Thanks to visit codestin.com
Credit goes to doxygen.postgresql.org

PostgreSQL Source Code git master
analyze.c File Reference
#include "postgres.h"
#include <math.h>
#include "access/detoast.h"
#include "access/genam.h"
#include "access/multixact.h"
#include "access/relation.h"
#include "access/table.h"
#include "access/tableam.h"
#include "access/transam.h"
#include "access/tupconvert.h"
#include "access/visibilitymap.h"
#include "access/xact.h"
#include "catalog/index.h"
#include "catalog/indexing.h"
#include "catalog/pg_inherits.h"
#include "commands/progress.h"
#include "commands/tablecmds.h"
#include "commands/vacuum.h"
#include "common/pg_prng.h"
#include "executor/executor.h"
#include "foreign/fdwapi.h"
#include "miscadmin.h"
#include "nodes/nodeFuncs.h"
#include "parser/parse_oper.h"
#include "parser/parse_relation.h"
#include "pgstat.h"
#include "statistics/extended_stats_internal.h"
#include "statistics/statistics.h"
#include "storage/bufmgr.h"
#include "storage/procarray.h"
#include "utils/attoptcache.h"
#include "utils/datum.h"
#include "utils/guc.h"
#include "utils/lsyscache.h"
#include "utils/memutils.h"
#include "utils/pg_rusage.h"
#include "utils/sampling.h"
#include "utils/sortsupport.h"
#include "utils/syscache.h"
#include "utils/timestamp.h"
Include dependency graph for analyze.c:

Go to the source code of this file.

Data Structures

struct  AnlIndexData
 
struct  ScalarMCVItem
 
struct  CompareScalarsContext
 

Macros

#define WIDTH_THRESHOLD   1024
 
#define swapInt(a, b)   do {int _tmp; _tmp=a; a=b; b=_tmp;} while(0)
 
#define swapDatum(a, b)   do {Datum _tmp; _tmp=a; a=b; b=_tmp;} while(0)
 

Typedefs

typedef struct AnlIndexData AnlIndexData
 

Functions

static void do_analyze_rel (Relation onerel, const VacuumParams params, List *va_cols, AcquireSampleRowsFunc acquirefunc, BlockNumber relpages, bool inh, bool in_outer_xact, int elevel)
 
static void compute_index_stats (Relation onerel, double totalrows, AnlIndexData *indexdata, int nindexes, HeapTuple *rows, int numrows, MemoryContext col_context)
 
static VacAttrStatsexamine_attribute (Relation onerel, int attnum, Node *index_expr)
 
static int acquire_sample_rows (Relation onerel, int elevel, HeapTuple *rows, int targrows, double *totalrows, double *totaldeadrows)
 
static int compare_rows (const void *a, const void *b, void *arg)
 
static int acquire_inherited_sample_rows (Relation onerel, int elevel, HeapTuple *rows, int targrows, double *totalrows, double *totaldeadrows)
 
static void update_attstats (Oid relid, bool inh, int natts, VacAttrStats **vacattrstats)
 
static Datum std_fetch_func (VacAttrStatsP stats, int rownum, bool *isNull)
 
static Datum ind_fetch_func (VacAttrStatsP stats, int rownum, bool *isNull)
 
void analyze_rel (Oid relid, RangeVar *relation, const VacuumParams params, List *va_cols, bool in_outer_xact, BufferAccessStrategy bstrategy)
 
static BlockNumber block_sampling_read_stream_next (ReadStream *stream, void *callback_private_data, void *per_buffer_data)
 
static void compute_trivial_stats (VacAttrStatsP stats, AnalyzeAttrFetchFunc fetchfunc, int samplerows, double totalrows)
 
static void compute_distinct_stats (VacAttrStatsP stats, AnalyzeAttrFetchFunc fetchfunc, int samplerows, double totalrows)
 
static void compute_scalar_stats (VacAttrStatsP stats, AnalyzeAttrFetchFunc fetchfunc, int samplerows, double totalrows)
 
static int compare_scalars (const void *a, const void *b, void *arg)
 
static int compare_mcvs (const void *a, const void *b, void *arg)
 
static int analyze_mcv_list (int *mcv_counts, int num_mcv, double stadistinct, double stanullfrac, int samplerows, double totalrows)
 
bool std_typanalyze (VacAttrStats *stats)
 

Variables

int default_statistics_target = 100
 
static MemoryContext anl_context = NULL
 
static BufferAccessStrategy vac_strategy
 

Macro Definition Documentation

◆ swapDatum

#define swapDatum (   a,
  b 
)    do {Datum _tmp; _tmp=a; a=b; b=_tmp;} while(0)

Definition at line 1845 of file analyze.c.

◆ swapInt

#define swapInt (   a,
  b 
)    do {int _tmp; _tmp=a; a=b; b=_tmp;} while(0)

Definition at line 1844 of file analyze.c.

◆ WIDTH_THRESHOLD

#define WIDTH_THRESHOLD   1024

Definition at line 1842 of file analyze.c.

Typedef Documentation

◆ AnlIndexData

typedef struct AnlIndexData AnlIndexData

Function Documentation

◆ acquire_inherited_sample_rows()

static int acquire_inherited_sample_rows ( Relation  onerel,
int  elevel,
HeapTuple rows,
int  targrows,
double *  totalrows,
double *  totaldeadrows 
)
static

Definition at line 1390 of file analyze.c.

1393{
1394 List *tableOIDs;
1395 Relation *rels;
1396 AcquireSampleRowsFunc *acquirefuncs;
1397 double *relblocks;
1398 double totalblocks;
1399 int numrows,
1400 nrels,
1401 i;
1402 ListCell *lc;
1403 bool has_child;
1404
1405 /* Initialize output parameters to zero now, in case we exit early */
1406 *totalrows = 0;
1407 *totaldeadrows = 0;
1408
1409 /*
1410 * Find all members of inheritance set. We only need AccessShareLock on
1411 * the children.
1412 */
1413 tableOIDs =
1415
1416 /*
1417 * Check that there's at least one descendant, else fail. This could
1418 * happen despite analyze_rel's relhassubclass check, if table once had a
1419 * child but no longer does. In that case, we can clear the
1420 * relhassubclass field so as not to make the same mistake again later.
1421 * (This is safe because we hold ShareUpdateExclusiveLock.)
1422 */
1423 if (list_length(tableOIDs) < 2)
1424 {
1425 /* CCI because we already updated the pg_class row in this command */
1428 ereport(elevel,
1429 (errmsg("skipping analyze of \"%s.%s\" inheritance tree --- this inheritance tree contains no child tables",
1431 RelationGetRelationName(onerel))));
1432 return 0;
1433 }
1434
1435 /*
1436 * Identify acquirefuncs to use, and count blocks in all the relations.
1437 * The result could overflow BlockNumber, so we use double arithmetic.
1438 */
1439 rels = (Relation *) palloc(list_length(tableOIDs) * sizeof(Relation));
1440 acquirefuncs = (AcquireSampleRowsFunc *)
1441 palloc(list_length(tableOIDs) * sizeof(AcquireSampleRowsFunc));
1442 relblocks = (double *) palloc(list_length(tableOIDs) * sizeof(double));
1443 totalblocks = 0;
1444 nrels = 0;
1445 has_child = false;
1446 foreach(lc, tableOIDs)
1447 {
1448 Oid childOID = lfirst_oid(lc);
1449 Relation childrel;
1450 AcquireSampleRowsFunc acquirefunc = NULL;
1451 BlockNumber relpages = 0;
1452
1453 /* We already got the needed lock */
1454 childrel = table_open(childOID, NoLock);
1455
1456 /* Ignore if temp table of another backend */
1457 if (RELATION_IS_OTHER_TEMP(childrel))
1458 {
1459 /* ... but release the lock on it */
1460 Assert(childrel != onerel);
1461 table_close(childrel, AccessShareLock);
1462 continue;
1463 }
1464
1465 /* Check table type (MATVIEW can't happen, but might as well allow) */
1466 if (childrel->rd_rel->relkind == RELKIND_RELATION ||
1467 childrel->rd_rel->relkind == RELKIND_MATVIEW)
1468 {
1469 /* Regular table, so use the regular row acquisition function */
1470 acquirefunc = acquire_sample_rows;
1471 relpages = RelationGetNumberOfBlocks(childrel);
1472 }
1473 else if (childrel->rd_rel->relkind == RELKIND_FOREIGN_TABLE)
1474 {
1475 /*
1476 * For a foreign table, call the FDW's hook function to see
1477 * whether it supports analysis.
1478 */
1479 FdwRoutine *fdwroutine;
1480 bool ok = false;
1481
1482 fdwroutine = GetFdwRoutineForRelation(childrel, false);
1483
1484 if (fdwroutine->AnalyzeForeignTable != NULL)
1485 ok = fdwroutine->AnalyzeForeignTable(childrel,
1486 &acquirefunc,
1487 &relpages);
1488
1489 if (!ok)
1490 {
1491 /* ignore, but release the lock on it */
1492 Assert(childrel != onerel);
1493 table_close(childrel, AccessShareLock);
1494 continue;
1495 }
1496 }
1497 else
1498 {
1499 /*
1500 * ignore, but release the lock on it. don't try to unlock the
1501 * passed-in relation
1502 */
1503 Assert(childrel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE);
1504 if (childrel != onerel)
1505 table_close(childrel, AccessShareLock);
1506 else
1507 table_close(childrel, NoLock);
1508 continue;
1509 }
1510
1511 /* OK, we'll process this child */
1512 has_child = true;
1513 rels[nrels] = childrel;
1514 acquirefuncs[nrels] = acquirefunc;
1515 relblocks[nrels] = (double) relpages;
1516 totalblocks += (double) relpages;
1517 nrels++;
1518 }
1519
1520 /*
1521 * If we don't have at least one child table to consider, fail. If the
1522 * relation is a partitioned table, it's not counted as a child table.
1523 */
1524 if (!has_child)
1525 {
1526 ereport(elevel,
1527 (errmsg("skipping analyze of \"%s.%s\" inheritance tree --- this inheritance tree contains no analyzable child tables",
1529 RelationGetRelationName(onerel))));
1530 return 0;
1531 }
1532
1533 /*
1534 * Now sample rows from each relation, proportionally to its fraction of
1535 * the total block count. (This might be less than desirable if the child
1536 * rels have radically different free-space percentages, but it's not
1537 * clear that it's worth working harder.)
1538 */
1540 nrels);
1541 numrows = 0;
1542 for (i = 0; i < nrels; i++)
1543 {
1544 Relation childrel = rels[i];
1545 AcquireSampleRowsFunc acquirefunc = acquirefuncs[i];
1546 double childblocks = relblocks[i];
1547
1548 /*
1549 * Report progress. The sampling function will normally report blocks
1550 * done/total, but we need to reset them to 0 here, so that they don't
1551 * show an old value until that.
1552 */
1553 {
1554 const int progress_index[] = {
1558 };
1559 const int64 progress_vals[] = {
1560 RelationGetRelid(childrel),
1561 0,
1562 0,
1563 };
1564
1565 pgstat_progress_update_multi_param(3, progress_index, progress_vals);
1566 }
1567
1568 if (childblocks > 0)
1569 {
1570 int childtargrows;
1571
1572 childtargrows = (int) rint(targrows * childblocks / totalblocks);
1573 /* Make sure we don't overrun due to roundoff error */
1574 childtargrows = Min(childtargrows, targrows - numrows);
1575 if (childtargrows > 0)
1576 {
1577 int childrows;
1578 double trows,
1579 tdrows;
1580
1581 /* Fetch a random sample of the child's rows */
1582 childrows = (*acquirefunc) (childrel, elevel,
1583 rows + numrows, childtargrows,
1584 &trows, &tdrows);
1585
1586 /* We may need to convert from child's rowtype to parent's */
1587 if (childrows > 0 &&
1589 RelationGetDescr(onerel)))
1590 {
1591 TupleConversionMap *map;
1592
1594 RelationGetDescr(onerel));
1595 if (map != NULL)
1596 {
1597 int j;
1598
1599 for (j = 0; j < childrows; j++)
1600 {
1601 HeapTuple newtup;
1602
1603 newtup = execute_attr_map_tuple(rows[numrows + j], map);
1604 heap_freetuple(rows[numrows + j]);
1605 rows[numrows + j] = newtup;
1606 }
1608 }
1609 }
1610
1611 /* And add to counts */
1612 numrows += childrows;
1613 *totalrows += trows;
1614 *totaldeadrows += tdrows;
1615 }
1616 }
1617
1618 /*
1619 * Note: we cannot release the child-table locks, since we may have
1620 * pointers to their TOAST tables in the sampled rows.
1621 */
1622 table_close(childrel, NoLock);
1624 i + 1);
1625 }
1626
1627 return numrows;
1628}
void pgstat_progress_update_param(int index, int64 val)
void pgstat_progress_update_multi_param(int nparam, const int *index, const int64 *val)
uint32 BlockNumber
Definition: block.h:31
#define RelationGetNumberOfBlocks(reln)
Definition: bufmgr.h:283
#define Min(x, y)
Definition: c.h:1004
int64_t int64
Definition: c.h:536
static int acquire_sample_rows(Relation onerel, int elevel, HeapTuple *rows, int targrows, double *totalrows, double *totaldeadrows)
Definition: analyze.c:1198
int errmsg(const char *fmt,...)
Definition: elog.c:1071
#define ereport(elevel,...)
Definition: elog.h:150
int(* AcquireSampleRowsFunc)(Relation relation, int elevel, HeapTuple *rows, int targrows, double *totalrows, double *totaldeadrows)
Definition: fdwapi.h:151
FdwRoutine * GetFdwRoutineForRelation(Relation relation, bool makecopy)
Definition: foreign.c:443
Assert(PointerIsAligned(start, uint64))
void heap_freetuple(HeapTuple htup)
Definition: heaptuple.c:1435
int j
Definition: isn.c:78
int i
Definition: isn.c:77
#define NoLock
Definition: lockdefs.h:34
#define AccessShareLock
Definition: lockdefs.h:36
char * get_namespace_name(Oid nspid)
Definition: lsyscache.c:3533
void * palloc(Size size)
Definition: mcxt.c:1365
List * find_all_inheritors(Oid parentrelId, LOCKMODE lockmode, List **numparents)
Definition: pg_inherits.c:255
static int list_length(const List *l)
Definition: pg_list.h:152
#define lfirst_oid(lc)
Definition: pg_list.h:174
unsigned int Oid
Definition: postgres_ext.h:32
#define PROGRESS_ANALYZE_BLOCKS_DONE
Definition: progress.h:44
#define PROGRESS_ANALYZE_CHILD_TABLES_TOTAL
Definition: progress.h:47
#define PROGRESS_ANALYZE_BLOCKS_TOTAL
Definition: progress.h:43
#define PROGRESS_ANALYZE_CHILD_TABLES_DONE
Definition: progress.h:48
#define PROGRESS_ANALYZE_CURRENT_CHILD_TABLE_RELID
Definition: progress.h:49
#define RelationGetRelid(relation)
Definition: rel.h:514
#define RelationGetDescr(relation)
Definition: rel.h:540
#define RelationGetRelationName(relation)
Definition: rel.h:548
#define RELATION_IS_OTHER_TEMP(relation)
Definition: rel.h:667
#define RelationGetNamespace(relation)
Definition: rel.h:555
struct RelationData * Relation
Definition: relcache.h:27
AnalyzeForeignTable_function AnalyzeForeignTable
Definition: fdwapi.h:257
Definition: pg_list.h:54
Form_pg_class rd_rel
Definition: rel.h:111
void table_close(Relation relation, LOCKMODE lockmode)
Definition: table.c:126
Relation table_open(Oid relationId, LOCKMODE lockmode)
Definition: table.c:40
void SetRelationHasSubclass(Oid relationId, bool relhassubclass)
Definition: tablecmds.c:3640
TupleConversionMap * convert_tuples_by_name(TupleDesc indesc, TupleDesc outdesc)
Definition: tupconvert.c:102
void free_conversion_map(TupleConversionMap *map)
Definition: tupconvert.c:299
HeapTuple execute_attr_map_tuple(HeapTuple tuple, TupleConversionMap *map)
Definition: tupconvert.c:154
bool equalRowTypes(TupleDesc tupdesc1, TupleDesc tupdesc2)
Definition: tupdesc.c:777
void CommandCounterIncrement(void)
Definition: xact.c:1100

References AccessShareLock, acquire_sample_rows(), FdwRoutine::AnalyzeForeignTable, Assert(), CommandCounterIncrement(), convert_tuples_by_name(), equalRowTypes(), ereport, errmsg(), execute_attr_map_tuple(), find_all_inheritors(), free_conversion_map(), get_namespace_name(), GetFdwRoutineForRelation(), heap_freetuple(), i, j, lfirst_oid, list_length(), Min, NoLock, palloc(), pgstat_progress_update_multi_param(), pgstat_progress_update_param(), PROGRESS_ANALYZE_BLOCKS_DONE, PROGRESS_ANALYZE_BLOCKS_TOTAL, PROGRESS_ANALYZE_CHILD_TABLES_DONE, PROGRESS_ANALYZE_CHILD_TABLES_TOTAL, PROGRESS_ANALYZE_CURRENT_CHILD_TABLE_RELID, RelationData::rd_rel, RELATION_IS_OTHER_TEMP, RelationGetDescr, RelationGetNamespace, RelationGetNumberOfBlocks, RelationGetRelationName, RelationGetRelid, SetRelationHasSubclass(), table_close(), and table_open().

Referenced by do_analyze_rel().

◆ acquire_sample_rows()

static int acquire_sample_rows ( Relation  onerel,
int  elevel,
HeapTuple rows,
int  targrows,
double *  totalrows,
double *  totaldeadrows 
)
static

Definition at line 1198 of file analyze.c.

