Thanks to visit codestin.com
Credit goes to doxygen.postgresql.org

PostgreSQL Source Code git master
parse_agg.c
Go to the documentation of this file.
1/*-------------------------------------------------------------------------
2 *
3 * parse_agg.c
4 * handle aggregates and window functions in parser
5 *
6 * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
7 * Portions Copyright (c) 1994, Regents of the University of California
8 *
9 *
10 * IDENTIFICATION
11 * src/backend/parser/parse_agg.c
12 *
13 *-------------------------------------------------------------------------
14 */
15#include "postgres.h"
16
17#include "access/htup_details.h"
20#include "catalog/pg_type.h"
21#include "common/int.h"
22#include "nodes/makefuncs.h"
23#include "nodes/nodeFuncs.h"
24#include "optimizer/optimizer.h"
25#include "parser/parse_agg.h"
26#include "parser/parse_clause.h"
27#include "parser/parse_coerce.h"
28#include "parser/parse_expr.h"
30#include "parser/parsetree.h"
32#include "utils/builtins.h"
33#include "utils/lsyscache.h"
34#include "utils/syscache.h"
35
36typedef struct
37{
43
44typedef struct
45{
57
58static int check_agg_arguments(ParseState *pstate,
59 List *directargs,
60 List *args,
61 Expr *filter);
62static bool check_agg_arguments_walker(Node *node,
64static Node *substitute_grouped_columns(Node *node, ParseState *pstate, Query *qry,
65 List *groupClauses, List *groupClauseCommonVars,
66 List *gset_common,
67 bool have_non_var_grouping,
68 List **func_grouped_rels);
71static void finalize_grouping_exprs(Node *node, ParseState *pstate, Query *qry,
72 List *groupClauses, bool hasJoinRTEs,
73 bool have_non_var_grouping);
74static bool finalize_grouping_exprs_walker(Node *node,
76static Var *buildGroupedVar(int attnum, Index ressortgroupref,
78static void check_agglevels_and_constraints(ParseState *pstate, Node *expr);
80static Node *make_agg_arg(Oid argtype, Oid argcollation);
81
82
83/*
84 * transformAggregateCall -
85 * Finish initial transformation of an aggregate call
86 *
87 * parse_func.c has recognized the function as an aggregate, and has set up
88 * all the fields of the Aggref except aggargtypes, aggdirectargs, args,
89 * aggorder, aggdistinct and agglevelsup. The passed-in args list has been
90 * through standard expression transformation and type coercion to match the
91 * agg's declared arg types, while the passed-in aggorder list hasn't been
92 * transformed at all.
93 *
94 * Here we separate the args list into direct and aggregated args, storing the
95 * former in agg->aggdirectargs and the latter in agg->args. The regular
96 * args, but not the direct args, are converted into a targetlist by inserting
97 * TargetEntry nodes. We then transform the aggorder and agg_distinct
98 * specifications to produce lists of SortGroupClause nodes for agg->aggorder
99 * and agg->aggdistinct. (For a regular aggregate, this might result in
100 * adding resjunk expressions to the targetlist; but for ordered-set
101 * aggregates the aggorder list will always be one-to-one with the aggregated
102 * args.)
103 *
104 * We must also determine which query level the aggregate actually belongs to,
105 * set agglevelsup accordingly, and mark p_hasAggs true in the corresponding
106 * pstate level.
107 */
108void
110 List *args, List *aggorder, bool agg_distinct)
111{
112 List *argtypes = NIL;
113 List *tlist = NIL;
114 List *torder = NIL;
115 List *tdistinct = NIL;
116 AttrNumber attno = 1;
117 int save_next_resno;
118 ListCell *lc;
119
120 if (AGGKIND_IS_ORDERED_SET(agg->aggkind))
121 {
122 /*
123 * For an ordered-set agg, the args list includes direct args and
124 * aggregated args; we must split them apart.
125 */
126 int numDirectArgs = list_length(args) - list_length(aggorder);
127 List *aargs;
128 ListCell *lc2;
129
130 Assert(numDirectArgs >= 0);
131
132 aargs = list_copy_tail(args, numDirectArgs);
133 agg->aggdirectargs = list_truncate(args, numDirectArgs);
134
135 /*
136 * Build a tlist from the aggregated args, and make a sortlist entry
137 * for each one. Note that the expressions in the SortBy nodes are
138 * ignored (they are the raw versions of the transformed args); we are
139 * just looking at the sort information in the SortBy nodes.
140 */
141 forboth(lc, aargs, lc2, aggorder)
142 {
143 Expr *arg = (Expr *) lfirst(lc);
144 SortBy *sortby = (SortBy *) lfirst(lc2);
145 TargetEntry *tle;
146
147 /* We don't bother to assign column names to the entries */
148 tle = makeTargetEntry(arg, attno++, NULL, false);
149 tlist = lappend(tlist, tle);
150
151 torder = addTargetToSortList(pstate, tle,
152 torder, tlist, sortby);
153 }
154
155 /* Never any DISTINCT in an ordered-set agg */
156 Assert(!agg_distinct);
157 }
158 else
159 {
160 /* Regular aggregate, so it has no direct args */
161 agg->aggdirectargs = NIL;
162
163 /*
164 * Transform the plain list of Exprs into a targetlist.
165 */
166 foreach(lc, args)
167 {
168 Expr *arg = (Expr *) lfirst(lc);
169 TargetEntry *tle;
170
171 /* We don't bother to assign column names to the entries */
172 tle = makeTargetEntry(arg, attno++, NULL, false);
173 tlist = lappend(tlist, tle);
174 }
175
176 /*
177 * If we have an ORDER BY, transform it. This will add columns to the
178 * tlist if they appear in ORDER BY but weren't already in the arg
179 * list. They will be marked resjunk = true so we can tell them apart
180 * from regular aggregate arguments later.
