = IntoSystem::into_system(parse_message_system.pipe(filter_system));
320/// piped_system.initialize(&mut world);
321/// assert_eq!(piped_system.run((), &mut world).unwrap(), Some(42));
322/// }
323///
324/// #[derive(Resource)]
325/// struct Message(String);
326///
327/// fn parse_message_system(message: Res<Message>) -> Result<usize, ParseIntError> {
328/// message.0.parse::<usize>()
329/// }
330///
331/// fn filter_system(In(result): In<Result<usize, ParseIntError>>) -> Option<usize> {
332/// result.ok().filter(|&n| n < 100)
333/// }
334/// ```
335pub struct PipeSystem<A, B> {
336 a: A,
337 b: B,
338 name: DebugName,
339}
340
341impl<A, B> PipeSystem<A, B>
342where
343 A: System,
344 B: System,
345 for<'a> B::In: SystemInput<Inner<'a> = A::Out>,
346{
347 /// Creates a new system that pipes two inner systems.
348 pub fn new(a: A, b: B, name: DebugName) -> Self {
349 Self { a, b, name }
350 }
351}
352
353impl<A, B> System for PipeSystem<A, B>
354where
355 A: System,
356 B: System,
357 for<'a> B::In: SystemInput<Inner<'a> = A::Out>,
358{
359 type In = A::In;
360 type Out = B::Out;
361
362 fn name(&self) -> DebugName {
363 self.name.clone()
364 }
365
366 #[inline]
367 fn flags(&self) -> super::SystemStateFlags {
368 self.a.flags() | self.b.flags()
369 }
370
371 unsafe fn run_unsafe(
372 &mut self,
373 input: SystemIn<'_, Self>,
374 world: UnsafeWorldCell,
375 ) -> Result<Self::Out, RunSystemError> {
376 let value = self.a.run_unsafe(input, world)?;
377 // `Self::validate_param_unsafe` already validated the first system,
378 // but we still need to validate the second system once the first one runs.
379 self.b.validate_param_unsafe(world)?;
380 self.b.run_unsafe(value, world)
381 }
382
383 #[cfg(feature = "hotpatching")]
384 #[inline]
385 fn refresh_hotpatch(&mut self) {
386 self.a.refresh_hotpatch();
387 self.b.refresh_hotpatch();
388 }
389
390 fn apply_deferred(&mut self, world: &mut World) {
391 self.a.apply_deferred(world);
392 self.b.apply_deferred(world);
393 }
394
395 fn queue_deferred(&mut self, mut world: crate::world::DeferredWorld) {
396 self.a.queue_deferred(world.reborrow());
397 self.b.queue_deferred(world);
398 }
399
400 unsafe fn validate_param_unsafe(
401 &mut self,
402 world: UnsafeWorldCell,
403 ) -> Result<(), SystemParamValidationError> {
404 // We only validate parameters for the first system,
405 // since it may make changes to the world that affect
406 // whether the second system has valid parameters.
407 // The second system will be validated in `Self::run_unsafe`.
408 // SAFETY: Delegate to the `System` implementation for `a`.
409 unsafe { self.a.validate_param_unsafe(world) }
410 }
411
412 fn initialize(&mut self, world: &mut World) -> FilteredAccessSet {
413 let mut a_access = self.a.initialize(world);
414 let b_access = self.b.initialize(world);
415 a_access.extend(b_access);
416 a_access
417 }
418
419 fn check_change_tick(&mut self, check: CheckChangeTicks) {
420 self.a.check_change_tick(check);
421 self.b.check_change_tick(check);
422 }
423
424 fn default_system_sets(&self) -> Vec<InternedSystemSet> {
425 let mut default_sets = self.a.default_system_sets();
426 default_sets.append(&mut self.b.default_system_sets());
427 default_sets
428 }
429
430 fn get_last_run(&self) -> Tick {
431 self.a.get_last_run()
432 }
433
434 fn set_last_run(&mut self, last_run: Tick) {
435 self.a.set_last_run(last_run);
436 self.b.set_last_run(last_run);
437 }
438}
439
440/// SAFETY: Both systems are read-only, so any system created by piping them will only read from the world.
441unsafe impl<A, B> ReadOnlySystem for PipeSystem<A, B>
442where
443 A: ReadOnlySystem,
444 B: ReadOnlySystem,
445 for<'a> B::In: SystemInput<Inner<'a> = A::Out>,
446{
447}
448
449#[cfg(test)]
450mod tests {
451
452 #[test]
453 fn exclusive_system_piping_is_possible() {
454 use crate::prelude::*;
455
456 fn my_exclusive_system(_world: &mut World) -> u32 {
457 1
458 }
459
460 fn out_pipe(input: In<u32>) {
461 assert!(input.0 == 1);
462 }
463
464 let mut world = World::new();
465
466 let mut schedule = Schedule::default();
467 schedule.add_systems(my_exclusive_system.pipe(out_pipe));
468
469 schedule.run(&mut world);
470 }
471}