1201{
1202 int numrows = 0; /* # rows now in reservoir */
1203 double samplerows = 0; /* total # rows collected */
1204 double liverows = 0; /* # live rows seen */
1205 double deadrows = 0; /* # dead rows seen */
1206 double rowstoskip = -1; /* -1 means not set yet */
1207 uint32 randseed; /* Seed for block sampler(s) */
1208 BlockNumber totalblocks;
1209 TransactionId OldestXmin;
1211 ReservoirStateData rstate;
1212 TupleTableSlot *slot;
1213 TableScanDesc scan;
1214 BlockNumber nblocks;
1215 BlockNumber blksdone = 0;
1216 ReadStream *stream;
1217
1218 Assert(targrows > 0);
1219
1220 totalblocks = RelationGetNumberOfBlocks(onerel);
1221
1222 /* Need a cutoff xmin for HeapTupleSatisfiesVacuum */
1223 OldestXmin = GetOldestNonRemovableTransactionId(onerel);
1224
1225 /* Prepare for sampling block numbers */
1227 nblocks = BlockSampler_Init(&bs, totalblocks, targrows, randseed);
1228
1229 /* Report sampling block numbers */
1231 nblocks);
1232
1233 /* Prepare for sampling rows */
1234 reservoir_init_selection_state(&rstate, targrows);
1235
1236 scan = table_beginscan_analyze(onerel);
1237 slot = table_slot_create(onerel, NULL);
1238
1239 /*
1240 * It is safe to use batching, as block_sampling_read_stream_next never
1241 * blocks.
1242 */
1246 scan->rs_rd,
1249 &bs,
1250 0);
1251
1252 /* Outer loop over blocks to sample */
1253 while (table_scan_analyze_next_block(scan, stream))
1254 {
1255 vacuum_delay_point(true);
1256
1257 while (table_scan_analyze_next_tuple(scan, OldestXmin, &liverows, &deadrows, slot))
1258 {
1259 /*
1260 * The first targrows sample rows are simply copied into the
1261 * reservoir. Then we start replacing tuples in the sample until
1262 * we reach the end of the relation. This algorithm is from Jeff
1263 * Vitter's paper (see full citation in utils/misc/sampling.c). It
1264 * works by repeatedly computing the number of tuples to skip
1265 * before selecting a tuple, which replaces a randomly chosen
1266 * element of the reservoir (current set of tuples). At all times
1267 * the reservoir is a true random sample of the tuples we've
1268 * passed over so far, so when we fall off the end of the relation
1269 * we're done.
1270 */
1271 if (numrows < targrows)
1272 rows[numrows++] = ExecCopySlotHeapTuple(slot);
1273 else
1274 {
1275 /*
1276 * t in Vitter's paper is the number of records already
1277 * processed. If we need to compute a new S value, we must
1278 * use the not-yet-incremented value of samplerows as t.
1279 */
1280 if (rowstoskip < 0)
1281 rowstoskip = reservoir_get_next_S(&rstate, samplerows, targrows);
1282
1283 if (rowstoskip <= 0)
1284 {
1285 /*
1286 * Found a suitable tuple, so save it, replacing one old
1287 * tuple at random
1288 */
1289 int k = (int) (targrows * sampler_random_fract(&rstate.randstate));
1290
1291 Assert(k >= 0 && k < targrows);
1292 heap_freetuple(rows[k]);
1293 rows[k] = ExecCopySlotHeapTuple(slot);
1294 }
1295
1296 rowstoskip -= 1;
1297 }
1298
1299 samplerows += 1;
1300 }
1301
1303 ++blksdone);
1304 }
1305
1306 read_stream_end(stream);
1307
1309 table_endscan(scan);
1310
1311 /*
1312 * If we didn't find as many tuples as we wanted then we're done. No sort
1313 * is needed, since they're already in order.
1314 *
1315 * Otherwise we need to sort the collected tuples by position
1316 * (itempointer). It's not worth worrying about corner cases where the
1317 * tuples are already sorted.
1318 */
1319 if (numrows == targrows)
1320 qsort_interruptible(rows, numrows, sizeof(HeapTuple),
1321 compare_rows, NULL);
1322
1323 /*
1324 * Estimate total numbers of live and dead rows in relation, extrapolating
1325 * on the assumption that the average tuple density in pages we didn't
1326 * scan is the same as in the pages we did scan. Since what we scanned is
1327 * a random sample of the pages in the relation, this should be a good
1328 * assumption.
1329 */
1330 if (bs.m > 0)
1331 {
1332 *totalrows = floor((liverows / bs.m) * totalblocks + 0.5);
1333 *totaldeadrows = floor((deadrows / bs.m) * totalblocks + 0.5);
1334 }
1335 else
1336 {
1337 *totalrows = 0.0;
1338 *totaldeadrows = 0.0;
1339 }
1340
1341 /*
1342 * Emit some interesting relation info
1343 */
1344 ereport(elevel,
1345 (errmsg("\"%s\": scanned %d of %u pages, "
1346 "containing %.0f live rows and %.0f dead rows; "
1347 "%d rows in sample, %.0f estimated total rows",
1349 bs.m, totalblocks,
1350 liverows, deadrows,
1351 numrows, *totalrows)));
1352
1353 return numrows;
1354}
uint32_t uint32
Definition: c.h:539
uint32 TransactionId
Definition: c.h:658
static BufferAccessStrategy vac_strategy
Definition: analyze.c:74
static BlockNumber block_sampling_read_stream_next(ReadStream *stream, void *callback_private_data, void *per_buffer_data)
Definition: analyze.c:1155
static int compare_rows(const void *a, const void *b, void *arg)
Definition: analyze.c:1360
void ExecDropSingleTupleTableSlot(TupleTableSlot *slot)
Definition: execTuples.c:1443
uint32 pg_prng_uint32(pg_prng_state *state)
Definition: pg_prng.c:227
pg_prng_state pg_global_prng_state
Definition: pg_prng.c:34
void qsort_interruptible(void *base, size_t nel, size_t elsize, qsort_arg_comparator cmp, void *arg)
TransactionId GetOldestNonRemovableTransactionId(Relation rel)
Definition: procarray.c:1953
ReadStream * read_stream_begin_relation(int flags, BufferAccessStrategy strategy, Relation rel, ForkNumber forknum, ReadStreamBlockNumberCB callback, void *callback_private_data, size_t per_buffer_data_size)
Definition: read_stream.c:737
void read_stream_end(ReadStream *stream)
Definition: read_stream.c:1089
#define READ_STREAM_MAINTENANCE
Definition: read_stream.h:28
#define READ_STREAM_USE_BATCHING
Definition: read_stream.h:64
@ MAIN_FORKNUM
Definition: relpath.h:58
BlockNumber BlockSampler_Init(BlockSampler bs, BlockNumber nblocks, int samplesize, uint32 randseed)
Definition: sampling.c:39
void reservoir_init_selection_state(ReservoirState rs, int n)
Definition: sampling.c:133
double sampler_random_fract(pg_prng_state *randstate)
Definition: sampling.c:241
double reservoir_get_next_S(ReservoirState rs, double t, int n)
Definition: sampling.c:147
pg_prng_state randstate
Definition: sampling.h:49
Relation rs_rd
Definition: relscan.h:36
TupleTableSlot * table_slot_create(Relation relation, List **reglist)
Definition: tableam.c:92
static void table_endscan(TableScanDesc scan)
Definition: tableam.h:985
static bool table_scan_analyze_next_tuple(TableScanDesc scan, TransactionId OldestXmin, double *liverows, double *deadrows, TupleTableSlot *slot)
Definition: tableam.h:1707
static bool table_scan_analyze_next_block(TableScanDesc scan, ReadStream *stream)
Definition: tableam.h:1691
static TableScanDesc table_beginscan_analyze(Relation rel)
Definition: tableam.h:974
static HeapTuple ExecCopySlotHeapTuple(TupleTableSlot *slot)
Definition: tuptable.h:485
void vacuum_delay_point(bool is_analyze)
Definition: vacuum.c:2423

References Assert(), block_sampling_read_stream_next(), BlockSampler_Init(), compare_rows(), ereport, errmsg(), ExecCopySlotHeapTuple(), ExecDropSingleTupleTableSlot(), GetOldestNonRemovableTransactionId(), heap_freetuple(), BlockSamplerData::m, MAIN_FORKNUM, pg_global_prng_state, pg_prng_uint32(), pgstat_progress_update_param(), PROGRESS_ANALYZE_BLOCKS_DONE, PROGRESS_ANALYZE_BLOCKS_TOTAL, qsort_interruptible(), ReservoirStateData::randstate, read_stream_begin_relation(), read_stream_end(), READ_STREAM_MAINTENANCE, READ_STREAM_USE_BATCHING, RelationGetNumberOfBlocks, RelationGetRelationName, reservoir_get_next_S(), reservoir_init_selection_state(), TableScanDescData::rs_rd, sampler_random_fract(), table_beginscan_analyze(), table_endscan(), table_scan_analyze_next_block(), table_scan_analyze_next_tuple(), table_slot_create(), vac_strategy, and vacuum_delay_point().

Referenced by acquire_inherited_sample_rows(), and analyze_rel().

◆ analyze_mcv_list()

static int analyze_mcv_list ( int *  mcv_counts,
int  num_mcv,
double  stadistinct,
double  stanullfrac,
int  samplerows,
double  totalrows 
)
static

Definition at line 2978 of file analyze.c.

2984{
2985 double ndistinct_table;
2986 double sumcount;
2987 int i;
2988
2989 /*
2990 * If the entire table was sampled, keep the whole list. This also
2991 * protects us against division by zero in the code below.
2992 */
2993 if (samplerows == totalrows || totalrows <= 1.0)
2994 return num_mcv;
2995
2996 /* Re-extract the estimated number of distinct nonnull values in table */
2997 ndistinct_table = stadistinct;
2998 if (ndistinct_table < 0)
2999 ndistinct_table = -ndistinct_table * totalrows;
3000
3001 /*
3002 * Exclude the least common values from the MCV list, if they are not
3003 * significantly more common than the estimated selectivity they would
3004 * have if they weren't in the list. All non-MCV values are assumed to be
3005 * equally common, after taking into account the frequencies of all the
3006 * values in the MCV list and the number of nulls (c.f. eqsel()).
3007 *
3008 * Here sumcount tracks the total count of all but the last (least common)
3009 * value in the MCV list, allowing us to determine the effect of excluding
3010 * that value from the list.
3011 *
3012 * Note that we deliberately do this by removing values from the full
3013 * list, rather than starting with an empty list and adding values,
3014 * because the latter approach can fail to add any values if all the most
3015 * common values have around the same frequency and make up the majority
3016 * of the table, so that the overall average frequency of all values is
3017 * roughly the same as that of the common values. This would lead to any
3018 * uncommon values being significantly overestimated.
3019 */
3020 sumcount = 0.0;
3021 for (i = 0; i < num_mcv - 1; i++)
3022 sumcount += mcv_counts[i];
3023
3024 while (num_mcv > 0)
3025 {
3026 double selec,
3027 otherdistinct,
3028 N,
3029 n,
3030 K,
3031 variance,
3032 stddev;
3033
3034 /*
3035 * Estimated selectivity the least common value would have if it
3036 * wasn't in the MCV list (c.f. eqsel()).
3037 */
3038 selec = 1.0 - sumcount / samplerows - stanullfrac;
3039 if (selec < 0.0)
3040 selec = 0.0;
3041 if (selec > 1.0)
3042 selec = 1.0;
3043 otherdistinct = ndistinct_table - (num_mcv - 1);
3044 if (otherdistinct > 1)
3045 selec /= otherdistinct;
3046
3047 /*
3048 * If the value is kept in the MCV list, its population frequency is
3049 * assumed to equal its sample frequency. We use the lower end of a
3050 * textbook continuity-corrected Wald-type confidence interval to
3051 * determine if that is significantly more common than the non-MCV
3052 * frequency --- specifically we assume the population frequency is
3053 * highly likely to be within around 2 standard errors of the sample
3054 * frequency, which equates to an interval of 2 standard deviations
3055 * either side of the sample count, plus an additional 0.5 for the
3056 * continuity correction. Since we are sampling without replacement,
3057 * this is a hypergeometric distribution.
3058 *
3059 * XXX: Empirically, this approach seems to work quite well, but it
3060 * may be worth considering more advanced techniques for estimating
3061 * the confidence interval of the hypergeometric distribution.
3062 */
3063 N = totalrows;
3064 n = samplerows;
3065 K = N * mcv_counts[num_mcv - 1] / n;
3066 variance = n * K * (N - K) * (N - n) / (N * N * (N - 1));
3067 stddev = sqrt(variance);
3068
3069 if (mcv_counts[num_mcv - 1] > selec * samplerows + 2 * stddev + 0.5)
3070 {
3071 /*
3072 * The value is significantly more common than the non-MCV
3073 * selectivity would suggest. Keep it, and all the other more
3074 * common values in the list.
3075 */
3076 break;
3077 }
3078 else
3079 {
3080 /* Discard this value and consider the next least common value */
3081 num_mcv--;
3082 if (num_mcv == 0)
3083 break;
3084 sumcount -= mcv_counts[num_mcv - 1];
3085 }
3086 }
3087 return num_mcv;
3088}
#define K(t)
Definition: sha1.c:66

References i, and K.

Referenced by compute_distinct_stats(), and compute_scalar_stats().

◆ analyze_rel()

void analyze_rel ( Oid  relid,
RangeVar relation,
const VacuumParams  params,
List va_cols,
bool  in_outer_xact,
BufferAccessStrategy  bstrategy 
)

Definition at line 108 of file analyze.c.

111{
112 Relation onerel;
113 int elevel;
114 AcquireSampleRowsFunc acquirefunc = NULL;
115 BlockNumber relpages = 0;
116
117 /* Select logging level */
118 if (params.options & VACOPT_VERBOSE)
119 elevel = INFO;
120 else
121 elevel = DEBUG2;
122
123 /* Set up static variables */
124 vac_strategy = bstrategy;
125
126 /*
127 * Check for user-requested abort.
128 */
130
131 /*
132 * Open the relation, getting ShareUpdateExclusiveLock to ensure that two
133 * ANALYZEs don't run on it concurrently. (This also locks out a
134 * concurrent VACUUM, which doesn't matter much at the moment but might
135 * matter if we ever try to accumulate stats on dead tuples.) If the rel
136 * has been dropped since we last saw it, we don't need to process it.
137 *
138 * Make sure to generate only logs for ANALYZE in this case.
139 */
140 onerel = vacuum_open_relation(relid, relation, params.options & ~(VACOPT_VACUUM),
141 params.log_min_duration >= 0,
143
144 /* leave if relation could not be opened or locked */
145 if (!onerel)
146 return;
147
148 /*
149 * Check if relation needs to be skipped based on privileges. This check
150 * happens also when building the relation list to analyze for a manual
151 * operation, and needs to be done additionally here as ANALYZE could
152 * happen across multiple transactions where privileges could have changed
153 * in-between. Make sure to generate only logs for ANALYZE in this case.
154 */
156 onerel->rd_rel,
157 params.options & ~VACOPT_VACUUM))
158 {
160 return;
161 }
162
163 /*
164 * Silently ignore tables that are temp tables of other backends ---
165 * trying to analyze these is rather pointless, since their contents are
166 * probably not up-to-date on disk. (We don't throw a warning here; it
167 * would just lead to chatter during a database-wide ANALYZE.)
168 */
169 if (RELATION_IS_OTHER_TEMP(onerel))
170 {
172 return;
173 }
174
175 /*
176 * We can ANALYZE any table except pg_statistic. See update_attstats
177 */
178 if (RelationGetRelid(onerel) == StatisticRelationId)
179 {
181 return;
182 }
183
184 /*
185 * Check that it's of an analyzable relkind, and set up appropriately.
186 */
187 if (onerel->rd_rel->relkind == RELKIND_RELATION ||
188 onerel->rd_rel->relkind == RELKIND_MATVIEW)
189 {
190 /* Regular table, so we'll use the regular row acquisition function */
191 acquirefunc = acquire_sample_rows;
192 /* Also get regular table's size */
193 relpages = RelationGetNumberOfBlocks(onerel);
194 }
195 else if (onerel->rd_rel->relkind == RELKIND_FOREIGN_TABLE)
196 {
197 /*
198 * For a foreign table, call the FDW's hook function to see whether it
199 * supports analysis.
200 */
201 FdwRoutine *fdwroutine;
202 bool ok = false;
203
204 fdwroutine = GetFdwRoutineForRelation(onerel, false);
205
206 if (fdwroutine->AnalyzeForeignTable != NULL)
207 ok = fdwroutine->AnalyzeForeignTable(onerel,
208 &acquirefunc,
209 &relpages);
210
211 if (!ok)
212 {
214 (errmsg("skipping \"%s\" --- cannot analyze this foreign table",
215 RelationGetRelationName(onerel))));
217 return;
218 }
219 }
220 else if (onerel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE)
221 {
222 /*
223 * For partitioned tables, we want to do the recursive ANALYZE below.
224 */
225 }
226 else
227 {
228 /* No need for a WARNING if we already complained during VACUUM */
229 if (!(params.options & VACOPT_VACUUM))
231 (errmsg("skipping \"%s\" --- cannot analyze non-tables or special system tables",
232 RelationGetRelationName(onerel))));
234 return;
235 }
236
237 /*
238 * OK, let's do it. First, initialize progress reporting.
239 */
241 RelationGetRelid(onerel));
242
243 /*
244 * Do the normal non-recursive ANALYZE. We can skip this for partitioned
245 * tables, which don't contain any rows.
246 */
247 if (onerel->rd_rel->relkind != RELKIND_PARTITIONED_TABLE)
248 do_analyze_rel(onerel, params, va_cols, acquirefunc,
249 relpages, false, in_outer_xact, elevel);
250
251 /*
252 * If there are child tables, do recursive ANALYZE.
253 */
254 if (onerel->rd_rel->relhassubclass)
255 do_analyze_rel(onerel, params, va_cols, acquirefunc, relpages,
256 true, in_outer_xact, elevel);
257
258 /*
259 * Close source relation now, but keep lock so that no one deletes it
260 * before we commit. (If someone did, they'd fail to clean up the entries
261 * we made in pg_statistic. Also, releasing the lock before commit would
262 * expose us to concurrent-update failures in update_attstats.)
263 */
264 relation_close(onerel, NoLock);
265
267}
void pgstat_progress_start_command(ProgressCommandType cmdtype, Oid relid)
void pgstat_progress_end_command(void)
@ PROGRESS_COMMAND_ANALYZE
static void do_analyze_rel(Relation onerel, const VacuumParams params, List *va_cols, AcquireSampleRowsFunc acquirefunc, BlockNumber relpages, bool inh, bool in_outer_xact, int elevel)
Definition: analyze.c:277
#define WARNING
Definition: elog.h:36
#define DEBUG2
Definition: elog.h:29
#define INFO
Definition: elog.h:34
#define ShareUpdateExclusiveLock
Definition: lockdefs.h:39
#define CHECK_FOR_INTERRUPTS()
Definition: miscadmin.h:122
void relation_close(Relation relation, LOCKMODE lockmode)
Definition: relation.c:205
bits32 options
Definition: vacuum.h:219
int log_min_duration
Definition: vacuum.h:227
Relation vacuum_open_relation(Oid relid, RangeVar *relation, bits32 options, bool verbose, LOCKMODE lmode)
Definition: vacuum.c:774
bool vacuum_is_permitted_for_relation(Oid relid, Form_pg_class reltuple, bits32 options)
Definition: vacuum.c:722
#define VACOPT_VACUUM
Definition: vacuum.h:180
#define VACOPT_VERBOSE
Definition: vacuum.h:182

References acquire_sample_rows(), FdwRoutine::AnalyzeForeignTable, CHECK_FOR_INTERRUPTS, DEBUG2, do_analyze_rel(), ereport, errmsg(), GetFdwRoutineForRelation(), INFO, VacuumParams::log_min_duration, NoLock, VacuumParams::options, pgstat_progress_end_command(), pgstat_progress_start_command(), PROGRESS_COMMAND_ANALYZE, RelationData::rd_rel, relation_close(), RELATION_IS_OTHER_TEMP, RelationGetNumberOfBlocks, RelationGetRelationName, RelationGetRelid, ShareUpdateExclusiveLock, vac_strategy, VACOPT_VACUUM, VACOPT_VERBOSE, vacuum_is_permitted_for_relation(), vacuum_open_relation(), and WARNING.