181 *
182 * We need to mess with p_next_resno since it will be used to number
183 * any new targetlist entries.
184 */
185 save_next_resno = pstate->p_next_resno;
186 pstate->p_next_resno = attno;
187
188 torder = transformSortClause(pstate,
189 aggorder,
190 &tlist,
192 true /* force SQL99 rules */ );
193
194 /*
195 * If we have DISTINCT, transform that to produce a distinctList.
196 */
197 if (agg_distinct)
198 {
199 tdistinct = transformDistinctClause(pstate, &tlist, torder, true);
200
201 /*
202 * Remove this check if executor support for hashed distinct for
203 * aggregates is ever added.
204 */
205 foreach(lc, tdistinct)
206 {
207 SortGroupClause *sortcl = (SortGroupClause *) lfirst(lc);
208
209 if (!OidIsValid(sortcl->sortop))
210 {
211 Node *expr = get_sortgroupclause_expr(sortcl, tlist);
212
214 (errcode(ERRCODE_UNDEFINED_FUNCTION),
215 errmsg("could not identify an ordering operator for type %s",
216 format_type_be(exprType(expr))),
217 errdetail("Aggregates with DISTINCT must be able to sort their inputs."),
218 parser_errposition(pstate, exprLocation(expr))));
219 }
220 }
221 }
222
223 pstate->p_next_resno = save_next_resno;
224 }
225
226 /* Update the Aggref with the transformation results */
227 agg->args = tlist;
228 agg->aggorder = torder;
229 agg->aggdistinct = tdistinct;
230
231 /*
232 * Now build the aggargtypes list with the type OIDs of the direct and
233 * aggregated args, ignoring any resjunk entries that might have been
234 * added by ORDER BY/DISTINCT processing. We can't do this earlier
235 * because said processing can modify some args' data types, in particular
236 * by resolving previously-unresolved "unknown" literals.
237 */
238 foreach(lc, agg->aggdirectargs)
239 {
240 Expr *arg = (Expr *) lfirst(lc);
241
242 argtypes = lappend_oid(argtypes, exprType((Node *) arg));
243 }
244 foreach(lc, tlist)
245 {
246 TargetEntry *tle = (TargetEntry *) lfirst(lc);
247
248 if (tle->resjunk)
249 continue; /* ignore junk */
250 argtypes = lappend_oid(argtypes, exprType((Node *) tle->expr));
251 }
252 agg->aggargtypes = argtypes;
253
254 check_agglevels_and_constraints(pstate, (Node *) agg);
255}
256
257/*
258 * transformGroupingFunc
259 * Transform a GROUPING expression
260 *
261 * GROUPING() behaves very like an aggregate. Processing of levels and nesting
262 * is done as for aggregates. We set p_hasAggs for these expressions too.
263 */
264Node *
266{
267 ListCell *lc;
268 List *args = p->args;
269 List *result_list = NIL;
271
272 if (list_length(args) > 31)
274 (errcode(ERRCODE_TOO_MANY_ARGUMENTS),
275 errmsg("GROUPING must have fewer than 32 arguments"),
276 parser_errposition(pstate, p->location)));
277
278 foreach(lc, args)
279 {
280 Node *current_result;
281
282 current_result = transformExpr(pstate, (Node *) lfirst(lc), pstate->p_expr_kind);
283
284 /* acceptability of expressions is checked later */
285
286 result_list = lappend(result_list, current_result);
287 }
288
289 result->args = result_list;
290 result->location = p->location;
291
292 check_agglevels_and_constraints(pstate, (Node *) result);
293
294 return (Node *) result;
295}
296
297/*
298 * Aggregate functions and grouping operations (which are combined in the spec
299 * as <set function specification>) are very similar with regard to level and
300 * nesting restrictions (though we allow a lot more things than the spec does).
301 * Centralise those restrictions here.
302 */
303static void
305{
306 List *directargs = NIL;
307 List *args = NIL;
308 Expr *filter = NULL;
309 int min_varlevel;
310 int location = -1;
311 Index *p_levelsup;
312 const char *err;
313 bool errkind;
314 bool isAgg = IsA(expr, Aggref);
315
316 if (isAgg)
317 {
318 Aggref *agg = (Aggref *) expr;
319
320 directargs = agg->aggdirectargs;
321 args = agg->args;
322 filter = agg->aggfilter;
323 location = agg->location;
324 p_levelsup = &agg->agglevelsup;
325 }
326 else
327 {
328 GroupingFunc *grp = (GroupingFunc *) expr;
329
330 args = grp->args;
331 location = grp->location;
332 p_levelsup = &grp->agglevelsup;
333 }
334
335 /*
336 * Check the arguments to compute the aggregate's level and detect
337 * improper nesting.
338 */
339 min_varlevel = check_agg_arguments(pstate,
340 directargs,
341 args,
342 filter);
343
344 *p_levelsup = min_varlevel;
345
346 /* Mark the correct pstate level as having aggregates */
347 while (min_varlevel-- > 0)
348 pstate = pstate->parentParseState;
349 pstate->p_hasAggs = true;
350
351 /*
352 * Check to see if the aggregate function is in an invalid place within
353 * its aggregation query.
354 *
355 * For brevity we support two schemes for reporting an error here: set
356 * "err" to a custom message, or set "errkind" true if the error context
357 * is sufficiently identified by what ParseExprKindName will return, *and*
358 * what it will return is just a SQL keyword. (Otherwise, use a custom
359 * message to avoid creating translation problems.)