Referenced by vacuum().

◆ block_sampling_read_stream_next()

static BlockNumber block_sampling_read_stream_next ( ReadStream stream,
void *  callback_private_data,
void *  per_buffer_data 
)
static

Definition at line 1155 of file analyze.c.

1158{
1159 BlockSamplerData *bs = callback_private_data;
1160
1162}
#define InvalidBlockNumber
Definition: block.h:33
bool BlockSampler_HasMore(BlockSampler bs)
Definition: sampling.c:58
BlockNumber BlockSampler_Next(BlockSampler bs)
Definition: sampling.c:64

References BlockSampler_HasMore(), BlockSampler_Next(), and InvalidBlockNumber.

Referenced by acquire_sample_rows().

◆ compare_mcvs()

static int compare_mcvs ( const void *  a,
const void *  b,
void *  arg 
)
static

Definition at line 2960 of file analyze.c.

2961{
2962 int da = ((const ScalarMCVItem *) a)->first;
2963 int db = ((const ScalarMCVItem *) b)->first;
2964
2965 return da - db;
2966}
int b
Definition: isn.c:74
int a
Definition: isn.c:73

References a, and b.

Referenced by compute_scalar_stats().

◆ compare_rows()

static int compare_rows ( const void *  a,
const void *  b,
void *  arg 
)
static

Definition at line 1360 of file analyze.c.

1361{
1362 HeapTuple ha = *(const HeapTuple *) a;
1363 HeapTuple hb = *(const HeapTuple *) b;
1368
1369 if (ba < bb)
1370 return -1;
1371 if (ba > bb)
1372 return 1;
1373 if (oa < ob)
1374 return -1;
1375 if (oa > ob)
1376 return 1;
1377 return 0;
1378}
static OffsetNumber ItemPointerGetOffsetNumber(const ItemPointerData *pointer)
Definition: itemptr.h:124
static BlockNumber ItemPointerGetBlockNumber(const ItemPointerData *pointer)
Definition: itemptr.h:103
uint16 OffsetNumber
Definition: off.h:24
ItemPointerData t_self
Definition: htup.h:65

References a, b, ItemPointerGetBlockNumber(), ItemPointerGetOffsetNumber(), and HeapTupleData::t_self.

Referenced by acquire_sample_rows().

◆ compare_scalars()

static int compare_scalars ( const void *  a,
const void *  b,
void *  arg 
)
static

Definition at line 2929 of file analyze.c.

2930{
2931 Datum da = ((const ScalarItem *) a)->value;
2932 int ta = ((const ScalarItem *) a)->tupno;
2933 Datum db = ((const ScalarItem *) b)->value;
2934 int tb = ((const ScalarItem *) b)->tupno;
2936 int compare;
2937
2938 compare = ApplySortComparator(da, false, db, false, cxt->ssup);
2939 if (compare != 0)
2940 return compare;
2941
2942 /*
2943 * The two datums are equal, so update cxt->tupnoLink[].
2944 */
2945 if (cxt->tupnoLink[ta] < tb)
2946 cxt->tupnoLink[ta] = tb;
2947 if (cxt->tupnoLink[tb] < ta)
2948 cxt->tupnoLink[tb] = ta;
2949
2950 /*
2951 * For equal datums, sort by tupno
2952 */
2953 return ta - tb;
2954}
static int compare(const void *arg1, const void *arg2)
Definition: geqo_pool.c:145
void * arg
uint64_t Datum
Definition: postgres.h:70
static int ApplySortComparator(Datum datum1, bool isNull1, Datum datum2, bool isNull2, SortSupport ssup)
Definition: sortsupport.h:200
SortSupport ssup
Definition: analyze.c:1858

References a, ApplySortComparator(), arg, b, compare(), CompareScalarsContext::ssup, and CompareScalarsContext::tupnoLink.

Referenced by compute_scalar_stats().

◆ compute_distinct_stats()

static void compute_distinct_stats ( VacAttrStatsP  stats,
AnalyzeAttrFetchFunc  fetchfunc,
int  samplerows,
double  totalrows 
)
static

Definition at line 2057 of file analyze.c.

2061{
2062 int i;
2063 int null_cnt = 0;
2064 int nonnull_cnt = 0;
2065 int toowide_cnt = 0;
2066 double total_width = 0;
2067 bool is_varlena = (!stats->attrtype->typbyval &&
2068 stats->attrtype->typlen == -1);
2069 bool is_varwidth = (!stats->attrtype->typbyval &&
2070 stats->attrtype->typlen < 0);
2071 FmgrInfo f_cmpeq;
2072 typedef struct
2073 {
2074 Datum value;
2075 int count;
2076 } TrackItem;
2077 TrackItem *track;
2078 int track_cnt,
2079 track_max;
2080 int num_mcv = stats->attstattarget;
2081 StdAnalyzeData *mystats = (StdAnalyzeData *) stats->extra_data;
2082
2083 /*
2084 * We track up to 2*n values for an n-element MCV list; but at least 10
2085 */
2086 track_max = 2 * num_mcv;
2087 if (track_max < 10)
2088 track_max = 10;
2089 track = (TrackItem *) palloc(track_max * sizeof(TrackItem));
2090 track_cnt = 0;
2091
2092 fmgr_info(mystats->eqfunc, &f_cmpeq);
2093
2094 for (i = 0; i < samplerows; i++)
2095 {
2096 Datum value;
2097 bool isnull;
2098 bool match;
2099 int firstcount1,
2100 j;
2101
2102 vacuum_delay_point(true);
2103
2104 value = fetchfunc(stats, i, &isnull);
2105
2106 /* Check for null/nonnull */
2107 if (isnull)
2108 {
2109 null_cnt++;
2110 continue;
2111 }
2112 nonnull_cnt++;
2113
2114 /*
2115 * If it's a variable-width field, add up widths for average width
2116 * calculation. Note that if the value is toasted, we use the toasted
2117 * width. We don't bother with this calculation if it's a fixed-width
2118 * type.
2119 */
2120 if (is_varlena)
2121 {
2122 total_width += VARSIZE_ANY(DatumGetPointer(value));
2123
2124 /*
2125 * If the value is toasted, we want to detoast it just once to
2126 * avoid repeated detoastings and resultant excess memory usage
2127 * during the comparisons. Also, check to see if the value is
2128 * excessively wide, and if so don't detoast at all --- just
2129 * ignore the value.
2130 */
2132 {
2133 toowide_cnt++;
2134 continue;
2135 }
2137 }
2138 else if (is_varwidth)
2139 {
2140 /* must be cstring */
2141 total_width += strlen(DatumGetCString(value)) + 1;
2142 }
2143
2144 /*
2145 * See if the value matches anything we're already tracking.
2146 */
2147 match = false;
2148 firstcount1 = track_cnt;
2149 for (j = 0; j < track_cnt; j++)
2150 {
2151 if (DatumGetBool(FunctionCall2Coll(&f_cmpeq,
2152 stats->attrcollid,
2153 value, track[j].value)))
2154 {
2155 match = true;
2156 break;
2157 }
2158 if (j < firstcount1 && track[j].count == 1)
2159 firstcount1 = j;
2160 }
2161
2162 if (match)
2163 {
2164 /* Found a match */
2165 track[j].count++;
2166 /* This value may now need to "bubble up" in the track list */
2167 while (j > 0 && track[j].count > track[j - 1].count)
2168 {
2169 swapDatum(track[j].value, track[j - 1].value);
2170 swapInt(track[j].count, track[j - 1].count);
2171 j--;
2172 }
2173 }
2174 else
2175 {
2176 /* No match. Insert at head of count-1 list */
2177 if (track_cnt < track_max)
2178 track_cnt++;
2179 for (j = track_cnt - 1; j > firstcount1; j--)
2180 {
2181 track[j].value = track[j - 1].value;
2182 track[j].count = track[j - 1].count;
2183 }
2184 if (firstcount1 < track_cnt)
2185 {
2186 track[firstcount1].value = value;
2187 track[firstcount1].count = 1;
2188 }
2189 }
2190 }
2191
2192 /* We can only compute real stats if we found some non-null values. */
2193 if (nonnull_cnt > 0)
2194 {
2195 int nmultiple,
2196 summultiple;
2197
2198 stats->stats_valid = true;
2199 /* Do the simple null-frac and width stats */
2200 stats->stanullfrac = (double) null_cnt / (double) samplerows;
2201 if (is_varwidth)
2202 stats->stawidth = total_width / (double) nonnull_cnt;
2203 else
2204 stats->stawidth = stats->attrtype->typlen;
2205
2206 /* Count the number of values we found multiple times */
2207 summultiple = 0;
2208 for (nmultiple = 0; nmultiple < track_cnt; nmultiple++)
2209 {
2210 if (track[nmultiple].count == 1)
2211 break;
2212 summultiple += track[nmultiple].count;
2213 }
2214
2215 if (nmultiple == 0)
2216 {
2217 /*
2218 * If we found no repeated non-null values, assume it's a unique
2219 * column; but be sure to discount for any nulls we found.
2220 */
2221 stats->stadistinct = -1.0 * (1.0 - stats->stanullfrac);
2222 }
2223 else if (track_cnt < track_max && toowide_cnt == 0 &&
2224 nmultiple == track_cnt)
2225 {
2226 /*
2227 * Our track list includes every value in the sample, and every
2228 * value appeared more than once. Assume the column has just
2229 * these values. (This case is meant to address columns with
2230 * small, fixed sets of possible values, such as boolean or enum
2231 * columns. If there are any values that appear just once in the
2232 * sample, including too-wide values, we should assume that that's
2233 * not what we're dealing with.)
2234 */
2235 stats->stadistinct = track_cnt;
2236 }
2237 else
2238 {
2239 /*----------
2240 * Estimate the number of distinct values using the estimator
2241 * proposed by Haas and Stokes in IBM Research Report RJ 10025:
2242 * n*d / (n - f1 + f1*n/N)
2243 * where f1 is the number of distinct values that occurred
2244 * exactly once in our sample of n rows (from a total of N),
2245 * and d is the total number of distinct values in the sample.
2246 * This is their Duj1 estimator; the other estimators they
2247 * recommend are considerably more complex, and are numerically
2248 * very unstable when n is much smaller than N.
2249 *
2250 * In this calculation, we consider only non-nulls. We used to
2251 * include rows with null values in the n and N counts, but that
2252 * leads to inaccurate answers in columns with many nulls, and
2253 * it's intuitively bogus anyway considering the desired result is
2254 * the number of distinct non-null values.
2255 *
2256 * We assume (not very reliably!) that all the multiply-occurring
2257 * values are reflected in the final track[] list, and the other
2258 * nonnull values all appeared but once. (XXX this usually
2259 * results in a drastic overestimate of ndistinct. Can we do
2260 * any better?)
2261 *----------
2262 */
2263 int f1 = nonnull_cnt - summultiple;
2264 int d = f1 + nmultiple;
2265 double n = samplerows - null_cnt;
2266 double N = totalrows * (1.0 - stats->stanullfrac);
2267 double stadistinct;
2268
2269 /* N == 0 shouldn't happen, but just in case ... */
2270 if (N > 0)
2271 stadistinct = (n * d) / ((n - f1) + f1 * n / N);
2272 else
2273 stadistinct = 0;
2274
2275 /* Clamp to sane range in case of roundoff error */
2276 if (stadistinct < d)
2277 stadistinct = d;
2278 if (stadistinct > N)
2279 stadistinct = N;
2280 /* And round to integer */
2281 stats->stadistinct = floor(stadistinct + 0.5);
2282 }
2283
2284 /*
2285 * If we estimated the number of distinct values at more than 10% of
2286 * the total row count (a very arbitrary limit), then assume that
2287 * stadistinct should scale with the row count rather than be a fixed
2288 * value.
2289 */
2290 if (stats->stadistinct > 0.1 * totalrows)
2291 stats->stadistinct = -(stats->stadistinct / totalrows);
2292
2293 /*
2294 * Decide how many values are worth storing as most-common values. If
2295 * we are able to generate a complete MCV list (all the values in the
2296 * sample will fit, and we think these are all the ones in the table),
2297 * then do so. Otherwise, store only those values that are
2298 * significantly more common than the values not in the list.
2299 *
2300 * Note: the first of these cases is meant to address columns with
2301 * small, fixed sets of possible values, such as boolean or enum
2302 * columns. If we can *completely* represent the column population by
2303 * an MCV list that will fit into the stats target, then we should do
2304 * so and thus provide the planner with complete information. But if
2305 * the MCV list is not complete, it's generally worth being more
2306 * selective, and not just filling it all the way up to the stats
2307 * target.
2308 */
2309 if (track_cnt < track_max && toowide_cnt == 0 &&
2310 stats->stadistinct > 0 &&
2311 track_cnt <= num_mcv)
2312 {
2313 /* Track list includes all values seen, and all will fit */
2314 num_mcv = track_cnt;
2315 }
2316 else
2317 {
2318 int *mcv_counts;
2319
2320 /* Incomplete list; decide how many values are worth keeping */
2321 if (num_mcv > track_cnt)
2322 num_mcv = track_cnt;
2323
2324 if (num_mcv > 0)
2325 {
2326 mcv_counts = (int *) palloc(num_mcv * sizeof(int));
2327 for (i = 0; i < num_mcv; i++)
2328 mcv_counts[i] = track[i].count;
2329
2330 num_mcv = analyze_mcv_list(mcv_counts, num_mcv,
2331 stats->stadistinct,
2332 stats->stanullfrac,
2333 samplerows, totalrows);
2334 }
2335 }
2336
2337 /* Generate MCV slot entry */
2338 if (num_mcv > 0)
2339 {
2340 MemoryContext old_context;
2341 Datum *mcv_values;
2342 float4 *mcv_freqs;
2343
2344 /* Must copy the target values into anl_context */
2345 old_context = MemoryContextSwitchTo(stats->anl_context);
2346 mcv_values = (Datum *) palloc(num_mcv * sizeof(Datum));
2347 mcv_freqs = (float4 *) palloc(num_mcv * sizeof(float4));
2348 for (i = 0; i < num_mcv; i++)
2349 {
2350 mcv_values[i] = datumCopy(track[i].value,
2351 stats->attrtype->typbyval,
2352 stats->attrtype->typlen);
2353 mcv_freqs[i] = (double) track[i].count / (double) samplerows;
2354 }
2355 MemoryContextSwitchTo(old_context);
2356
2357 stats->stakind[0] = STATISTIC_KIND_MCV;
2358 stats->staop[0] = mystats->eqopr;
2359 stats->stacoll[0] = stats->attrcollid;
2360 stats->stanumbers[0] = mcv_freqs;
2361 stats->numnumbers[0] = num_mcv;
2362 stats->stavalues[0] = mcv_values;
2363 stats->numvalues[0] = num_mcv;
2364
2365 /*
2366 * Accept the defaults for stats->statypid and others. They have
2367 * been set before we were called (see vacuum.h)
2368 */
2369 }
2370 }
2371 else if (null_cnt > 0)
2372 {
2373 /* We found only nulls; assume the column is entirely null */
2374 stats->stats_valid = true;
2375 stats->stanullfrac = 1.0;
2376 if (is_varwidth)
2377 stats->stawidth = 0; /* "unknown" */
2378 else
2379 stats->stawidth = stats->attrtype->typlen;
2380 stats->stadistinct = 0.0; /* "unknown" */
2381 }
2382
2383 /* We don't need to bother cleaning up any of our temporary palloc's */
2384}
float float4
Definition: c.h:635
#define swapInt(a, b)
Definition: analyze.c:1844
#define swapDatum(a, b)
Definition: analyze.c:1845
#define WIDTH_THRESHOLD
Definition: analyze.c:1842
static int analyze_mcv_list(int *mcv_counts, int num_mcv, double stadistinct, double stanullfrac, int samplerows, double totalrows)
Definition: analyze.c:2978
Datum datumCopy(Datum value, bool typByVal, int typLen)
Definition: datum.c:132
Size toast_raw_datum_size(Datum value)
Definition: detoast.c:545
Datum FunctionCall2Coll(FmgrInfo *flinfo, Oid collation, Datum arg1, Datum arg2)
Definition: fmgr.c:1149
void fmgr_info(Oid functionId, FmgrInfo *finfo)
Definition: fmgr.c:127
#define PG_DETOAST_DATUM(datum)
Definition: fmgr.h:240
static struct @166 value
if(TABLE==NULL||TABLE_index==NULL)
Definition: isn.c:81
static MemoryContext MemoryContextSwitchTo(MemoryContext context)
Definition: palloc.h:124
static bool DatumGetBool(Datum X)
Definition: postgres.h:100
static Datum PointerGetDatum(const void *X)
Definition: postgres.h:332
static char * DatumGetCString(Datum X)
Definition: postgres.h:345
static Pointer DatumGetPointer(Datum X)
Definition: postgres.h:322
int f1[ARRAY_SIZE]
Definition: sql-declare.c:113
Definition: fmgr.h:57
bool stats_valid
Definition: vacuum.h:144
float4 stanullfrac
Definition: vacuum.h:145
Form_pg_type attrtype
Definition: vacuum.h:128
int16 stakind[STATISTIC_NUM_SLOTS]
Definition: vacuum.h:148
MemoryContext anl_context
Definition: vacuum.h:130
Oid staop[STATISTIC_NUM_SLOTS]
Definition: vacuum.h:149
Oid stacoll[STATISTIC_NUM_SLOTS]
Definition: vacuum.h:150
float4 * stanumbers[STATISTIC_NUM_SLOTS]
Definition: vacuum.h:152
int attstattarget
Definition: vacuum.h:125
int32 stawidth
Definition: vacuum.h:146
void * extra_data
Definition: vacuum.h:138
int numvalues[STATISTIC_NUM_SLOTS]
Definition: vacuum.h:153
Datum * stavalues[STATISTIC_NUM_SLOTS]
Definition: vacuum.h:154
float4 stadistinct
Definition: vacuum.h:147
int numnumbers[STATISTIC_NUM_SLOTS]
Definition: vacuum.h:151
Oid attrcollid
Definition: vacuum.h:129
static Size VARSIZE_ANY(const void *PTR)
Definition: varatt.h:460

References analyze_mcv_list(), VacAttrStats::anl_context, VacAttrStats::attrcollid, VacAttrStats::attrtype, VacAttrStats::attstattarget, datumCopy(), DatumGetBool(), DatumGetCString(), DatumGetPointer(), StdAnalyzeData::eqfunc, StdAnalyzeData::eqopr, VacAttrStats::extra_data, f1, fmgr_info(), FunctionCall2Coll(), i, if(), j, MemoryContextSwitchTo(), VacAttrStats::numnumbers, VacAttrStats::numvalues, palloc(), PG_DETOAST_DATUM, PointerGetDatum(), VacAttrStats::stacoll, VacAttrStats::stadistinct, VacAttrStats::stakind, VacAttrStats::stanullfrac, VacAttrStats::stanumbers, VacAttrStats::staop, VacAttrStats::stats_valid, VacAttrStats::stavalues, VacAttrStats::stawidth, swapDatum, swapInt, toast_raw_datum_size(), vacuum_delay_point(), value, VARSIZE_ANY(), and WIDTH_THRESHOLD.

Referenced by std_typanalyze().

◆ compute_index_stats()

static void compute_index_stats ( Relation  onerel,
double  totalrows,
AnlIndexData indexdata,
int  nindexes,
HeapTuple rows,
int  numrows,
MemoryContext  col_context 
)
static

Definition at line 864 of file analyze.c.

868{
869 MemoryContext ind_context,
870 old_context;
872 bool isnull[INDEX_MAX_KEYS];
873 int ind,
874 i;
875
877 "Analyze Index",
879 old_context = MemoryContextSwitchTo(ind_context);
880
881 for (ind = 0; ind < nindexes; ind++)
882 {
883 AnlIndexData *thisdata = &indexdata[ind];
884 IndexInfo *indexInfo = thisdata->indexInfo;
885 int attr_cnt = thisdata->attr_cnt;
886 TupleTableSlot *slot;
887 EState *estate;
888 ExprContext *econtext;
889 ExprState *predicate;
890 Datum *exprvals;
891 bool *exprnulls;
892 int numindexrows,
893 tcnt,
894 rowno;
895 double totalindexrows;
896
897 /* Ignore index if no columns to analyze and not partial */
898 if (attr_cnt == 0 && indexInfo->ii_Predicate == NIL)
899 continue;
900
901 /*
902 * Need an EState for evaluation of index expressions and
903 * partial-index predicates. Create it in the per-index context to be
904 * sure it gets cleaned up at the bottom of the loop.
905 */
906 estate = CreateExecutorState();
907 econtext = GetPerTupleExprContext(estate);
908 /* Need a slot to hold the current heap tuple, too */
911
912 /* Arrange for econtext's scan tuple to be the tuple under test */
913 econtext->ecxt_scantuple = slot;
914
915 /* Set up execution state for predicate. */
916 predicate = ExecPrepareQual(indexInfo->ii_Predicate, estate);
917
918 /* Compute and save index expression values */
919 exprvals = (Datum *) palloc(numrows * attr_cnt * sizeof(Datum));
920 exprnulls = (bool *) palloc(numrows * attr_cnt * sizeof(bool));
921 numindexrows = 0;
922 tcnt = 0;
923 for (rowno = 0; rowno < numrows; rowno++)
924 {
925 HeapTuple heapTuple = rows[rowno];
926
927 vacuum_delay_point(true);
928
929 /*
930 * Reset the per-tuple context each time, to reclaim any cruft
931 * left behind by evaluating the predicate or index expressions.
932 */
933 ResetExprContext(econtext);
934
935 /* Set up for predicate or expression evaluation */
936 ExecStoreHeapTuple(heapTuple, slot, false);
937
938 /* If index is partial, check predicate */
939 if (predicate != NULL)
940 {
941 if (!ExecQual(predicate, econtext))
942 continue;
943 }
944 numindexrows++;
945
946 if (attr_cnt > 0)
947 {
948 /*
949 * Evaluate the index row to compute expression values. We
950 * could do this by hand, but FormIndexDatum is convenient.
951 */
952 FormIndexDatum(indexInfo,
953 slot,
954 estate,
955 values,
956 isnull);
957
958 /*
959 * Save just the columns we care about. We copy the values
960 * into ind_context from the estate's per-tuple context.
961 */
962 for (i = 0; i < attr_cnt; i++)
963 {
964 VacAttrStats *stats = thisdata->vacattrstats[i];
965 int attnum = stats->tupattnum;
966
967 if (isnull[attnum - 1])
968 {
969 exprvals[tcnt] = (Datum) 0;
970 exprnulls[tcnt] = true;
971 }
972 else
973 {
974 exprvals[tcnt] = datumCopy(values[attnum - 1],
975 stats->attrtype->typbyval,
976 stats->attrtype->typlen);
977 exprnulls[tcnt] = false;
978 }
979 tcnt++;
980 }
981 }
982 }
983
984 /*
985 * Having counted the number of rows that pass the predicate in the
986 * sample, we can estimate the total number of rows in the index.
987 */
988 thisdata->tupleFract = (double) numindexrows / (double) numrows;
989 totalindexrows = ceil(thisdata->tupleFract * totalrows);
990
991 /*
992 * Now we can compute the statistics for the expression columns.
993 */
994 if (numindexrows > 0)
995 {
996 MemoryContextSwitchTo(col_context);
997 for (i = 0; i < attr_cnt; i++)
998 {
999 VacAttrStats *stats = thisdata->vacattrstats[i];
1000
1001 stats->exprvals = exprvals + i;
1002 stats->exprnulls = exprnulls + i;
1003 stats->rowstride = attr_cnt;
1004 stats->compute_stats(stats,
1006 numindexrows,
1007 totalindexrows);
1008
1009 MemoryContextReset(col_context);
1010 }
1011 }
1012
1013 /* And clean up */
1014 MemoryContextSwitchTo(ind_context);
1015
1017 FreeExecutorState(estate);
1018 MemoryContextReset(ind_context);
1019 }
1020
1021 MemoryContextSwitchTo(old_context);
1022 MemoryContextDelete(ind_context);
1023}
static Datum values[MAXATTR]
Definition: bootstrap.c:153
static MemoryContext anl_context
Definition: analyze.c:73
static Datum ind_fetch_func(VacAttrStatsP stats, int rownum, bool *isNull)
Definition: analyze.c:1812
ExprState * ExecPrepareQual(List *qual, EState *estate)
Definition: execExpr.c:793
TupleTableSlot * MakeSingleTupleTableSlot(TupleDesc tupdesc, const TupleTableSlotOps *tts_ops)
Definition: execTuples.c:1427
const TupleTableSlotOps TTSOpsHeapTuple
Definition: execTuples.c:85
TupleTableSlot * ExecStoreHeapTuple(HeapTuple tuple, TupleTableSlot *slot, bool shouldFree)
Definition: execTuples.c:1541
void FreeExecutorState(EState *estate)
Definition: execUtils.c:192
EState * CreateExecutorState(void)
Definition: execUtils.c:88
#define GetPerTupleExprContext(estate)
Definition: executor.h:653
#define ResetExprContext(econtext)
Definition: executor.h:647
static bool ExecQual(ExprState *state, ExprContext *econtext)
Definition: executor.h:516
void FormIndexDatum(IndexInfo *indexInfo, TupleTableSlot *slot, EState *estate, Datum *values, bool *isnull)
Definition: index.c:2730
void MemoryContextReset(MemoryContext context)
Definition: mcxt.c:400
void MemoryContextDelete(MemoryContext context)
Definition: mcxt.c:469
#define AllocSetContextCreate
Definition: memutils.h:129
#define ALLOCSET_DEFAULT_SIZES
Definition: memutils.h:160
int16 attnum
Definition: pg_attribute.h:74
#define INDEX_MAX_KEYS
#define NIL
Definition: pg_list.h:68
double tupleFract
Definition: analyze.c:63
int attr_cnt
Definition: analyze.c:65
IndexInfo * indexInfo
Definition: analyze.c:62
VacAttrStats ** vacattrstats
Definition: analyze.c:64
TupleTableSlot * ecxt_scantuple
Definition: execnodes.h:273
List * ii_Predicate
Definition: execnodes.h:183
int tupattnum
Definition: vacuum.h:171
int rowstride
Definition: vacuum.h:176
bool * exprnulls
Definition: vacuum.h:175
Datum * exprvals
Definition: vacuum.h:174
AnalyzeAttrComputeStatsFunc compute_stats
Definition: vacuum.h:136

References ALLOCSET_DEFAULT_SIZES, AllocSetContextCreate, anl_context, attnum, AnlIndexData::attr_cnt, VacAttrStats::attrtype, VacAttrStats::compute_stats, CreateExecutorState(), datumCopy(), ExprContext::ecxt_scantuple, ExecDropSingleTupleTableSlot(), ExecPrepareQual(), ExecQual(), ExecStoreHeapTuple(), VacAttrStats::exprnulls, VacAttrStats::exprvals, FormIndexDatum(), FreeExecutorState(), GetPerTupleExprContext, i, IndexInfo::ii_Predicate, ind_fetch_func(), INDEX_MAX_KEYS, AnlIndexData::indexInfo, MakeSingleTupleTableSlot(), MemoryContextDelete(), MemoryContextReset(), MemoryContextSwitchTo(), NIL, palloc(), RelationGetDescr, ResetExprContext, VacAttrStats::rowstride, TTSOpsHeapTuple, VacAttrStats::tupattnum, AnlIndexData::tupleFract, AnlIndexData::vacattrstats, vacuum_delay_point(), and values.

Referenced by do_analyze_rel().

◆ compute_scalar_stats()

static void compute_scalar_stats ( VacAttrStatsP  stats,
AnalyzeAttrFetchFunc  fetchfunc,
int  samplerows,
double  totalrows 
)
static

Definition at line 2400 of file analyze.c.