360 */
361 err = NULL;
362 errkind = false;
363 switch (pstate->p_expr_kind)
364 {
365 case EXPR_KIND_NONE:
366 Assert(false); /* can't happen */
367 break;
368 case EXPR_KIND_OTHER:
369
370 /*
371 * Accept aggregate/grouping here; caller must throw error if
372 * wanted
373 */
374 break;
377 if (isAgg)
378 err = _("aggregate functions are not allowed in JOIN conditions");
379 else
380 err = _("grouping operations are not allowed in JOIN conditions");
381
382 break;
384
385 /*
386 * Aggregate/grouping scope rules make it worth being explicit
387 * here
388 */
389 if (isAgg)
390 err = _("aggregate functions are not allowed in FROM clause of their own query level");
391 else
392 err = _("grouping operations are not allowed in FROM clause of their own query level");
393
394 break;
396 if (isAgg)
397 err = _("aggregate functions are not allowed in functions in FROM");
398 else
399 err = _("grouping operations are not allowed in functions in FROM");
400
401 break;
402 case EXPR_KIND_WHERE:
403 errkind = true;
404 break;
405 case EXPR_KIND_POLICY:
406 if (isAgg)
407 err = _("aggregate functions are not allowed in policy expressions");
408 else
409 err = _("grouping operations are not allowed in policy expressions");
410
411 break;
412 case EXPR_KIND_HAVING:
413 /* okay */
414 break;
415 case EXPR_KIND_FILTER:
416 errkind = true;
417 break;
419 /* okay */
420 break;
422 /* okay */
423 break;
425 if (isAgg)
426 err = _("aggregate functions are not allowed in window RANGE");
427 else
428 err = _("grouping operations are not allowed in window RANGE");
429
430 break;
432 if (isAgg)
433 err = _("aggregate functions are not allowed in window ROWS");
434 else
435 err = _("grouping operations are not allowed in window ROWS");
436
437 break;
439 if (isAgg)
440 err = _("aggregate functions are not allowed in window GROUPS");
441 else
442 err = _("grouping operations are not allowed in window GROUPS");
443
444 break;
446 /* okay */
447 break;
451 errkind = true;
452 break;
454 if (isAgg)
455 err = _("aggregate functions are not allowed in MERGE WHEN conditions");
456 else
457 err = _("grouping operations are not allowed in MERGE WHEN conditions");
458
459 break;
461 errkind = true;
462 break;
464 /* okay */
465 break;
467 /* okay */
468 break;
469 case EXPR_KIND_LIMIT:
470 case EXPR_KIND_OFFSET:
471 errkind = true;
472 break;
475 errkind = true;
476 break;
477 case EXPR_KIND_VALUES:
479 errkind = true;
480 break;
483 if (isAgg)
484 err = _("aggregate functions are not allowed in check constraints");
485 else
486 err = _("grouping operations are not allowed in check constraints");
487
488 break;
491
492 if (isAgg)
493 err = _("aggregate functions are not allowed in DEFAULT expressions");
494 else
495 err = _("grouping operations are not allowed in DEFAULT expressions");
496
497 break;
499 if (isAgg)
500 err = _("aggregate functions are not allowed in index expressions");
501 else
502 err = _("grouping operations are not allowed in index expressions");
503
504 break;
506 if (isAgg)
507 err = _("aggregate functions are not allowed in index predicates");
508 else
509 err = _("grouping operations are not allowed in index predicates");
510
511 break;
513 if (isAgg)
514 err = _("aggregate functions are not allowed in statistics expressions");
515 else
516 err = _("grouping operations are not allowed in statistics expressions");
517
518 break;
520 if (isAgg)
521 err = _("aggregate functions are not allowed in transform expressions");
522 else
523 err = _("grouping operations are not allowed in transform expressions");
524
525 break;
527 if (isAgg)
528 err = _("aggregate functions are not allowed in EXECUTE parameters");
529 else
530 err = _("grouping operations are not allowed in EXECUTE parameters");
531
532 break;
534 if (isAgg)
535 err = _("aggregate functions are not allowed in trigger WHEN conditions");
536 else
537 err = _("grouping operations are not allowed in trigger WHEN conditions");
538
539 break;
541 if (isAgg)
542 err = _("aggregate functions are not allowed in partition bound");
543 else
544 err = _("grouping operations are not allowed in partition bound");
545
546 break;
548 if (isAgg)
549 err = _("aggregate functions are not allowed in partition key expressions");
550 else
551 err = _("grouping operations are not allowed in partition key expressions");
552
553 break;
555
556 if (isAgg)
557 err = _("aggregate functions are not allowed in column generation expressions");
558 else
559 err = _("grouping operations are not allowed in column generation expressions");
560
561 break;
562
564 if (isAgg)
565 err = _("aggregate functions are not allowed in CALL arguments");
566 else
567 err = _("grouping operations are not allowed in CALL arguments");
568
569 break;
570
572 if (isAgg)
573 err = _("aggregate functions are not allowed in COPY FROM WHERE conditions");
574 else
575 err = _("grouping operations are not allowed in COPY FROM WHERE conditions");
576
577 break;
578
580 errkind = true;
581 break;
582
583 /*
584 * There is intentionally no default: case here, so that the
585 * compiler will warn if we add a new ParseExprKind without
586 * extending this switch. If we do see an unrecognized value at
587 * runtime, the behavior will be the same as for EXPR_KIND_OTHER,
588 * which is sane anyway.
589 */
590 }
591
592 if (err)
594 (errcode(ERRCODE_GROUPING_ERROR),
595 errmsg_internal("%s", err),
596 parser_errposition(pstate, location)));
597
598 if (errkind)
599 {
600 if (isAgg)
601 /* translator: %s is name of a SQL construct, eg GROUP BY */
602 err = _("aggregate functions are not allowed in %s");
603 else
604 /* translator: %s is name of a SQL construct, eg GROUP BY */
605 err = _("grouping operations are not allowed in %s");
606
608 (errcode(ERRCODE_GROUPING_ERROR),
611 parser_errposition(pstate, location)));
612 }
613}
614
615/*
616 * check_agg_arguments
617 * Scan the arguments of an aggregate function to determine the
618 * aggregate's semantic level (zero is the current select's level,
619 * one is its parent, etc).