2404{
2405 int i;
2406 int null_cnt = 0;
2407 int nonnull_cnt = 0;
2408 int toowide_cnt = 0;
2409 double total_width = 0;
2410 bool is_varlena = (!stats->attrtype->typbyval &&
2411 stats->attrtype->typlen == -1);
2412 bool is_varwidth = (!stats->attrtype->typbyval &&
2413 stats->attrtype->typlen < 0);
2414 double corr_xysum;
2415 SortSupportData ssup;
2417 int values_cnt = 0;
2418 int *tupnoLink;
2419 ScalarMCVItem *track;
2420 int track_cnt = 0;
2421 int num_mcv = stats->attstattarget;
2422 int num_bins = stats->attstattarget;
2423 StdAnalyzeData *mystats = (StdAnalyzeData *) stats->extra_data;
2424
2425 values = (ScalarItem *) palloc(samplerows * sizeof(ScalarItem));
2426 tupnoLink = (int *) palloc(samplerows * sizeof(int));
2427 track = (ScalarMCVItem *) palloc(num_mcv * sizeof(ScalarMCVItem));
2428
2429 memset(&ssup, 0, sizeof(ssup));
2431 ssup.ssup_collation = stats->attrcollid;
2432 ssup.ssup_nulls_first = false;
2433
2434 /*
2435 * For now, don't perform abbreviated key conversion, because full values
2436 * are required for MCV slot generation. Supporting that optimization
2437 * would necessitate teaching compare_scalars() to call a tie-breaker.
2438 */
2439 ssup.abbreviate = false;
2440
2441 PrepareSortSupportFromOrderingOp(mystats->ltopr, &ssup);
2442
2443 /* Initial scan to find sortable values */
2444 for (i = 0; i < samplerows; i++)
2445 {
2446 Datum value;
2447 bool isnull;
2448
2449 vacuum_delay_point(true);
2450
2451 value = fetchfunc(stats, i, &isnull);
2452
2453 /* Check for null/nonnull */
2454 if (isnull)
2455 {
2456 null_cnt++;
2457 continue;
2458 }
2459 nonnull_cnt++;
2460
2461 /*
2462 * If it's a variable-width field, add up widths for average width
2463 * calculation. Note that if the value is toasted, we use the toasted
2464 * width. We don't bother with this calculation if it's a fixed-width
2465 * type.
2466 */
2467 if (is_varlena)
2468 {
2469 total_width += VARSIZE_ANY(DatumGetPointer(value));
2470
2471 /*
2472 * If the value is toasted, we want to detoast it just once to
2473 * avoid repeated detoastings and resultant excess memory usage
2474 * during the comparisons. Also, check to see if the value is
2475 * excessively wide, and if so don't detoast at all --- just
2476 * ignore the value.
2477 */
2479 {
2480 toowide_cnt++;
2481 continue;
2482 }
2484 }
2485 else if (is_varwidth)
2486 {
2487 /* must be cstring */
2488 total_width += strlen(DatumGetCString(value)) + 1;
2489 }
2490
2491 /* Add it to the list to be sorted */
2492 values[values_cnt].value = value;
2493 values[values_cnt].tupno = values_cnt;
2494 tupnoLink[values_cnt] = values_cnt;
2495 values_cnt++;
2496 }
2497
2498 /* We can only compute real stats if we found some sortable values. */
2499 if (values_cnt > 0)
2500 {
2501 int ndistinct, /* # distinct values in sample */
2502 nmultiple, /* # that appear multiple times */
2503 num_hist,
2504 dups_cnt;
2505 int slot_idx = 0;
2507
2508 /* Sort the collected values */
2509 cxt.ssup = &ssup;
2510 cxt.tupnoLink = tupnoLink;
2511 qsort_interruptible(values, values_cnt, sizeof(ScalarItem),
2512 compare_scalars, &cxt);
2513
2514 /*
2515 * Now scan the values in order, find the most common ones, and also
2516 * accumulate ordering-correlation statistics.
2517 *
2518 * To determine which are most common, we first have to count the
2519 * number of duplicates of each value. The duplicates are adjacent in
2520 * the sorted list, so a brute-force approach is to compare successive
2521 * datum values until we find two that are not equal. However, that
2522 * requires N-1 invocations of the datum comparison routine, which are
2523 * completely redundant with work that was done during the sort. (The
2524 * sort algorithm must at some point have compared each pair of items
2525 * that are adjacent in the sorted order; otherwise it could not know
2526 * that it's ordered the pair correctly.) We exploit this by having
2527 * compare_scalars remember the highest tupno index that each
2528 * ScalarItem has been found equal to. At the end of the sort, a
2529 * ScalarItem's tupnoLink will still point to itself if and only if it
2530 * is the last item of its group of duplicates (since the group will
2531 * be ordered by tupno).
2532 */
2533 corr_xysum = 0;
2534 ndistinct = 0;
2535 nmultiple = 0;
2536 dups_cnt = 0;
2537 for (i = 0; i < values_cnt; i++)
2538 {
2539 int tupno = values[i].tupno;
2540
2541 corr_xysum += ((double) i) * ((double) tupno);
2542 dups_cnt++;
2543 if (tupnoLink[tupno] == tupno)
2544 {
2545 /* Reached end of duplicates of this value */
2546 ndistinct++;
2547 if (dups_cnt > 1)
2548 {
2549 nmultiple++;
2550 if (track_cnt < num_mcv ||
2551 dups_cnt > track[track_cnt - 1].count)
2552 {
2553 /*
2554 * Found a new item for the mcv list; find its
2555 * position, bubbling down old items if needed. Loop
2556 * invariant is that j points at an empty/ replaceable
2557 * slot.
2558 */
2559 int j;
2560
2561 if (track_cnt < num_mcv)
2562 track_cnt++;
2563 for (j = track_cnt - 1; j > 0; j--)
2564 {
2565 if (dups_cnt <= track[j - 1].count)
2566 break;
2567 track[j].count = track[j - 1].count;
2568 track[j].first = track[j - 1].first;
2569 }
2570 track[j].count = dups_cnt;
2571 track[j].first = i + 1 - dups_cnt;
2572 }
2573 }
2574 dups_cnt = 0;
2575 }
2576 }
2577
2578 stats->stats_valid = true;
2579 /* Do the simple null-frac and width stats */
2580 stats->stanullfrac = (double) null_cnt / (double) samplerows;
2581 if (is_varwidth)
2582 stats->stawidth = total_width / (double) nonnull_cnt;
2583 else
2584 stats->stawidth = stats->attrtype->typlen;
2585
2586 if (nmultiple == 0)
2587 {
2588 /*
2589 * If we found no repeated non-null values, assume it's a unique
2590 * column; but be sure to discount for any nulls we found.
2591 */
2592 stats->stadistinct = -1.0 * (1.0 - stats->stanullfrac);
2593 }
2594 else if (toowide_cnt == 0 && nmultiple == ndistinct)
2595 {
2596 /*
2597 * Every value in the sample appeared more than once. Assume the
2598 * column has just these values. (This case is meant to address
2599 * columns with small, fixed sets of possible values, such as
2600 * boolean or enum columns. If there are any values that appear
2601 * just once in the sample, including too-wide values, we should
2602 * assume that that's not what we're dealing with.)
2603 */
2604 stats->stadistinct = ndistinct;
2605 }
2606 else
2607 {
2608 /*----------
2609 * Estimate the number of distinct values using the estimator
2610 * proposed by Haas and Stokes in IBM Research Report RJ 10025:
2611 * n*d / (n - f1 + f1*n/N)
2612 * where f1 is the number of distinct values that occurred
2613 * exactly once in our sample of n rows (from a total of N),
2614 * and d is the total number of distinct values in the sample.
2615 * This is their Duj1 estimator; the other estimators they
2616 * recommend are considerably more complex, and are numerically
2617 * very unstable when n is much smaller than N.
2618 *
2619 * In this calculation, we consider only non-nulls. We used to
2620 * include rows with null values in the n and N counts, but that
2621 * leads to inaccurate answers in columns with many nulls, and
2622 * it's intuitively bogus anyway considering the desired result is
2623 * the number of distinct non-null values.
2624 *
2625 * Overwidth values are assumed to have been distinct.
2626 *----------
2627 */
2628 int f1 = ndistinct - nmultiple + toowide_cnt;
2629 int d = f1 + nmultiple;
2630 double n = samplerows - null_cnt;
2631 double N = totalrows * (1.0 - stats->stanullfrac);
2632 double stadistinct;
2633
2634 /* N == 0 shouldn't happen, but just in case ... */
2635 if (N > 0)
2636 stadistinct = (n * d) / ((n - f1) + f1 * n / N);
2637 else
2638 stadistinct = 0;
2639
2640 /* Clamp to sane range in case of roundoff error */
2641 if (stadistinct < d)
2642 stadistinct = d;
2643 if (stadistinct > N)
2644 stadistinct = N;
2645 /* And round to integer */
2646 stats->stadistinct = floor(stadistinct + 0.5);
2647 }
2648
2649 /*
2650 * If we estimated the number of distinct values at more than 10% of
2651 * the total row count (a very arbitrary limit), then assume that
2652 * stadistinct should scale with the row count rather than be a fixed
2653 * value.
2654 */
2655 if (stats->stadistinct > 0.1 * totalrows)
2656 stats->stadistinct = -(stats->stadistinct / totalrows);
2657
2658 /*
2659 * Decide how many values are worth storing as most-common values. If
2660 * we are able to generate a complete MCV list (all the values in the
2661 * sample will fit, and we think these are all the ones in the table),
2662 * then do so. Otherwise, store only those values that are
2663 * significantly more common than the values not in the list.
2664 *
2665 * Note: the first of these cases is meant to address columns with
2666 * small, fixed sets of possible values, such as boolean or enum
2667 * columns. If we can *completely* represent the column population by
2668 * an MCV list that will fit into the stats target, then we should do
2669 * so and thus provide the planner with complete information. But if
2670 * the MCV list is not complete, it's generally worth being more
2671 * selective, and not just filling it all the way up to the stats
2672 * target.
2673 */
2674 if (track_cnt == ndistinct && toowide_cnt == 0 &&
2675 stats->stadistinct > 0 &&
2676 track_cnt <= num_mcv)
2677 {
2678 /* Track list includes all values seen, and all will fit */
2679 num_mcv = track_cnt;
2680 }
2681 else
2682 {
2683 int *mcv_counts;
2684
2685 /* Incomplete list; decide how many values are worth keeping */
2686 if (num_mcv > track_cnt)
2687 num_mcv = track_cnt;
2688
2689 if (num_mcv > 0)
2690 {
2691 mcv_counts = (int *) palloc(num_mcv * sizeof(int));
2692 for (i = 0; i < num_mcv; i++)
2693 mcv_counts[i] = track[i].count;
2694
2695 num_mcv = analyze_mcv_list(mcv_counts, num_mcv,
2696 stats->stadistinct,
2697 stats->stanullfrac,
2698 samplerows, totalrows);
2699 }
2700 }
2701
2702 /* Generate MCV slot entry */
2703 if (num_mcv > 0)
2704 {
2705 MemoryContext old_context;
2706 Datum *mcv_values;
2707 float4 *mcv_freqs;
2708
2709 /* Must copy the target values into anl_context */
2710 old_context = MemoryContextSwitchTo(stats->anl_context);
2711 mcv_values = (Datum *) palloc(num_mcv * sizeof(Datum));
2712 mcv_freqs = (float4 *) palloc(num_mcv * sizeof(float4));
2713 for (i = 0; i < num_mcv; i++)
2714 {
2715 mcv_values[i] = datumCopy(values[track[i].first].value,
2716 stats->attrtype->typbyval,
2717 stats->attrtype->typlen);
2718 mcv_freqs[i] = (double) track[i].count / (double) samplerows;
2719 }
2720 MemoryContextSwitchTo(old_context);
2721
2722 stats->stakind[slot_idx] = STATISTIC_KIND_MCV;
2723 stats->staop[slot_idx] = mystats->eqopr;
2724 stats->stacoll[slot_idx] = stats->attrcollid;
2725 stats->stanumbers[slot_idx] = mcv_freqs;
2726 stats->numnumbers[slot_idx] = num_mcv;
2727 stats->stavalues[slot_idx] = mcv_values;
2728 stats->numvalues[slot_idx] = num_mcv;
2729
2730 /*
2731 * Accept the defaults for stats->statypid and others. They have
2732 * been set before we were called (see vacuum.h)
2733 */
2734 slot_idx++;
2735 }
2736
2737 /*
2738 * Generate a histogram slot entry if there are at least two distinct
2739 * values not accounted for in the MCV list. (This ensures the
2740 * histogram won't collapse to empty or a singleton.)
2741 */
2742 num_hist = ndistinct - num_mcv;
2743 if (num_hist > num_bins)
2744 num_hist = num_bins + 1;
2745 if (num_hist >= 2)
2746 {
2747 MemoryContext old_context;
2748 Datum *hist_values;
2749 int nvals;
2750 int pos,
2751 posfrac,
2752 delta,
2753 deltafrac;
2754
2755 /* Sort the MCV items into position order to speed next loop */
2756 qsort_interruptible(track, num_mcv, sizeof(ScalarMCVItem),
2757 compare_mcvs, NULL);
2758
2759 /*
2760 * Collapse out the MCV items from the values[] array.
2761 *
2762 * Note we destroy the values[] array here... but we don't need it
2763 * for anything more. We do, however, still need values_cnt.
2764 * nvals will be the number of remaining entries in values[].
2765 */
2766 if (num_mcv > 0)
2767 {
2768 int src,
2769 dest;
2770 int j;
2771
2772 src = dest = 0;
2773 j = 0; /* index of next interesting MCV item */
2774 while (src < values_cnt)
2775 {
2776 int ncopy;
2777
2778 if (j < num_mcv)
2779 {
2780 int first = track[j].first;
2781
2782 if (src >= first)
2783 {
2784 /* advance past this MCV item */
2785 src = first + track[j].count;
2786 j++;
2787 continue;
2788 }
2789 ncopy = first - src;
2790 }
2791 else
2792 ncopy = values_cnt - src;
2793 memmove(&values[dest], &values[src],
2794 ncopy * sizeof(ScalarItem));
2795 src += ncopy;
2796 dest += ncopy;
2797 }
2798 nvals = dest;
2799 }
2800 else
2801 nvals = values_cnt;
2802 Assert(nvals >= num_hist);
2803
2804 /* Must copy the target values into anl_context */
2805 old_context = MemoryContextSwitchTo(stats->anl_context);
2806 hist_values = (Datum *) palloc(num_hist * sizeof(Datum));
2807
2808 /*
2809 * The object of this loop is to copy the first and last values[]
2810 * entries along with evenly-spaced values in between. So the
2811 * i'th value is values[(i * (nvals - 1)) / (num_hist - 1)]. But
2812 * computing that subscript directly risks integer overflow when
2813 * the stats target is more than a couple thousand. Instead we
2814 * add (nvals - 1) / (num_hist - 1) to pos at each step, tracking
2815 * the integral and fractional parts of the sum separately.
2816 */
2817 delta = (nvals - 1) / (num_hist - 1);
2818 deltafrac = (nvals - 1) % (num_hist - 1);
2819 pos = posfrac = 0;
2820
2821 for (i = 0; i < num_hist; i++)
2822 {
2823 hist_values[i] = datumCopy(values[pos].value,
2824 stats->attrtype->typbyval,
2825 stats->attrtype->typlen);
2826 pos += delta;
2827 posfrac += deltafrac;
2828 if (posfrac >= (num_hist - 1))
2829 {
2830 /* fractional part exceeds 1, carry to integer part */
2831 pos++;
2832 posfrac -= (num_hist - 1);
2833 }
2834 }
2835
2836 MemoryContextSwitchTo(old_context);
2837
2838 stats->stakind[slot_idx] = STATISTIC_KIND_HISTOGRAM;
2839 stats->staop[slot_idx] = mystats->ltopr;
2840 stats->stacoll[slot_idx] = stats->attrcollid;
2841 stats->stavalues[slot_idx] = hist_values;
2842 stats->numvalues[slot_idx] = num_hist;
2843
2844 /*
2845 * Accept the defaults for stats->statypid and others. They have
2846 * been set before we were called (see vacuum.h)
2847 */
2848 slot_idx++;
2849 }
2850
2851 /* Generate a correlation entry if there are multiple values */
2852 if (values_cnt > 1)
2853 {
2854 MemoryContext old_context;
2855 float4 *corrs;
2856 double corr_xsum,
2857 corr_x2sum;
2858
2859 /* Must copy the target values into anl_context */
2860 old_context = MemoryContextSwitchTo(stats->anl_context);
2861 corrs = (float4 *) palloc(sizeof(float4));
2862 MemoryContextSwitchTo(old_context);
2863
2864 /*----------
2865 * Since we know the x and y value sets are both
2866 * 0, 1, ..., values_cnt-1
2867 * we have sum(x) = sum(y) =
2868 * (values_cnt-1)*values_cnt / 2
2869 * and sum(x^2) = sum(y^2) =
2870 * (values_cnt-1)*values_cnt*(2*values_cnt-1) / 6.
2871 *----------
2872 */
2873 corr_xsum = ((double) (values_cnt - 1)) *
2874 ((double) values_cnt) / 2.0;
2875 corr_x2sum = ((double) (values_cnt - 1)) *
2876 ((double) values_cnt) * (double) (2 * values_cnt - 1) / 6.0;
2877
2878 /* And the correlation coefficient reduces to */
2879 corrs[0] = (values_cnt * corr_xysum - corr_xsum * corr_xsum) /
2880 (values_cnt * corr_x2sum - corr_xsum * corr_xsum);
2881
2882 stats->stakind[slot_idx] = STATISTIC_KIND_CORRELATION;
2883 stats->staop[slot_idx] = mystats->ltopr;
2884 stats->stacoll[slot_idx] = stats->attrcollid;
2885 stats->stanumbers[slot_idx] = corrs;
2886 stats->numnumbers[slot_idx] = 1;
2887 slot_idx++;
2888 }
2889 }
2890 else if (nonnull_cnt > 0)
2891 {
2892 /* We found some non-null values, but they were all too wide */
2893 Assert(nonnull_cnt == toowide_cnt);
2894 stats->stats_valid = true;
2895 /* Do the simple null-frac and width stats */
2896 stats->stanullfrac = (double) null_cnt / (double) samplerows;
2897 if (is_varwidth)
2898 stats->stawidth = total_width / (double) nonnull_cnt;
2899 else
2900 stats->stawidth = stats->attrtype->typlen;
2901 /* Assume all too-wide values are distinct, so it's a unique column */
2902 stats->stadistinct = -1.0 * (1.0 - stats->stanullfrac);
2903 }
2904 else if (null_cnt > 0)
2905 {
2906 /* We found only nulls; assume the column is entirely null */
2907 stats->stats_valid = true;
2908 stats->stanullfrac = 1.0;
2909 if (is_varwidth)
2910 stats->stawidth = 0; /* "unknown" */
2911 else
2912 stats->stawidth = stats->attrtype->typlen;
2913 stats->stadistinct = 0.0; /* "unknown" */
2914 }
2915
2916 /* We don't need to bother cleaning up any of our temporary palloc's */
2917}
static int compare_mcvs(const void *a, const void *b, void *arg)
Definition: analyze.c:2960
static int compare_scalars(const void *a, const void *b, void *arg)
Definition: analyze.c:2929
MemoryContext CurrentMemoryContext
Definition: mcxt.c:160
void PrepareSortSupportFromOrderingOp(Oid orderingOp, SortSupport ssup)
Definition: sortsupport.c:134
bool ssup_nulls_first
Definition: sortsupport.h:75
MemoryContext ssup_cxt
Definition: sortsupport.h:66

References SortSupportData::abbreviate, analyze_mcv_list(), VacAttrStats::anl_context, Assert(), VacAttrStats::attrcollid, VacAttrStats::attrtype, VacAttrStats::attstattarget, compare_mcvs(), compare_scalars(), ScalarMCVItem::count, CurrentMemoryContext, datumCopy(), DatumGetCString(), DatumGetPointer(), generate_unaccent_rules::dest, StdAnalyzeData::eqopr, VacAttrStats::extra_data, f1, ScalarMCVItem::first, i, j, StdAnalyzeData::ltopr, MemoryContextSwitchTo(), VacAttrStats::numnumbers, VacAttrStats::numvalues, palloc(), PG_DETOAST_DATUM, PointerGetDatum(), PrepareSortSupportFromOrderingOp(), qsort_interruptible(), CompareScalarsContext::ssup, SortSupportData::ssup_collation, SortSupportData::ssup_cxt, SortSupportData::ssup_nulls_first, VacAttrStats::stacoll, VacAttrStats::stadistinct, VacAttrStats::stakind, VacAttrStats::stanullfrac, VacAttrStats::stanumbers, VacAttrStats::staop, VacAttrStats::stats_valid, VacAttrStats::stavalues, VacAttrStats::stawidth, toast_raw_datum_size(), CompareScalarsContext::tupnoLink, vacuum_delay_point(), value, values, VARSIZE_ANY(), and WIDTH_THRESHOLD.

Referenced by std_typanalyze().

◆ compute_trivial_stats()

static void compute_trivial_stats ( VacAttrStatsP  stats,
AnalyzeAttrFetchFunc  fetchfunc,
int  samplerows,
double  totalrows 
)
static

Definition at line 1967 of file analyze.c.

1971{
1972 int i;
1973 int null_cnt = 0;
1974 int nonnull_cnt = 0;
1975 double total_width = 0;
1976 bool is_varlena = (!stats->attrtype->typbyval &&
1977 stats->attrtype->typlen == -1);
1978 bool is_varwidth = (!stats->attrtype->typbyval &&
1979 stats->attrtype->typlen < 0);
1980
1981 for (i = 0; i < samplerows; i++)
1982 {
1983 Datum value;
1984 bool isnull;
1985
1986 vacuum_delay_point(true);
1987
1988 value = fetchfunc(stats, i, &isnull);
1989
1990 /* Check for null/nonnull */
1991 if (isnull)
1992 {
1993 null_cnt++;
1994 continue;
1995 }
1996 nonnull_cnt++;
1997
1998 /*
1999 * If it's a variable-width field, add up widths for average width
2000 * calculation. Note that if the value is toasted, we use the toasted
2001 * width. We don't bother with this calculation if it's a fixed-width
2002 * type.
2003 */
2004 if (is_varlena)
2005 {
2006 total_width += VARSIZE_ANY(DatumGetPointer(value));
2007 }
2008 else if (is_varwidth)
2009 {
2010 /* must be cstring */
2011 total_width += strlen(DatumGetCString(value)) + 1;
2012 }
2013 }
2014
2015 /* We can only compute average width if we found some non-null values. */
2016 if (nonnull_cnt > 0)
2017 {
2018 stats->stats_valid = true;
2019 /* Do the simple null-frac and width stats */
2020 stats->stanullfrac = (double) null_cnt / (double) samplerows;
2021 if (is_varwidth)
2022 stats->stawidth = total_width / (double) nonnull_cnt;
2023 else
2024 stats->stawidth = stats->attrtype->typlen;
2025 stats->stadistinct = 0.0; /* "unknown" */
2026 }
2027 else if (null_cnt > 0)
2028 {
2029 /* We found only nulls; assume the column is entirely null */
2030 stats->stats_valid = true;
2031 stats->stanullfrac = 1.0;
2032 if (is_varwidth)
2033 stats->stawidth = 0; /* "unknown" */
2034 else
2035 stats->stawidth = stats->attrtype->typlen;
2036 stats->stadistinct = 0.0; /* "unknown" */
2037 }
2038}

References VacAttrStats::attrtype, DatumGetCString(), DatumGetPointer(), i, VacAttrStats::stadistinct, VacAttrStats::stanullfrac, VacAttrStats::stats_valid, VacAttrStats::stawidth, vacuum_delay_point(), value, and VARSIZE_ANY().