620 *
621 * The aggregate's level is the same as the level of the lowest-level variable
622 * or aggregate in its aggregated arguments (including any ORDER BY columns)
623 * or filter expression; or if it contains no variables at all, we presume it
624 * to be local.
625 *
626 * Vars/Aggs in direct arguments are *not* counted towards determining the
627 * agg's level, as those arguments aren't evaluated per-row but only
628 * per-group, and so in some sense aren't really agg arguments. However,
629 * this can mean that we decide an agg is upper-level even when its direct
630 * args contain lower-level Vars/Aggs, and that case has to be disallowed.
631 * (This is a little strange, but the SQL standard seems pretty definite that
632 * direct args are not to be considered when setting the agg's level.)
633 *
634 * We also take this opportunity to detect any aggregates or window functions
635 * nested within the arguments. We can throw error immediately if we find
636 * a window function. Aggregates are a bit trickier because it's only an
637 * error if the inner aggregate is of the same semantic level as the outer,
638 * which we can't know until we finish scanning the arguments.
639 */
640static int
642 List *directargs,
643 List *args,
644 Expr *filter)
645{
646 int agglevel;
648
649 context.pstate = pstate;
650 context.min_varlevel = -1; /* signifies nothing found yet */
651 context.min_agglevel = -1;
652 context.sublevels_up = 0;
653
654 (void) check_agg_arguments_walker((Node *) args, &context);
655 (void) check_agg_arguments_walker((Node *) filter, &context);
656
657 /*
658 * If we found no vars nor aggs at all, it's a level-zero aggregate;
659 * otherwise, its level is the minimum of vars or aggs.
660 */
661 if (context.min_varlevel < 0)
662 {
663 if (context.min_agglevel < 0)
664 agglevel = 0;
665 else
666 agglevel = context.min_agglevel;
667 }
668 else if (context.min_agglevel < 0)
669 agglevel = context.min_varlevel;
670 else
671 agglevel = Min(context.min_varlevel, context.min_agglevel);
672
673 /*
674 * If there's a nested aggregate of the same semantic level, complain.
675 */
676 if (agglevel == context.min_agglevel)
677 {
678 int aggloc;
679
680 aggloc = locate_agg_of_level((Node *) args, agglevel);
681 if (aggloc < 0)
682 aggloc = locate_agg_of_level((Node *) filter, agglevel);
684 (errcode(ERRCODE_GROUPING_ERROR),
685 errmsg("aggregate function calls cannot be nested"),
686 parser_errposition(pstate, aggloc)));
687 }
688
689 /*
690 * Now check for vars/aggs in the direct arguments, and throw error if
691 * needed. Note that we allow a Var of the agg's semantic level, but not
692 * an Agg of that level. In principle such Aggs could probably be
693 * supported, but it would create an ordering dependency among the
694 * aggregates at execution time. Since the case appears neither to be
695 * required by spec nor particularly useful, we just treat it as a
696 * nested-aggregate situation.
697 */
698 if (directargs)
699 {
700 context.min_varlevel = -1;
701 context.min_agglevel = -1;
702 (void) check_agg_arguments_walker((Node *) directargs, &context);
703 if (context.min_varlevel >= 0 && context.min_varlevel < agglevel)
705 (errcode(ERRCODE_GROUPING_ERROR),
706 errmsg("outer-level aggregate cannot contain a lower-level variable in its direct arguments"),
707 parser_errposition(pstate,
708 locate_var_of_level((Node *) directargs,
709 context.min_varlevel))));
710 if (context.min_agglevel >= 0 && context.min_agglevel <= agglevel)
712 (errcode(ERRCODE_GROUPING_ERROR),
713 errmsg("aggregate function calls cannot be nested"),
714 parser_errposition(pstate,
715 locate_agg_of_level((Node *) directargs,
716 context.min_agglevel))));
717 }
718 return agglevel;
719}
720
721static bool
724{
725 if (node == NULL)
726 return false;
727 if (IsA(node, Var))
728 {
729 int varlevelsup = ((Var *) node)->varlevelsup;
730
731 /* convert levelsup to frame of reference of original query */
732 varlevelsup -= context->sublevels_up;
733 /* ignore local vars of subqueries */
734 if (varlevelsup >= 0)
735 {
736 if (context->min_varlevel < 0 ||
737 context->min_varlevel > varlevelsup)
738 context->min_varlevel = varlevelsup;
739 }
740 return false;
741 }
742 if (IsA(node, Aggref))
743 {
744 int agglevelsup = ((Aggref *) node)->agglevelsup;
745
746 /* convert levelsup to frame of reference of original query */
747 agglevelsup -= context->sublevels_up;
748 /* ignore local aggs of subqueries */
749 if (agglevelsup >= 0)
750 {
751 if (context->min_agglevel < 0 ||
752 context->min_agglevel > agglevelsup)
753 context->min_agglevel = agglevelsup;
754 }
755 /* Continue and descend into subtree */
756 }
757 if (IsA(node, GroupingFunc))
758 {
759 int agglevelsup = ((GroupingFunc *) node)->agglevelsup;
760
761 /* convert levelsup to frame of reference of original query */
762 agglevelsup -= context->sublevels_up;
763 /* ignore local aggs of subqueries */
764 if (agglevelsup >= 0)
765 {
766 if (context->min_agglevel < 0 ||
767 context->min_agglevel > agglevelsup)
768 context->min_agglevel = agglevelsup;
769 }
770 /* Continue and descend into subtree */
771 }
772
773 /*
774 * SRFs and window functions can be rejected immediately, unless we are
775 * within a sub-select within the aggregate's arguments; in that case
776 * they're OK.