Referenced by std_typanalyze().

◆ do_analyze_rel()

static void do_analyze_rel ( Relation  onerel,
const VacuumParams  params,
List va_cols,
AcquireSampleRowsFunc  acquirefunc,
BlockNumber  relpages,
bool  inh,
bool  in_outer_xact,
int  elevel 
)
static

Definition at line 277 of file analyze.c.

281{
282 int attr_cnt,
283 tcnt,
284 i,
285 ind;
286 Relation *Irel;
287 int nindexes;
288 bool verbose,
289 instrument,
290 hasindex;
291 VacAttrStats **vacattrstats;
292 AnlIndexData *indexdata;
293 int targrows,
294 numrows,
295 minrows;
296 double totalrows,
297 totaldeadrows;
298 HeapTuple *rows;
299 PGRUsage ru0;
300 TimestampTz starttime = 0;
301 MemoryContext caller_context;
302 Oid save_userid;
303 int save_sec_context;
304 int save_nestlevel;
305 WalUsage startwalusage = pgWalUsage;
306 BufferUsage startbufferusage = pgBufferUsage;
307 BufferUsage bufferusage;
308 PgStat_Counter startreadtime = 0;
309 PgStat_Counter startwritetime = 0;
310
311 verbose = (params.options & VACOPT_VERBOSE) != 0;
312 instrument = (verbose || (AmAutoVacuumWorkerProcess() &&
313 params.log_min_duration >= 0));
314 if (inh)
315 ereport(elevel,
316 (errmsg("analyzing \"%s.%s\" inheritance tree",
318 RelationGetRelationName(onerel))));
319 else
320 ereport(elevel,
321 (errmsg("analyzing \"%s.%s\"",
323 RelationGetRelationName(onerel))));
324
325 /*
326 * Set up a working context so that we can easily free whatever junk gets
327 * created.
328 */
330 "Analyze",
332 caller_context = MemoryContextSwitchTo(anl_context);
333
334 /*
335 * Switch to the table owner's userid, so that any index functions are run
336 * as that user. Also lock down security-restricted operations and
337 * arrange to make GUC variable changes local to this command.
338 */
339 GetUserIdAndSecContext(&save_userid, &save_sec_context);
340 SetUserIdAndSecContext(onerel->rd_rel->relowner,
341 save_sec_context | SECURITY_RESTRICTED_OPERATION);
342 save_nestlevel = NewGUCNestLevel();
344
345 /*
346 * When verbose or autovacuum logging is used, initialize a resource usage
347 * snapshot and optionally track I/O timing.
348 */
349 if (instrument)
350 {
351 if (track_io_timing)
352 {
353 startreadtime = pgStatBlockReadTime;
354 startwritetime = pgStatBlockWriteTime;
355 }
356
357 pg_rusage_init(&ru0);
358 }
359
360 /* Used for instrumentation and stats report */
361 starttime = GetCurrentTimestamp();
362
363 /*
364 * Determine which columns to analyze
365 *
366 * Note that system attributes are never analyzed, so we just reject them
367 * at the lookup stage. We also reject duplicate column mentions. (We
368 * could alternatively ignore duplicates, but analyzing a column twice
369 * won't work; we'd end up making a conflicting update in pg_statistic.)
370 */
371 if (va_cols != NIL)
372 {
373 Bitmapset *unique_cols = NULL;
374 ListCell *le;
375
376 vacattrstats = (VacAttrStats **) palloc(list_length(va_cols) *
377 sizeof(VacAttrStats *));
378 tcnt = 0;
379 foreach(le, va_cols)
380 {
381 char *col = strVal(lfirst(le));
382
383 i = attnameAttNum(onerel, col, false);
384 if (i == InvalidAttrNumber)
386 (errcode(ERRCODE_UNDEFINED_COLUMN),
387 errmsg("column \"%s\" of relation \"%s\" does not exist",
388 col, RelationGetRelationName(onerel))));
389 if (bms_is_member(i, unique_cols))
391 (errcode(ERRCODE_DUPLICATE_COLUMN),
392 errmsg("column \"%s\" of relation \"%s\" appears more than once",
393 col, RelationGetRelationName(onerel))));
394 unique_cols = bms_add_member(unique_cols, i);
395
396 vacattrstats[tcnt] = examine_attribute(onerel, i, NULL);
397 if (vacattrstats[tcnt] != NULL)
398 tcnt++;
399 }
400 attr_cnt = tcnt;
401 }
402 else
403 {
404 attr_cnt = onerel->rd_att->natts;
405 vacattrstats = (VacAttrStats **)
406 palloc(attr_cnt * sizeof(VacAttrStats *));
407 tcnt = 0;
408 for (i = 1; i <= attr_cnt; i++)
409 {
410 vacattrstats[tcnt] = examine_attribute(onerel, i, NULL);
411 if (vacattrstats[tcnt] != NULL)
412 tcnt++;
413 }
414 attr_cnt = tcnt;
415 }
416
417 /*
418 * Open all indexes of the relation, and see if there are any analyzable
419 * columns in the indexes. We do not analyze index columns if there was
420 * an explicit column list in the ANALYZE command, however.
421 *
422 * If we are doing a recursive scan, we don't want to touch the parent's
423 * indexes at all. If we're processing a partitioned table, we need to
424 * know if there are any indexes, but we don't want to process them.
425 */
426 if (onerel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE)
427 {
428 List *idxs = RelationGetIndexList(onerel);
429
430 Irel = NULL;
431 nindexes = 0;
432 hasindex = idxs != NIL;
433 list_free(idxs);
434 }
435 else if (!inh)
436 {
437 vac_open_indexes(onerel, AccessShareLock, &nindexes, &Irel);
438 hasindex = nindexes > 0;
439 }
440 else
441 {
442 Irel = NULL;
443 nindexes = 0;
444 hasindex = false;
445 }
446 indexdata = NULL;
447 if (nindexes > 0)
448 {
449 indexdata = (AnlIndexData *) palloc0(nindexes * sizeof(AnlIndexData));
450 for (ind = 0; ind < nindexes; ind++)
451 {
452 AnlIndexData *thisdata = &indexdata[ind];
453 IndexInfo *indexInfo;
454
455 thisdata->indexInfo = indexInfo = BuildIndexInfo(Irel[ind]);
456 thisdata->tupleFract = 1.0; /* fix later if partial */
457 if (indexInfo->ii_Expressions != NIL && va_cols == NIL)
458 {
459 ListCell *indexpr_item = list_head(indexInfo->ii_Expressions);
460
461 thisdata->vacattrstats = (VacAttrStats **)
462 palloc(indexInfo->ii_NumIndexAttrs * sizeof(VacAttrStats *));
463 tcnt = 0;
464 for (i = 0; i < indexInfo->ii_NumIndexAttrs; i++)
465 {
466 int keycol = indexInfo->ii_IndexAttrNumbers[i];
467
468 if (keycol == 0)
469 {
470 /* Found an index expression */
471 Node *indexkey;
472
473 if (indexpr_item == NULL) /* shouldn't happen */
474 elog(ERROR, "too few entries in indexprs list");
475 indexkey = (Node *) lfirst(indexpr_item);
476 indexpr_item = lnext(indexInfo->ii_Expressions,
477 indexpr_item);
478 thisdata->vacattrstats[tcnt] =
479 examine_attribute(Irel[ind], i + 1, indexkey);
480 if (thisdata->vacattrstats[tcnt] != NULL)
481 tcnt++;
482 }
483 }
484 thisdata->attr_cnt = tcnt;
485 }
486 }
487 }
488
489 /*
490 * Determine how many rows we need to sample, using the worst case from
491 * all analyzable columns. We use a lower bound of 100 rows to avoid
492 * possible overflow in Vitter's algorithm. (Note: that will also be the
493 * target in the corner case where there are no analyzable columns.)
494 */
495 targrows = 100;
496 for (i = 0; i < attr_cnt; i++)
497 {
498 if (targrows < vacattrstats[i]->minrows)
499 targrows = vacattrstats[i]->minrows;
500 }
501 for (ind = 0; ind < nindexes; ind++)
502 {
503 AnlIndexData *thisdata = &indexdata[ind];
504
505 for (i = 0; i < thisdata->attr_cnt; i++)
506 {
507 if (targrows < thisdata->vacattrstats[i]->minrows)
508 targrows = thisdata->vacattrstats[i]->minrows;
509 }
510 }
511
512 /*
513 * Look at extended statistics objects too, as those may define custom
514 * statistics target. So we may need to sample more rows and then build
515 * the statistics with enough detail.
516 */
517 minrows = ComputeExtStatisticsRows(onerel, attr_cnt, vacattrstats);
518
519 if (targrows < minrows)
520 targrows = minrows;
521
522 /*
523 * Acquire the sample rows
524 */
525 rows = (HeapTuple *) palloc(targrows * sizeof(HeapTuple));
529 if (inh)
530 numrows = acquire_inherited_sample_rows(onerel, elevel,
531 rows, targrows,
532 &totalrows, &totaldeadrows);
533 else
534 numrows = (*acquirefunc) (onerel, elevel,
535 rows, targrows,
536 &totalrows, &totaldeadrows);
537
538 /*
539 * Compute the statistics. Temporary results during the calculations for
540 * each column are stored in a child context. The calc routines are
541 * responsible to make sure that whatever they store into the VacAttrStats
542 * structure is allocated in anl_context.
543 */
544 if (numrows > 0)
545 {
546 MemoryContext col_context,
547 old_context;
548
551
553 "Analyze Column",
555 old_context = MemoryContextSwitchTo(col_context);
556
557 for (i = 0; i < attr_cnt; i++)
558 {
559 VacAttrStats *stats = vacattrstats[i];
560 AttributeOpts *aopt;
561
562 stats->rows = rows;
563 stats->tupDesc = onerel->rd_att;
564 stats->compute_stats(stats,
566 numrows,
567 totalrows);
568
569 /*
570 * If the appropriate flavor of the n_distinct option is
571 * specified, override with the corresponding value.
572 */
573 aopt = get_attribute_options(onerel->rd_id, stats->tupattnum);
574 if (aopt != NULL)
575 {
576 float8 n_distinct;
577
578 n_distinct = inh ? aopt->n_distinct_inherited : aopt->n_distinct;
579 if (n_distinct != 0.0)
580 stats->stadistinct = n_distinct;
581 }
582
583 MemoryContextReset(col_context);
584 }
585
586 if (nindexes > 0)
587 compute_index_stats(onerel, totalrows,
588 indexdata, nindexes,
589 rows, numrows,
590 col_context);
591
592 MemoryContextSwitchTo(old_context);
593 MemoryContextDelete(col_context);
594
595 /*
596 * Emit the completed stats rows into pg_statistic, replacing any
597 * previous statistics for the target columns. (If there are stats in
598 * pg_statistic for columns we didn't process, we leave them alone.)
599 */
601 attr_cnt, vacattrstats);
602
603 for (ind = 0; ind < nindexes; ind++)
604 {
605 AnlIndexData *thisdata = &indexdata[ind];
606
608 thisdata->attr_cnt, thisdata->vacattrstats);
609 }
610
611 /* Build extended statistics (if there are any). */
612 BuildRelationExtStatistics(onerel, inh, totalrows, numrows, rows,
613 attr_cnt, vacattrstats);
614 }
615
618
619 /*
620 * Update pages/tuples stats in pg_class ... but not if we're doing
621 * inherited stats.
622 *
623 * We assume that VACUUM hasn't set pg_class.reltuples already, even
624 * during a VACUUM ANALYZE. Although VACUUM often updates pg_class,
625 * exceptions exist. A "VACUUM (ANALYZE, INDEX_CLEANUP OFF)" command will
626 * never update pg_class entries for index relations. It's also possible
627 * that an individual index's pg_class entry won't be updated during
628 * VACUUM if the index AM returns NULL from its amvacuumcleanup() routine.
629 */
630 if (!inh)
631 {
632 BlockNumber relallvisible = 0;
633 BlockNumber relallfrozen = 0;
634
635 if (RELKIND_HAS_STORAGE(onerel->rd_rel->relkind))
636 visibilitymap_count(onerel, &relallvisible, &relallfrozen);
637
638 /*
639 * Update pg_class for table relation. CCI first, in case acquirefunc
640 * updated pg_class.
641 */
643 vac_update_relstats(onerel,
644 relpages,
645 totalrows,
646 relallvisible,
647 relallfrozen,
648 hasindex,
651 NULL, NULL,
652 in_outer_xact);
653
654 /* Same for indexes */
655 for (ind = 0; ind < nindexes; ind++)
656 {
657 AnlIndexData *thisdata = &indexdata[ind];
658 double totalindexrows;
659
660 totalindexrows = ceil(thisdata->tupleFract * totalrows);
663 totalindexrows,
664 0, 0,
665 false,
668 NULL, NULL,
669 in_outer_xact);
670 }
671 }
672 else if (onerel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE)
673 {
674 /*
675 * Partitioned tables don't have storage, so we don't set any fields
676 * in their pg_class entries except for reltuples and relhasindex.
677 */
679 vac_update_relstats(onerel, -1, totalrows,
680 0, 0, hasindex, InvalidTransactionId,
682 NULL, NULL,
683 in_outer_xact);
684 }
685
686 /*
687 * Now report ANALYZE to the cumulative stats system. For regular tables,
688 * we do it only if not doing inherited stats. For partitioned tables, we
689 * only do it for inherited stats. (We're never called for not-inherited
690 * stats on partitioned tables anyway.)
691 *
692 * Reset the mod_since_analyze counter only if we analyzed all columns;
693 * otherwise, there is still work for auto-analyze to do.
694 */
695 if (!inh)
696 pgstat_report_analyze(onerel, totalrows, totaldeadrows,
697 (va_cols == NIL), starttime);
698 else if (onerel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE)
699 pgstat_report_analyze(onerel, 0, 0, (va_cols == NIL), starttime);
700
701 /*
702 * If this isn't part of VACUUM ANALYZE, let index AMs do cleanup.
703 *
704 * Note that most index AMs perform a no-op as a matter of policy for
705 * amvacuumcleanup() when called in ANALYZE-only mode. The only exception
706 * among core index AMs is GIN/ginvacuumcleanup().
707 */
708 if (!(params.options & VACOPT_VACUUM))
709 {
710 for (ind = 0; ind < nindexes; ind++)
711 {
713 IndexVacuumInfo ivinfo;
714
715 ivinfo.index = Irel[ind];
716 ivinfo.heaprel = onerel;
717 ivinfo.analyze_only = true;
718 ivinfo.estimated_count = true;
719 ivinfo.message_level = elevel;
720 ivinfo.num_heap_tuples = onerel->rd_rel->reltuples;
721 ivinfo.strategy = vac_strategy;
722
723 stats = index_vacuum_cleanup(&ivinfo, NULL);
724
725 if (stats)
726 pfree(stats);
727 }
728 }
729
730 /* Done with indexes */
731 vac_close_indexes(nindexes, Irel, NoLock);
732
733 /* Log the action if appropriate */
734 if (instrument)
735 {
737
738 if (verbose || params.log_min_duration == 0 ||
739 TimestampDifferenceExceeds(starttime, endtime,
740 params.log_min_duration))
741 {
742 long delay_in_ms;
743 WalUsage walusage;
744 double read_rate = 0;
745 double write_rate = 0;
746 char *msgfmt;
748 int64 total_blks_hit;
749 int64 total_blks_read;
750 int64 total_blks_dirtied;
751
752 memset(&bufferusage, 0, sizeof(BufferUsage));
753 BufferUsageAccumDiff(&bufferusage, &pgBufferUsage, &startbufferusage);
754 memset(&walusage, 0, sizeof(WalUsage));
755 WalUsageAccumDiff(&walusage, &pgWalUsage, &startwalusage);
756
757 total_blks_hit = bufferusage.shared_blks_hit +
758 bufferusage.local_blks_hit;
759 total_blks_read = bufferusage.shared_blks_read +
760 bufferusage.local_blks_read;
761 total_blks_dirtied = bufferusage.shared_blks_dirtied +
762 bufferusage.local_blks_dirtied;
763
764 /*
765 * We do not expect an analyze to take > 25 days and it simplifies
766 * things a bit to use TimestampDifferenceMilliseconds.
767 */
768 delay_in_ms = TimestampDifferenceMilliseconds(starttime, endtime);
769
770 /*
771 * Note that we are reporting these read/write rates in the same
772 * manner as VACUUM does, which means that while the 'average read
773 * rate' here actually corresponds to page misses and resulting
774 * reads which are also picked up by track_io_timing, if enabled,
775 * the 'average write rate' is actually talking about the rate of
776 * pages being dirtied, not being written out, so it's typical to
777 * have a non-zero 'avg write rate' while I/O timings only reports
778 * reads.
779 *
780 * It's not clear that an ANALYZE will ever result in
781 * FlushBuffer() being called, but we track and support reporting
782 * on I/O write time in case that changes as it's practically free
783 * to do so anyway.
784 */
785
786 if (delay_in_ms > 0)
787 {
788 read_rate = (double) BLCKSZ * total_blks_read /
789 (1024 * 1024) / (delay_in_ms / 1000.0);
790 write_rate = (double) BLCKSZ * total_blks_dirtied /
791 (1024 * 1024) / (delay_in_ms / 1000.0);
792 }
793
794 /*
795 * We split this up so we don't emit empty I/O timing values when
796 * track_io_timing isn't enabled.
797 */
798
800
802 msgfmt = _("automatic analyze of table \"%s.%s.%s\"\n");
803 else
804 msgfmt = _("finished analyzing table \"%s.%s.%s\"\n");
805
806 appendStringInfo(&buf, msgfmt,
811 {
812 /*
813 * We bypass the changecount mechanism because this value is
814 * only updated by the calling process.
815 */
816 appendStringInfo(&buf, _("delay time: %.3f ms\n"),
818 }
819 if (track_io_timing)
820 {
821 double read_ms = (double) (pgStatBlockReadTime - startreadtime) / 1000;
822 double write_ms = (double) (pgStatBlockWriteTime - startwritetime) / 1000;
823
824 appendStringInfo(&buf, _("I/O timings: read: %.3f ms, write: %.3f ms\n"),
825 read_ms, write_ms);
826 }
827 appendStringInfo(&buf, _("avg read rate: %.3f MB/s, avg write rate: %.3f MB/s\n"),
828 read_rate, write_rate);
829 appendStringInfo(&buf, _("buffer usage: %" PRId64 " hits, %" PRId64 " reads, %" PRId64 " dirtied\n"),
830 total_blks_hit,
831 total_blks_read,
832 total_blks_dirtied);
834 _("WAL usage: %" PRId64 " records, %" PRId64 " full page images, %" PRIu64 " bytes, %" PRId64 " buffers full\n"),
835 walusage.wal_records,
836 walusage.wal_fpi,
837 walusage.wal_bytes,
838 walusage.wal_buffers_full);
839 appendStringInfo(&buf, _("system usage: %s"), pg_rusage_show(&ru0));
840
842 (errmsg_internal("%s", buf.data)));
843
844 pfree(buf.data);
845 }
846 }
847
848 /* Roll back any GUC changes executed by index functions */
849 AtEOXact_GUC(false, save_nestlevel);
850
851 /* Restore userid and security context */
852 SetUserIdAndSecContext(save_userid, save_sec_context);
853
854 /* Restore current context and release memory */
855 MemoryContextSwitchTo(caller_context);
857 anl_context = NULL;
858}
#define InvalidAttrNumber
Definition: attnum.h:23
AttributeOpts * get_attribute_options(Oid attrelid, int attnum)
Definition: attoptcache.c:131
long TimestampDifferenceMilliseconds(TimestampTz start_time, TimestampTz stop_time)
Definition: timestamp.c:1757
bool TimestampDifferenceExceeds(TimestampTz start_time, TimestampTz stop_time, int msec)
Definition: timestamp.c:1781
TimestampTz GetCurrentTimestamp(void)
Definition: timestamp.c:1645
PgBackendStatus * MyBEEntry
bool bms_is_member(int x, const Bitmapset *a)
Definition: bitmapset.c:510
Bitmapset * bms_add_member(Bitmapset *a, int x)
Definition: bitmapset.c:815
bool track_io_timing
Definition: bufmgr.c:147
double float8
Definition: c.h:636
static Datum std_fetch_func(VacAttrStatsP stats, int rownum, bool *isNull)
Definition: analyze.c:1796
static void update_attstats(Oid relid, bool inh, int natts, VacAttrStats **vacattrstats)
Definition: analyze.c:1654
static int acquire_inherited_sample_rows(Relation onerel, int elevel, HeapTuple *rows, int targrows, double *totalrows, double *totaldeadrows)
Definition: analyze.c:1390
static VacAttrStats * examine_attribute(Relation onerel, int attnum, Node *index_expr)
Definition: analyze.c:1035
static void compute_index_stats(Relation onerel, double totalrows, AnlIndexData *indexdata, int nindexes, HeapTuple *rows, int numrows, MemoryContext col_context)
Definition: analyze.c:864
int64 TimestampTz
Definition: timestamp.h:39
int errmsg_internal(const char *fmt,...)
Definition: elog.c:1161
int errcode(int sqlerrcode)
Definition: elog.c:854
#define _(x)
Definition: elog.c:91
#define LOG
Definition: elog.h:31
#define ERROR
Definition: elog.h:39
#define elog(elevel,...)
Definition: elog.h:226
int ComputeExtStatisticsRows(Relation onerel, int natts, VacAttrStats **vacattrstats)
void BuildRelationExtStatistics(Relation onerel, bool inh, double totalrows, int numrows, HeapTuple *rows, int natts, VacAttrStats **vacattrstats)
Oid MyDatabaseId
Definition: globals.c:94
int NewGUCNestLevel(void)
Definition: guc.c:2240
void RestrictSearchPath(void)
Definition: guc.c:2251
void AtEOXact_GUC(bool isCommit, int nestLevel)
Definition: guc.c:2267
int verbose
IndexInfo * BuildIndexInfo(Relation index)
Definition: index.c:2428
IndexBulkDeleteResult * index_vacuum_cleanup(IndexVacuumInfo *info, IndexBulkDeleteResult *istat)
Definition: indexam.c:826
WalUsage pgWalUsage
Definition: instrument.c:22
void WalUsageAccumDiff(WalUsage *dst, const WalUsage *add, const WalUsage *sub)
Definition: instrument.c:287
BufferUsage pgBufferUsage
Definition: instrument.c:20
void BufferUsageAccumDiff(BufferUsage *dst, const BufferUsage *add, const BufferUsage *sub)
Definition: instrument.c:248
void list_free(List *list)
Definition: list.c:1546
char * get_database_name(Oid dbid)
Definition: lsyscache.c:1259
void pfree(void *pointer)
Definition: mcxt.c:1594
void * palloc0(Size size)
Definition: mcxt.c:1395
#define AmAutoVacuumWorkerProcess()
Definition: miscadmin.h:382
#define SECURITY_RESTRICTED_OPERATION
Definition: miscadmin.h:318
void GetUserIdAndSecContext(Oid *userid, int *sec_context)
Definition: miscinit.c:612
void SetUserIdAndSecContext(Oid userid, int sec_context)
Definition: miscinit.c:619
#define InvalidMultiXactId
Definition: multixact.h:25
int attnameAttNum(Relation rd, const char *attname, bool sysColOK)
#define lfirst(lc)
Definition: pg_list.h:172
static ListCell * list_head(const List *l)
Definition: pg_list.h:128
static ListCell * lnext(const List *l, const ListCell *c)
Definition: pg_list.h:343
const char * pg_rusage_show(const PGRUsage *ru0)
Definition: pg_rusage.c:40
void pg_rusage_init(PGRUsage *ru0)
Definition: pg_rusage.c:27
static char * buf
Definition: pg_test_fsync.c:72
int64 PgStat_Counter
Definition: pgstat.h:66
PgStat_Counter pgStatBlockReadTime
PgStat_Counter pgStatBlockWriteTime
void pgstat_report_analyze(Relation rel, PgStat_Counter livetuples, PgStat_Counter deadtuples, bool resetcounter, TimestampTz starttime)
#define PROGRESS_ANALYZE_PHASE_FINALIZE_ANALYZE
Definition: progress.h:57
#define PROGRESS_ANALYZE_PHASE_ACQUIRE_SAMPLE_ROWS_INH
Definition: progress.h:54
#define PROGRESS_ANALYZE_PHASE
Definition: progress.h:42
#define PROGRESS_ANALYZE_PHASE_COMPUTE_STATS
Definition: progress.h:55
#define PROGRESS_ANALYZE_DELAY_TIME
Definition: progress.h:50
#define PROGRESS_ANALYZE_PHASE_ACQUIRE_SAMPLE_ROWS
Definition: progress.h:53
List * RelationGetIndexList(Relation relation)
Definition: relcache.c:4836
void appendStringInfo(StringInfo str, const char *fmt,...)
Definition: stringinfo.c:145
void initStringInfo(StringInfo str)
Definition: stringinfo.c:97
float8 n_distinct
Definition: attoptcache.h:22
float8 n_distinct_inherited
Definition: attoptcache.h:23
int64 shared_blks_dirtied
Definition: instrument.h:28
int64 local_blks_hit
Definition: instrument.h:30
int64 shared_blks_read
Definition: instrument.h:27
int64 local_blks_read
Definition: instrument.h:31
int64 local_blks_dirtied
Definition: instrument.h:32
int64 shared_blks_hit
Definition: instrument.h:26
int ii_NumIndexAttrs
Definition: execnodes.h:167
List * ii_Expressions
Definition: execnodes.h:178
AttrNumber ii_IndexAttrNumbers[INDEX_MAX_KEYS]
Definition: execnodes.h:175
Relation index
Definition: genam.h:71
double num_heap_tuples
Definition: genam.h:77
bool analyze_only
Definition: genam.h:73
BufferAccessStrategy strategy
Definition: genam.h:78
Relation heaprel
Definition: genam.h:72
int message_level
Definition: genam.h:76
bool estimated_count
Definition: genam.h:75
Definition: nodes.h:135
int64 st_progress_param[PGSTAT_NUM_PROGRESS_PARAM]
TupleDesc rd_att
Definition: rel.h:112
HeapTuple * rows
Definition: vacuum.h:172
int minrows
Definition: vacuum.h:137
TupleDesc tupDesc
Definition: vacuum.h:173
int64 wal_buffers_full
Definition: instrument.h:56
uint64 wal_bytes
Definition: instrument.h:55
int64 wal_fpi
Definition: instrument.h:54
int64 wal_records
Definition: instrument.h:53
#define InvalidTransactionId
Definition: transam.h:31
bool track_cost_delay_timing
Definition: vacuum.c:81
void vac_open_indexes(Relation relation, LOCKMODE lockmode, int *nindexes, Relation **Irel)
Definition: vacuum.c:2359
void vac_close_indexes(int nindexes, Relation *Irel, LOCKMODE lockmode)
Definition: vacuum.c:2402
void vac_update_relstats(Relation relation, BlockNumber num_pages, double num_tuples, BlockNumber num_all_visible_pages, BlockNumber num_all_frozen_pages, bool hasindex, TransactionId frozenxid, MultiXactId minmulti, bool *frozenxid_updated, bool *minmulti_updated, bool in_outer_xact)
Definition: vacuum.c:1429
#define strVal(v)
Definition: value.h:82
void visibilitymap_count(Relation rel, BlockNumber *all_visible, BlockNumber *all_frozen)