777 */
778 if (context->sublevels_up == 0)
779 {
780 if ((IsA(node, FuncExpr) && ((FuncExpr *) node)->funcretset) ||
781 (IsA(node, OpExpr) && ((OpExpr *) node)->opretset))
783 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
784 errmsg("aggregate function calls cannot contain set-returning function calls"),
785 errhint("You might be able to move the set-returning function into a LATERAL FROM item."),
786 parser_errposition(context->pstate, exprLocation(node))));
787 if (IsA(node, WindowFunc))
789 (errcode(ERRCODE_GROUPING_ERROR),
790 errmsg("aggregate function calls cannot contain window function calls"),
791 parser_errposition(context->pstate,
792 ((WindowFunc *) node)->location)));
793 }
794
795 if (IsA(node, RangeTblEntry))
796 {
797 /*
798 * CTE references act similarly to Vars of the CTE's level. Without
799 * this we might conclude that the Agg can be evaluated above the CTE,
800 * leading to trouble.
801 */
802 RangeTblEntry *rte = (RangeTblEntry *) node;
803
804 if (rte->rtekind == RTE_CTE)
805 {
806 int ctelevelsup = rte->ctelevelsup;
807
808 /* convert levelsup to frame of reference of original query */
809 ctelevelsup -= context->sublevels_up;
810 /* ignore local CTEs of subqueries */
811 if (ctelevelsup >= 0)
812 {
813 if (context->min_varlevel < 0 ||
814 context->min_varlevel > ctelevelsup)
815 context->min_varlevel = ctelevelsup;
816 }
817 }
818 return false; /* allow range_table_walker to continue */
819 }
820 if (IsA(node, Query))
821 {
822 /* Recurse into subselects */
823 bool result;
824
825 context->sublevels_up++;
826 result = query_tree_walker((Query *) node,
828 context,
830 context->sublevels_up--;
831 return result;
832 }
833
834 return expression_tree_walker(node,
836 context);
837}
838
839/*
840 * transformWindowFuncCall -
841 * Finish initial transformation of a window function call
842 *
843 * parse_func.c has recognized the function as a window function, and has set
844 * up all the fields of the WindowFunc except winref. Here we must (1) add
845 * the WindowDef to the pstate (if not a duplicate of one already present) and
846 * set winref to link to it; and (2) mark p_hasWindowFuncs true in the pstate.
847 * Unlike aggregates, only the most closely nested pstate level need be
848 * considered --- there are no "outer window functions" per SQL spec.
849 */
850void
852 WindowDef *windef)
853{
854 const char *err;
855 bool errkind;
856
857 /*
858 * A window function call can't contain another one (but aggs are OK). XXX
859 * is this required by spec, or just an unimplemented feature?
860 *
861 * Note: we don't need to check the filter expression here, because the
862 * context checks done below and in transformAggregateCall would have
863 * already rejected any window funcs or aggs within the filter.
864 */
865 if (pstate->p_hasWindowFuncs &&
866 contain_windowfuncs((Node *) wfunc->args))
868 (errcode(ERRCODE_WINDOWING_ERROR),
869 errmsg("window function calls cannot be nested"),
870 parser_errposition(pstate,
871 locate_windowfunc((Node *) wfunc->args))));
872
873 /*
874 * Check to see if the window function is in an invalid place within the
875 * query.
876 *
877 * For brevity we support two schemes for reporting an error here: set
878 * "err" to a custom message, or set "errkind" true if the error context
879 * is sufficiently identified by what ParseExprKindName will return, *and*
880 * what it will return is just a SQL keyword. (Otherwise, use a custom
881 * message to avoid creating translation problems.)
882 */
883 err = NULL;
884 errkind = false;
885 switch (pstate->p_expr_kind)
886 {
887 case EXPR_KIND_NONE:
888 Assert(false); /* can't happen */
889 break;
890 case EXPR_KIND_OTHER:
891 /* Accept window func here; caller must throw error if wanted */
892 break;
895 err = _("window functions are not allowed in JOIN conditions");
896 break;
898 /* can't get here, but just in case, throw an error */
899 errkind = true;
900 break;
902 err = _("window functions are not allowed in functions in FROM");
903 break;
904 case EXPR_KIND_WHERE:
905 errkind = true;
906 break;
907 case EXPR_KIND_POLICY:
908 err = _("window functions are not allowed in policy expressions");
909 break;
910 case EXPR_KIND_HAVING:
911 errkind = true;
912 break;
913 case EXPR_KIND_FILTER:
914 errkind = true;
915 break;
921 err = _("window functions are not allowed in window definitions");
922 break;
924 /* okay */
925 break;
929 errkind = true;
930 break;
932 err = _("window functions are not allowed in MERGE WHEN conditions");
933 break;
935 errkind = true;
936 break;
938 /* okay */
939 break;
941 /* okay */
942 break;
943 case EXPR_KIND_LIMIT:
944 case EXPR_KIND_OFFSET:
945 errkind = true;
946 break;
949 errkind = true;
950 break;
951 case EXPR_KIND_VALUES:
953 errkind = true;
954 break;
957 err = _("window functions are not allowed in check constraints");
958 break;
961 err = _("window functions are not allowed in DEFAULT expressions");
962 break;
964 err = _("window functions are not allowed in index expressions");
965 break;
967 err = _("window functions are not allowed in statistics expressions");
968 break;
970 err = _("window functions are not allowed in index predicates");
971 break;
973 err = _("window functions are not allowed in transform expressions");
974 break;
976 err = _("window functions are not allowed in EXECUTE parameters");
977 break;
979 err = _("window functions are not allowed in trigger WHEN conditions");
980 break;
982 err = _("window functions are not allowed in partition bound");
983 break;
985 err = _("window functions are not allowed in partition key expressions");
986 break;
988 err = _("window functions are not allowed in CALL arguments");
989 break;
991 err = _("window functions are not allowed in COPY FROM WHERE conditions");
992 break;
994 err = _("window functions are not allowed in column generation expressions");
995 break;
997 errkind = true;
998 break;
999
1000 /*
1001 * There is intentionally no default: case here, so that the
1002 * compiler will warn if we add a new ParseExprKind without
1003 * extending this switch. If we do see an unrecognized value at
1004 * runtime, the behavior will be the same as for EXPR_KIND_OTHER,
1005 * which is sane anyway.
1006 */
1007 }
1008 if (err)
1009 ereport(ERROR,
1010 (errcode(ERRCODE_WINDOWING_ERROR),
1011 errmsg_internal("%s", err),
1012 parser_errposition(pstate, wfunc->location)));
1013 if (errkind)
1014 ereport(ERROR,
1015 (errcode(ERRCODE_WINDOWING_ERROR),
1016 /* translator: %s is name of a SQL construct, eg GROUP BY */
1017 errmsg("window functions are not allowed in %s",
1019 parser_errposition(pstate, wfunc->location)));
1020
1021 /*
1022 * If the OVER clause just specifies a window name, find that WINDOW
1023 * clause (which had better be present). Otherwise, try to match all the
1024 * properties of the OVER clause, and make a new entry in the p_windowdefs
1025 * list if no luck.
1026 */
1027 if (windef->name)
1028 {
1029 Index winref = 0;
1030 ListCell *lc;
1031
1032 Assert(windef->refname == NULL &&
1033 windef->partitionClause == NIL &&
1034 windef->orderClause == NIL &&
1036
1037 foreach(lc, pstate->p_windowdefs)
1038 {
1039 WindowDef *refwin = (WindowDef *) lfirst(lc);
1040
1041 winref++;
1042 if (refwin->name && strcmp(refwin->name, windef->name) == 0)
1043 {
1044 wfunc->winref = winref;
1045 break;
1046 }
1047 }
1048 if (lc == NULL) /* didn't find it? */
1049 ereport(ERROR,
1050 (errcode(ERRCODE_UNDEFINED_OBJECT),
1051 errmsg("window \"%s\" does not exist", windef->name),
1052 parser_errposition(pstate, windef->location)));
1053 }
1054 else
1055 {
1056 Index winref = 0;
1057 ListCell *lc;
1058
1059 foreach(lc, pstate->p_windowdefs)
1060 {
1061 WindowDef *refwin = (WindowDef *) lfirst(lc);
1062
1063 winref++;
1064 if (refwin->refname && windef->refname &&
1065 strcmp(refwin->refname, windef->refname) == 0)
1066 /* matched on refname */ ;
1067 else if (!refwin->refname && !windef->refname)
1068 /* matched, no refname */ ;
1069 else
1070 continue;
1071
1072 /*
1073 * Also see similar de-duplication code in optimize_window_clauses
1074 */
1075 if (equal(refwin->partitionClause, windef->partitionClause) &&
1076 equal(refwin->orderClause, windef->orderClause) &&
1077 refwin->frameOptions == windef->frameOptions &&
1078 equal(refwin->startOffset, windef->startOffset) &&
1079 equal(refwin->endOffset, windef->endOffset))
1080 {
1081 /* found a duplicate window specification */
1082 wfunc->winref = winref;
1083 break;
1084 }
1085 }
1086 if (lc == NULL) /* didn't find it? */
1087 {
1088 pstate->p_windowdefs = lappend(pstate->p_windowdefs, windef);
1089 wfunc->winref = list_length(pstate->p_windowdefs);
1090 }
1091 }
1092
1093 pstate->p_hasWindowFuncs = true;
1094}
1095
1096/*
1097 * parseCheckAggregates
1098 * Check for aggregates where they shouldn't be and improper grouping, and
1099 * replace grouped variables in the targetlist and HAVING clause with Vars
1100 * that reference the RTE_GROUP RTE.
1101 * This function should be called after the target list and qualifications
1102 * are finalized.
1103 *
1104 * Misplaced aggregates are now mostly detected in transformAggregateCall,
1105 * but it seems more robust to check for aggregates in recursive queries
1106 * only after everything is finalized. In any case it's hard to detect
1107 * improper grouping on-the-fly, so we have to make another pass over the
1108 * query for that.
1109 */
1110void
1112{
1113 List *gset_common = NIL;
1114 List *groupClauses = NIL;
1115 List *groupClauseCommonVars = NIL;
1116 bool have_non_var_grouping;
1117 List *func_grouped_rels = NIL;
1118 ListCell *l;
1119 bool hasJoinRTEs;
1120 bool hasSelfRefRTEs;
1121 Node *clause;
1122
1123 /* This should only be called if we found aggregates or grouping */
1124 Assert(pstate->p_hasAggs || qry->groupClause || qry->havingQual || qry->groupingSets);
1125
1126 /*
1127 * If we have grouping sets, expand them and find the intersection of all
1128 * sets.
1129 */
1130 if (qry->groupingSets)
1131 {
1132 /*
1133 * The limit of 4096 is arbitrary and exists simply to avoid resource
1134 * issues from pathological constructs.
1135 */
1136 List *gsets = expand_grouping_sets(qry->groupingSets, qry->groupDistinct, 4096);
1137
1138 if (!gsets)
1139 ereport(ERROR,
1140 (errcode(ERRCODE_STATEMENT_TOO_COMPLEX),
1141 errmsg("too many grouping sets present (maximum 4096)"),
1142 parser_errposition(pstate,
1143 qry->groupClause
1144 ? exprLocation((Node *) qry->groupClause)
1145 : exprLocation((Node *) qry->groupingSets))));
1146
1147 /*
1148 * The intersection will often be empty, so help things along by
1149 * seeding the intersect with the smallest set.
1150 */
1151 gset_common = linitial(gsets);
1152
1153 if (gset_common)
1154 {
1155 for_each_from(l, gsets, 1)
1156 {
1157 gset_common = list_intersection_int(gset_common, lfirst(l));
1158 if (!gset_common)
1159 break;
1160 }
1161 }
1162
1163 /*
1164 * If there was only one grouping set in the expansion, AND if the
1165 * groupClause is non-empty (meaning that the grouping set is not
1166 * empty either), then we can ditch the grouping set and pretend we
1167 * just had a normal GROUP BY.