References _, AccessShareLock, acquire_inherited_sample_rows(), ALLOCSET_DEFAULT_SIZES, AllocSetContextCreate, AmAutoVacuumWorkerProcess, IndexVacuumInfo::analyze_only, anl_context, appendStringInfo(), AtEOXact_GUC(), attnameAttNum(), AnlIndexData::attr_cnt, bms_add_member(), bms_is_member(), buf, BufferUsageAccumDiff(), BuildIndexInfo(), BuildRelationExtStatistics(), CommandCounterIncrement(), compute_index_stats(), VacAttrStats::compute_stats, ComputeExtStatisticsRows(), CurrentMemoryContext, elog, ereport, errcode(), errmsg(), errmsg_internal(), ERROR, IndexVacuumInfo::estimated_count, examine_attribute(), get_attribute_options(), get_database_name(), get_namespace_name(), GetCurrentTimestamp(), GetUserIdAndSecContext(), IndexVacuumInfo::heaprel, i, IndexInfo::ii_Expressions, IndexInfo::ii_IndexAttrNumbers, IndexInfo::ii_NumIndexAttrs, IndexVacuumInfo::index, index_vacuum_cleanup(), AnlIndexData::indexInfo, INFO, initStringInfo(), InvalidAttrNumber, InvalidMultiXactId, InvalidTransactionId, lfirst, list_free(), list_head(), list_length(), lnext(), BufferUsage::local_blks_dirtied, BufferUsage::local_blks_hit, BufferUsage::local_blks_read, LOG, VacuumParams::log_min_duration, MemoryContextDelete(), MemoryContextReset(), MemoryContextSwitchTo(), IndexVacuumInfo::message_level, VacAttrStats::minrows, MyBEEntry, MyDatabaseId, AttributeOpts::n_distinct, AttributeOpts::n_distinct_inherited, TupleDescData::natts, NewGUCNestLevel(), NIL, NoLock, IndexVacuumInfo::num_heap_tuples, VacuumParams::options, palloc(), palloc0(), pfree(), pg_rusage_init(), pg_rusage_show(), pgBufferUsage, pgstat_progress_update_param(), pgstat_report_analyze(), pgStatBlockReadTime, pgStatBlockWriteTime, pgWalUsage, PROGRESS_ANALYZE_DELAY_TIME, PROGRESS_ANALYZE_PHASE, PROGRESS_ANALYZE_PHASE_ACQUIRE_SAMPLE_ROWS, PROGRESS_ANALYZE_PHASE_ACQUIRE_SAMPLE_ROWS_INH, PROGRESS_ANALYZE_PHASE_COMPUTE_STATS, PROGRESS_ANALYZE_PHASE_FINALIZE_ANALYZE, RelationData::rd_att, RelationData::rd_id, RelationData::rd_rel, RelationGetIndexList(), RelationGetNamespace, RelationGetNumberOfBlocks, RelationGetRelationName, RelationGetRelid, RestrictSearchPath(), VacAttrStats::rows, SECURITY_RESTRICTED_OPERATION, SetUserIdAndSecContext(), BufferUsage::shared_blks_dirtied, BufferUsage::shared_blks_hit, BufferUsage::shared_blks_read, PgBackendStatus::st_progress_param, VacAttrStats::stadistinct, std_fetch_func(), IndexVacuumInfo::strategy, strVal, TimestampDifferenceExceeds(), TimestampDifferenceMilliseconds(), track_cost_delay_timing, track_io_timing, VacAttrStats::tupattnum, VacAttrStats::tupDesc, AnlIndexData::tupleFract, update_attstats(), vac_close_indexes(), vac_open_indexes(), vac_strategy, vac_update_relstats(), AnlIndexData::vacattrstats, VACOPT_VACUUM, VACOPT_VERBOSE, verbose, visibilitymap_count(), WalUsage::wal_buffers_full, WalUsage::wal_bytes, WalUsage::wal_fpi, WalUsage::wal_records, and WalUsageAccumDiff().

Referenced by analyze_rel().

◆ examine_attribute()

static VacAttrStats * examine_attribute ( Relation  onerel,
int  attnum,
Node index_expr 
)
static

Definition at line 1035 of file analyze.c.

1036{
1037 Form_pg_attribute attr = TupleDescAttr(onerel->rd_att, attnum - 1);
1038 int attstattarget;
1039 HeapTuple atttuple;
1040 Datum dat;
1041 bool isnull;
1042 HeapTuple typtuple;
1043 VacAttrStats *stats;
1044 int i;
1045 bool ok;
1046
1047 /* Never analyze dropped columns */
1048 if (attr->attisdropped)
1049 return NULL;
1050
1051 /* Don't analyze virtual generated columns */
1052 if (attr->attgenerated == ATTRIBUTE_GENERATED_VIRTUAL)
1053 return NULL;
1054
1055 /*
1056 * Get attstattarget value. Set to -1 if null. (Analyze functions expect
1057 * -1 to mean use default_statistics_target; see for example
1058 * std_typanalyze.)
1059 */
1061 if (!HeapTupleIsValid(atttuple))
1062 elog(ERROR, "cache lookup failed for attribute %d of relation %u",
1063 attnum, RelationGetRelid(onerel));
1064 dat = SysCacheGetAttr(ATTNUM, atttuple, Anum_pg_attribute_attstattarget, &isnull);
1065 attstattarget = isnull ? -1 : DatumGetInt16(dat);
1066 ReleaseSysCache(atttuple);
1067
1068 /* Don't analyze column if user has specified not to */
1069 if (attstattarget == 0)
1070 return NULL;
1071
1072 /*
1073 * Create the VacAttrStats struct.
1074 */
1075 stats = (VacAttrStats *) palloc0(sizeof(VacAttrStats));
1076 stats->attstattarget = attstattarget;
1077
1078 /*
1079 * When analyzing an expression index, believe the expression tree's type
1080 * not the column datatype --- the latter might be the opckeytype storage
1081 * type of the opclass, which is not interesting for our purposes. (Note:
1082 * if we did anything with non-expression index columns, we'd need to
1083 * figure out where to get the correct type info from, but for now that's
1084 * not a problem.) It's not clear whether anyone will care about the
1085 * typmod, but we store that too just in case.
1086 */
1087 if (index_expr)
1088 {
1089 stats->attrtypid = exprType(index_expr);
1090 stats->attrtypmod = exprTypmod(index_expr);
1091
1092 /*
1093 * If a collation has been specified for the index column, use that in
1094 * preference to anything else; but if not, fall back to whatever we
1095 * can get from the expression.
1096 */
1097 if (OidIsValid(onerel->rd_indcollation[attnum - 1]))
1098 stats->attrcollid = onerel->rd_indcollation[attnum - 1];
1099 else
1100 stats->attrcollid = exprCollation(index_expr);
1101 }
1102 else
1103 {
1104 stats->attrtypid = attr->atttypid;
1105 stats->attrtypmod = attr->atttypmod;
1106 stats->attrcollid = attr->attcollation;
1107 }
1108
1109 typtuple = SearchSysCacheCopy1(TYPEOID,
1110 ObjectIdGetDatum(stats->attrtypid));
1111 if (!HeapTupleIsValid(typtuple))
1112 elog(ERROR, "cache lookup failed for type %u", stats->attrtypid);
1113 stats->attrtype = (Form_pg_type) GETSTRUCT(typtuple);
1114 stats->anl_context = anl_context;
1115 stats->tupattnum = attnum;
1116
1117 /*
1118 * The fields describing the stats->stavalues[n] element types default to
1119 * the type of the data being analyzed, but the type-specific typanalyze
1120 * function can change them if it wants to store something else.
1121 */
1122 for (i = 0; i < STATISTIC_NUM_SLOTS; i++)
1123 {
1124 stats->statypid[i] = stats->attrtypid;
1125 stats->statyplen[i] = stats->attrtype->typlen;
1126 stats->statypbyval[i] = stats->attrtype->typbyval;
1127 stats->statypalign[i] = stats->attrtype->typalign;
1128 }
1129
1130 /*
1131 * Call the type-specific typanalyze function. If none is specified, use
1132 * std_typanalyze().
1133 */
1134 if (OidIsValid(stats->attrtype->typanalyze))
1135 ok = DatumGetBool(OidFunctionCall1(stats->attrtype->typanalyze,
1136 PointerGetDatum(stats)));
1137 else
1138 ok = std_typanalyze(stats);
1139
1140 if (!ok || stats->compute_stats == NULL || stats->minrows <= 0)
1141 {
1142 heap_freetuple(typtuple);
1143 pfree(stats);
1144 return NULL;
1145 }
1146
1147 return stats;
1148}
#define OidIsValid(objectId)
Definition: c.h:775
bool std_typanalyze(VacAttrStats *stats)
Definition: analyze.c:1889
#define OidFunctionCall1(functionId, arg1)
Definition: fmgr.h:720
#define HeapTupleIsValid(tuple)
Definition: htup.h:78
static void * GETSTRUCT(const HeapTupleData *tuple)
Definition: htup_details.h:728
Oid exprType(const Node *expr)
Definition: nodeFuncs.c:42
int32 exprTypmod(const Node *expr)
Definition: nodeFuncs.c:301
Oid exprCollation(const Node *expr)
Definition: nodeFuncs.c:821
FormData_pg_attribute * Form_pg_attribute
Definition: pg_attribute.h:202
#define STATISTIC_NUM_SLOTS
Definition: pg_statistic.h:127
FormData_pg_type * Form_pg_type
Definition: pg_type.h:261
static Datum Int16GetDatum(int16 X)
Definition: postgres.h:182
static Datum ObjectIdGetDatum(Oid X)
Definition: postgres.h:262
static int16 DatumGetInt16(Datum X)
Definition: postgres.h:172
Oid * rd_indcollation
Definition: rel.h:217
int32 attrtypmod
Definition: vacuum.h:127
Oid statypid[STATISTIC_NUM_SLOTS]
Definition: vacuum.h:162
char statypalign[STATISTIC_NUM_SLOTS]
Definition: vacuum.h:165
Oid attrtypid
Definition: vacuum.h:126
bool statypbyval[STATISTIC_NUM_SLOTS]
Definition: vacuum.h:164
int16 statyplen[STATISTIC_NUM_SLOTS]
Definition: vacuum.h:163
void ReleaseSysCache(HeapTuple tuple)
Definition: syscache.c:264
Datum SysCacheGetAttr(int cacheId, HeapTuple tup, AttrNumber attributeNumber, bool *isNull)
Definition: syscache.c:595
HeapTuple SearchSysCache2(int cacheId, Datum key1, Datum key2)
Definition: syscache.c:230
#define SearchSysCacheCopy1(cacheId, key1)
Definition: syscache.h:91
static FormData_pg_attribute * TupleDescAttr(TupleDesc tupdesc, int i)
Definition: tupdesc.h:160

References anl_context, VacAttrStats::anl_context, attnum, VacAttrStats::attrcollid, VacAttrStats::attrtype, VacAttrStats::attrtypid, VacAttrStats::attrtypmod, VacAttrStats::attstattarget, VacAttrStats::compute_stats, DatumGetBool(), DatumGetInt16(), elog, ERROR, exprCollation(), exprType(), exprTypmod(), GETSTRUCT(), heap_freetuple(), HeapTupleIsValid, i, Int16GetDatum(), VacAttrStats::minrows, ObjectIdGetDatum(), OidFunctionCall1, OidIsValid, palloc0(), pfree(), PointerGetDatum(), RelationData::rd_att, RelationData::rd_indcollation, RelationGetRelid, ReleaseSysCache(), SearchSysCache2(), SearchSysCacheCopy1, STATISTIC_NUM_SLOTS, VacAttrStats::statypalign, VacAttrStats::statypbyval, VacAttrStats::statypid, VacAttrStats::statyplen, std_typanalyze(), SysCacheGetAttr(), VacAttrStats::tupattnum, and TupleDescAttr().

Referenced by do_analyze_rel().

◆ ind_fetch_func()

static Datum ind_fetch_func ( VacAttrStatsP  stats,
int  rownum,
bool *  isNull 
)
static

Definition at line 1812 of file analyze.c.

1813{
1814 int i;
1815
1816 /* exprvals and exprnulls are already offset for proper column */
1817 i = rownum * stats->rowstride;
1818 *isNull = stats->exprnulls[i];
1819 return stats->exprvals[i];
1820}

References VacAttrStats::exprnulls, VacAttrStats::exprvals, i, and VacAttrStats::rowstride.

Referenced by compute_index_stats().

◆ std_fetch_func()

static Datum std_fetch_func ( VacAttrStatsP  stats,
int  rownum,
bool *  isNull 
)
static

Definition at line 1796 of file analyze.c.

1797{
1798 int attnum = stats->tupattnum;
1799 HeapTuple tuple = stats->rows[rownum];
1800 TupleDesc tupDesc = stats->tupDesc;
1801
1802 return heap_getattr(tuple, attnum, tupDesc, isNull);
1803}
static Datum heap_getattr(HeapTuple tup, int attnum, TupleDesc tupleDesc, bool *isnull)
Definition: htup_details.h:904

References attnum, heap_getattr(), VacAttrStats::rows, VacAttrStats::tupattnum, and VacAttrStats::tupDesc.

Referenced by do_analyze_rel().

◆ std_typanalyze()

bool std_typanalyze ( VacAttrStats stats)

Definition at line 1889 of file analyze.c.

1890{
1891 Oid ltopr;
1892 Oid eqopr;
1893 StdAnalyzeData *mystats;
1894
1895 /* If the attstattarget column is negative, use the default value */
1896 if (stats->attstattarget < 0)
1898
1899 /* Look for default "<" and "=" operators for column's type */
1901 false, false, false,
1902 &ltopr, &eqopr, NULL,
1903 NULL);
1904
1905 /* Save the operator info for compute_stats routines */
1906 mystats = (StdAnalyzeData *) palloc(sizeof(StdAnalyzeData));
1907 mystats->eqopr = eqopr;
1908 mystats->eqfunc = OidIsValid(eqopr) ? get_opcode(eqopr) : InvalidOid;
1909 mystats->ltopr = ltopr;
1910 stats->extra_data = mystats;
1911
1912 /*
1913 * Determine which standard statistics algorithm to use
1914 */
1915 if (OidIsValid(eqopr) && OidIsValid(ltopr))
1916 {
1917 /* Seems to be a scalar datatype */
1919 /*--------------------
1920 * The following choice of minrows is based on the paper
1921 * "Random sampling for histogram construction: how much is enough?"
1922 * by Surajit Chaudhuri, Rajeev Motwani and Vivek Narasayya, in
1923 * Proceedings of ACM SIGMOD International Conference on Management
1924 * of Data, 1998, Pages 436-447. Their Corollary 1 to Theorem 5
1925 * says that for table size n, histogram size k, maximum relative
1926 * error in bin size f, and error probability gamma, the minimum
1927 * random sample size is
1928 * r = 4 * k * ln(2*n/gamma) / f^2
1929 * Taking f = 0.5, gamma = 0.01, n = 10^6 rows, we obtain
1930 * r = 305.82 * k
1931 * Note that because of the log function, the dependence on n is
1932 * quite weak; even at n = 10^12, a 300*k sample gives <= 0.66
1933 * bin size error with probability 0.99. So there's no real need to
1934 * scale for n, which is a good thing because we don't necessarily
1935 * know it at this point.
1936 *--------------------
1937 */
1938 stats->minrows = 300 * stats->attstattarget;
1939 }
1940 else if (OidIsValid(eqopr))
1941 {
1942 /* We can still recognize distinct values */
1944 /* Might as well use the same minrows as above */
1945 stats->minrows = 300 * stats->attstattarget;
1946 }
1947 else
1948 {
1949 /* Can't do much but the trivial stuff */
1951 /* Might as well use the same minrows as above */
1952 stats->minrows = 300 * stats->attstattarget;
1953 }
1954
1955 return true;
1956}
static void compute_scalar_stats(VacAttrStatsP stats, AnalyzeAttrFetchFunc fetchfunc, int samplerows, double totalrows)
Definition: analyze.c:2400
int default_statistics_target
Definition: analyze.c:70
static void compute_distinct_stats(VacAttrStatsP stats, AnalyzeAttrFetchFunc fetchfunc, int samplerows, double totalrows)
Definition: analyze.c:2057
static void compute_trivial_stats(VacAttrStatsP stats, AnalyzeAttrFetchFunc fetchfunc, int samplerows, double totalrows)
Definition: analyze.c:1967
RegProcedure get_opcode(Oid opno)
Definition: lsyscache.c:1452
void get_sort_group_operators(Oid argtype, bool needLT, bool needEQ, bool needGT, Oid *ltOpr, Oid *eqOpr, Oid *gtOpr, bool *isHashable)
Definition: parse_oper.c:181
#define InvalidOid
Definition: postgres_ext.h:37

References VacAttrStats::attrtypid, VacAttrStats::attstattarget, compute_distinct_stats(), compute_scalar_stats(), VacAttrStats::compute_stats, compute_trivial_stats(), default_statistics_target, StdAnalyzeData::eqfunc, StdAnalyzeData::eqopr, VacAttrStats::extra_data, get_opcode(), get_sort_group_operators(), InvalidOid, StdAnalyzeData::ltopr, VacAttrStats::minrows, OidIsValid, and palloc().

Referenced by array_typanalyze(), examine_attribute(), and examine_expression().

◆ update_attstats()

static void update_attstats ( Oid  relid,
bool  inh,
int  natts,
VacAttrStats **  vacattrstats 
)
static

Definition at line 1654 of file analyze.c.

1655{
1656 Relation sd;
1657 int attno;
1658 CatalogIndexState indstate = NULL;
1659
1660 if (natts <= 0)
1661 return; /* nothing to do */
1662
1663 sd = table_open(StatisticRelationId, RowExclusiveLock);
1664
1665 for (attno = 0; attno < natts; attno++)
1666 {
1667 VacAttrStats *stats = vacattrstats[attno];
1668 HeapTuple stup,
1669 oldtup;
1670 int i,
1671 k,
1672 n;
1673 Datum values[Natts_pg_statistic];
1674 bool nulls[Natts_pg_statistic];
1675 bool replaces[Natts_pg_statistic];
1676
1677 /* Ignore attr if we weren't able to collect stats */
1678 if (!stats->stats_valid)
1679 continue;
1680
1681 /*
1682 * Construct a new pg_statistic tuple
1683 */
1684 for (i = 0; i < Natts_pg_statistic; ++i)
1685 {
1686 nulls[i] = false;
1687 replaces[i] = true;
1688 }
1689
1690 values[Anum_pg_statistic_starelid - 1] = ObjectIdGetDatum(relid);
1691 values[Anum_pg_statistic_staattnum - 1] = Int16GetDatum(stats->tupattnum);
1692 values[Anum_pg_statistic_stainherit - 1] = BoolGetDatum(inh);
1693 values[Anum_pg_statistic_stanullfrac - 1] = Float4GetDatum(stats->stanullfrac);
1694 values[Anum_pg_statistic_stawidth - 1] = Int32GetDatum(stats->stawidth);
1695 values[Anum_pg_statistic_stadistinct - 1] = Float4GetDatum(stats->stadistinct);
1696 i = Anum_pg_statistic_stakind1 - 1;
1697 for (k = 0; k < STATISTIC_NUM_SLOTS; k++)
1698 {
1699 values[i++] = Int16GetDatum(stats->stakind[k]); /* stakindN */
1700 }
1701 i = Anum_pg_statistic_staop1 - 1;
1702 for (k = 0; k < STATISTIC_NUM_SLOTS; k++)
1703 {
1704 values[i++] = ObjectIdGetDatum(stats->staop[k]); /* staopN */
1705 }
1706 i = Anum_pg_statistic_stacoll1 - 1;
1707 for (k = 0; k < STATISTIC_NUM_SLOTS; k++)
1708 {
1709 values[i++] = ObjectIdGetDatum(stats->stacoll[k]); /* stacollN */
1710 }
1711 i = Anum_pg_statistic_stanumbers1 - 1;
1712 for (k = 0; k < STATISTIC_NUM_SLOTS; k++)
1713 {
1714 if (stats->stanumbers[k] != NULL)
1715 {
1716 int nnum = stats->numnumbers[k];
1717 Datum *numdatums = (Datum *) palloc(nnum * sizeof(Datum));
1718 ArrayType *arry;
1719
1720 for (n = 0; n < nnum; n++)
1721 numdatums[n] = Float4GetDatum(stats->stanumbers[k][n]);
1722 arry = construct_array_builtin(numdatums, nnum, FLOAT4OID);
1723 values[i++] = PointerGetDatum(arry); /* stanumbersN */
1724 }
1725 else
1726 {
1727 nulls[i] = true;
1728 values[i++] = (Datum) 0;
1729 }
1730 }
1731 i = Anum_pg_statistic_stavalues1 - 1;
1732 for (k = 0; k < STATISTIC_NUM_SLOTS; k++)
1733 {
1734 if (stats->stavalues[k] != NULL)
1735 {
1736 ArrayType *arry;
1737
1738 arry = construct_array(stats->stavalues[k],
1739 stats->numvalues[k],
1740 stats->statypid[k],
1741 stats->statyplen[k],
1742 stats->statypbyval[k],
1743 stats->statypalign[k]);
1744 values[i++] = PointerGetDatum(arry); /* stavaluesN */
1745 }
1746 else
1747 {
1748 nulls[i] = true;
1749 values[i++] = (Datum) 0;
1750 }
1751 }
1752
1753 /* Is there already a pg_statistic tuple for this attribute? */
1754 oldtup = SearchSysCache3(STATRELATTINH,
1755 ObjectIdGetDatum(relid),
1756 Int16GetDatum(stats->tupattnum),
1757 BoolGetDatum(inh));
1758
1759 /* Open index information when we know we need it */
1760 if (indstate == NULL)
1761 indstate = CatalogOpenIndexes(sd);
1762
1763 if (HeapTupleIsValid(oldtup))
1764 {
1765 /* Yes, replace it */
1766 stup = heap_modify_tuple(oldtup,
1767 RelationGetDescr(sd),
1768 values,
1769 nulls,
1770 replaces);
1771 ReleaseSysCache(oldtup);
1772 CatalogTupleUpdateWithInfo(sd, &stup->t_self, stup, indstate);
1773 }
1774 else
1775 {
1776 /* No, insert new tuple */
1777 stup = heap_form_tuple(RelationGetDescr(sd), values, nulls);
1778 CatalogTupleInsertWithInfo(sd, stup, indstate);
1779 }
1780
1781 heap_freetuple(stup);
1782 }
1783
1784 if (indstate != NULL)
1785 CatalogCloseIndexes(indstate);
1787}
ArrayType * construct_array(Datum *elems, int nelems, Oid elmtype, int elmlen, bool elmbyval, char elmalign)
Definition: arrayfuncs.c:3361
ArrayType * construct_array_builtin(Datum *elems, int nelems, Oid elmtype)
Definition: arrayfuncs.c:3381
HeapTuple heap_modify_tuple(HeapTuple tuple, TupleDesc tupleDesc, const Datum *replValues, const bool *replIsnull, const bool *doReplace)
Definition: heaptuple.c:1210
HeapTuple heap_form_tuple(TupleDesc tupleDescriptor, const Datum *values, const bool *isnull)
Definition: heaptuple.c:1117
void CatalogTupleInsertWithInfo(Relation heapRel, HeapTuple tup, CatalogIndexState indstate)
Definition: indexing.c:256
void CatalogCloseIndexes(CatalogIndexState indstate)
Definition: indexing.c:61
CatalogIndexState CatalogOpenIndexes(Relation heapRel)
Definition: indexing.c:43
void CatalogTupleUpdateWithInfo(Relation heapRel, ItemPointer otid, HeapTuple tup, CatalogIndexState indstate)
Definition: indexing.c:337
#define RowExclusiveLock
Definition: lockdefs.h:38
static Datum Float4GetDatum(float4 X)
Definition: postgres.h:458
static Datum BoolGetDatum(bool X)
Definition: postgres.h:112
static Datum Int32GetDatum(int32 X)
Definition: postgres.h:222
HeapTuple SearchSysCache3(int cacheId, Datum key1, Datum key2, Datum key3)
Definition: syscache.c:240

References BoolGetDatum(), CatalogCloseIndexes(), CatalogOpenIndexes(), CatalogTupleInsertWithInfo(), CatalogTupleUpdateWithInfo(), construct_array(), construct_array_builtin(), Float4GetDatum(), heap_form_tuple(), heap_freetuple(), heap_modify_tuple(), HeapTupleIsValid, i, Int16GetDatum(), Int32GetDatum(), VacAttrStats::numnumbers, VacAttrStats::numvalues, ObjectIdGetDatum(), palloc(), PointerGetDatum(), RelationGetDescr, ReleaseSysCache(), RowExclusiveLock, SearchSysCache3(), VacAttrStats::stacoll, VacAttrStats::stadistinct, VacAttrStats::stakind, VacAttrStats::stanullfrac, VacAttrStats::stanumbers, VacAttrStats::staop, STATISTIC_NUM_SLOTS, VacAttrStats::stats_valid, VacAttrStats::statypalign, VacAttrStats::statypbyval, VacAttrStats::statypid, VacAttrStats::statyplen, VacAttrStats::stavalues, VacAttrStats::stawidth, HeapTupleData::t_self, table_close(), table_open(), VacAttrStats::tupattnum, and values.

Referenced by do_analyze_rel().

Variable Documentation

◆ anl_context

MemoryContext anl_context = NULL
static

Definition at line 73 of file analyze.c.

Referenced by compute_index_stats(), do_analyze_rel(), and examine_attribute().

◆ default_statistics_target

int default_statistics_target = 100

◆ vac_strategy

BufferAccessStrategy vac_strategy
static

Definition at line 74 of file analyze.c.

Referenced by acquire_sample_rows(), analyze_rel(), and do_analyze_rel().