1168 */
1169 if (list_length(gsets) == 1 && qry->groupClause)
1170 qry->groupingSets = NIL;
1171 }
1172
1173 /*
1174 * Scan the range table to see if there are JOIN or self-reference CTE
1175 * entries. We'll need this info below.
1176 */
1177 hasJoinRTEs = hasSelfRefRTEs = false;
1178 foreach(l, pstate->p_rtable)
1179 {
1180 RangeTblEntry *rte = (RangeTblEntry *) lfirst(l);
1181
1182 if (rte->rtekind == RTE_JOIN)
1183 hasJoinRTEs = true;
1184 else if (rte->rtekind == RTE_CTE && rte->self_reference)
1185 hasSelfRefRTEs = true;
1186 }
1187
1188 /*
1189 * Build a list of the acceptable GROUP BY expressions for use by
1190 * substitute_grouped_columns().
1191 *
1192 * We get the TLE, not just the expr, because GROUPING wants to know the
1193 * sortgroupref.
1194 */
1195 foreach(l, qry->groupClause)
1196 {
1197 SortGroupClause *grpcl = (SortGroupClause *) lfirst(l);
1198 TargetEntry *expr;
1199
1200 expr = get_sortgroupclause_tle(grpcl, qry->targetList);
1201 if (expr == NULL)
1202 continue; /* probably cannot happen */
1203
1204 groupClauses = lappend(groupClauses, expr);
1205 }
1206
1207 /*
1208 * If there are join alias vars involved, we have to flatten them to the
1209 * underlying vars, so that aliased and unaliased vars will be correctly
1210 * taken as equal. We can skip the expense of doing this if no rangetable
1211 * entries are RTE_JOIN kind.
1212 */
1213 if (hasJoinRTEs)
1214 groupClauses = (List *) flatten_join_alias_vars(NULL, qry,
1215 (Node *) groupClauses);
1216
1217 /*
1218 * Detect whether any of the grouping expressions aren't simple Vars; if
1219 * they're all Vars then we don't have to work so hard in the recursive
1220 * scans. (Note we have to flatten aliases before this.)
1221 *
1222 * Track Vars that are included in all grouping sets separately in
1223 * groupClauseCommonVars, since these are the only ones we can use to
1224 * check for functional dependencies.
1225 */
1226 have_non_var_grouping = false;
1227 foreach(l, groupClauses)
1228 {
1229 TargetEntry *tle = lfirst(l);
1230
1231 if (!IsA(tle->expr, Var))
1232 {
1233 have_non_var_grouping = true;
1234 }
1235 else if (!qry->groupingSets ||
1236 list_member_int(gset_common, tle->ressortgroupref))
1237 {
1238 groupClauseCommonVars = lappend(groupClauseCommonVars, tle->expr);
1239 }
1240 }
1241
1242 /*
1243 * If there are any acceptable GROUP BY expressions, build an RTE and
1244 * nsitem for the result of the grouping step.
1245 */
1246 if (groupClauses)
1247 {
1248 pstate->p_grouping_nsitem =
1249 addRangeTableEntryForGroup(pstate, groupClauses);
1250
1251 /* Set qry->rtable again in case it was previously NIL */
1252 qry->rtable = pstate->p_rtable;
1253 /* Mark the Query as having RTE_GROUP RTE */
1254 qry->hasGroupRTE = true;
1255 }
1256
1257 /*
1258 * Replace grouped variables in the targetlist and HAVING clause with Vars
1259 * that reference the RTE_GROUP RTE. Emit an error message if we find any
1260 * ungrouped variables.
1261 *
1262 * Note: because we check resjunk tlist elements as well as regular ones,
1263 * this will also find ungrouped variables that came from ORDER BY and
1264 * WINDOW clauses. For that matter, it's also going to examine the
1265 * grouping expressions themselves --- but they'll all pass the test ...
1266 *
1267 * We also finalize GROUPING expressions, but for that we need to traverse
1268 * the original (unflattened) clause in order to modify nodes.
1269 */
1270 clause = (Node *) qry->targetList;
1271 finalize_grouping_exprs(clause, pstate, qry,
1272 groupClauses, hasJoinRTEs,
1273 have_non_var_grouping);
1274 if (hasJoinRTEs)
1275 clause = flatten_join_alias_vars(NULL, qry, clause);
1276 qry->targetList = (List *)
1277 substitute_grouped_columns(clause, pstate, qry,
1278 groupClauses, groupClauseCommonVars,
1279 gset_common,
1280 have_non_var_grouping,
1281 &func_grouped_rels);
1282
1283 clause = (Node *) qry->havingQual;
1284 finalize_grouping_exprs(clause, pstate, qry,
1285 groupClauses, hasJoinRTEs,
1286 have_non_var_grouping);
1287 if (hasJoinRTEs)
1288 clause = flatten_join_alias_vars(NULL, qry, clause);
1289 qry->havingQual =
1290 substitute_grouped_columns(clause, pstate, qry,
1291 groupClauses, groupClauseCommonVars,
1292 gset_common,
1293 have_non_var_grouping,
1294 &func_grouped_rels);
1295
1296 /*
1297 * Per spec, aggregates can't appear in a recursive term.
1298 */
1299 if (pstate->p_hasAggs && hasSelfRefRTEs)
1300 ereport(ERROR,
1301 (errcode(ERRCODE_INVALID_RECURSION),
1302 errmsg("aggregate functions are not allowed in a recursive query's recursive term"),
1303 parser_errposition(pstate,
1304 locate_agg_of_level((Node *) qry, 0))));
1305}
1306
1307/*
1308 * substitute_grouped_columns -
1309 * Scan the given expression tree for grouped variables (variables that
1310 * are listed in the groupClauses list) and replace them with Vars that
1311 * reference the RTE_GROUP RTE. Emit a suitable error message if any
1312 * ungrouped variables (variables that are not listed in the groupClauses
1313 * list and are not within the arguments of aggregate functions) are
1314 * found.
1315 *
1316 * NOTE: we assume that the given clause has been transformed suitably for
1317 * parser output. This means we can use expression_tree_mutator.
1318 *
1319 * NOTE: we recognize grouping expressions in the main query, but only
1320 * grouping Vars in subqueries. For example, this will be rejected,
1321 * although it could be allowed:
1322 * SELECT
1323 * (SELECT x FROM bar where y = (foo.a + foo.b))
1324 * FROM foo
1325 * GROUP BY a + b;
1326 * The difficulty is the need to account for different sublevels_up.
1327 * This appears to require a whole custom version of equal(), which is
1328 * way more pain than the feature seems worth.
1329 */
1330static Node *
1332 List *groupClauses, List *groupClauseCommonVars,
1333 List *gset_common,
1334 bool have_non_var_grouping,
1335 List **func_grouped_rels)
1336{
1338
1339 context.pstate = pstate;
1340 context.qry = qry;
1341 context.hasJoinRTEs = false; /* assume caller flattened join Vars */
1342 context.groupClauses = groupClauses;
1343 context.groupClauseCommonVars = groupClauseCommonVars;
1344 context.gset_common = gset_common;
1345 context.have_non_var_grouping = have_non_var_grouping;
1346 context.func_grouped_rels = func_grouped_rels;
1347 context.sublevels_up = 0;
1348 context.in_agg_direct_args = false;
1349 return substitute_grouped_columns_mutator(node, &context);
1350}
1351
1352static Node *
1355{
1356 ListCell *gl;
1357
1358 if (node == NULL)
1359 return NULL;
1360
1361 if (IsA(node, Aggref))
1362 {
1363 Aggref *agg = (Aggref *) node;
1364
1365 if ((int) agg->agglevelsup == context->sublevels_up)
1366 {
1367 /*
1368 * If we find an aggregate call of the original level, do not
1369 * recurse into its normal arguments, ORDER BY arguments, or
1370 * filter; grouped vars there do not need to be replaced and
1371 * ungrouped vars there are not an error. But we should check
1372 * direct arguments as though they weren't in an aggregate. We
1373 * set a special flag in the context to help produce a useful
1374 * error message for ungrouped vars in direct arguments.
1375 */
1376 agg = copyObject(agg);
1377
1378 Assert(!context->in_agg_direct_args);
1379 context->in_agg_direct_args = true;
1380 agg->aggdirectargs = (List *)
1382 context);
1383 context->in_agg_direct_args = false;
1384 return (Node *) agg;
1385 }
1386
1387 /*
1388 * We can skip recursing into aggregates of higher levels altogether,
1389 * since they could not possibly contain Vars of concern to us (see
1390 * transformAggregateCall). We do need to look at aggregates of lower
1391 * levels, however.
1392 */
1393 if ((int) agg->agglevelsup > context->sublevels_up)
1394 return node;
1395 }
1396
1397 if (IsA(node, GroupingFunc))
1398 {
1399 GroupingFunc *grp = (GroupingFunc *) node;
1400
1401 /* handled GroupingFunc separately, no need to recheck at this level */
1402
1403 if ((int) grp->agglevelsup >= context->sublevels_up)
1404 return node;
1405 }
1406
1407 /*
1408 * If we have any GROUP BY items that are not simple Vars, check to see if
1409 * subexpression as a whole matches any GROUP BY item. We need to do this
1410 * at every recursion level so that we recognize GROUPed-BY expressions
1411 * before reaching variables within them. But this only works at the outer
1412 * query level, as noted above.
1413 */
1414 if (context->have_non_var_grouping && context->sublevels_up == 0)
1415 {
1416 int attnum = 0;
1417
1418 foreach(gl, context->groupClauses)
1419 {
1420 TargetEntry *tle = (TargetEntry *) lfirst(gl);
1421
1422 attnum++;
1423 if (equal(node, tle->expr))
1424 {
1425 /* acceptable, replace it with a GROUP Var */
1426 return (Node *) buildGroupedVar(attnum,
1427 tle->ressortgroupref,
1428 context);
1429 }
1430 }
1431 }
1432
1433 /*
1434 * Constants are always acceptable. We have to do this after we checked
1435 * the subexpression as a whole for a match, because it is possible that
1436 * we have GROUP BY items that are constants, and the constants would
1437 * become not so constant after the grouping step.
1438 */
1439 if (IsA(node, Const) ||
1440 IsA(node, Param))
1441 return node;
1442
1443 /*
1444 * If we have an ungrouped Var of the original query level, we have a
1445 * failure. Vars below the original query level are not a problem, and
1446 * neither are Vars from above it. (If such Vars are ungrouped as far as
1447 * their own query level is concerned, that's someone else's problem...)
1448 */
1449 if (IsA(node, Var))
1450 {
1451 Var *var = (Var *) node;
1452 RangeTblEntry *rte;
1453 char *attname;
1454
1455 if (var->varlevelsup != context->sublevels_up)
1456 return node; /* it's not local to my query, ignore */
1457
1458 /*
1459 * Check for a match, if we didn't do it above.
1460 */
1461 if (!context->have_non_var_grouping || context->sublevels_up != 0)
1462 {
1463 int attnum = 0;
1464
1465 foreach(gl, context->groupClauses)
1466 {
1467 TargetEntry *tle = (TargetEntry *) lfirst(gl);
1468 Var *gvar = (Var *) tle->expr;
1469
1470 attnum++;
1471 if (IsA(gvar, Var) &&
1472 gvar->varno == var->varno &&
1473 gvar->varattno == var->varattno &&
1474 gvar->varlevelsup == 0)
1475 {
1476 /* acceptable, replace it with a GROUP Var */
1477 return (Node *) buildGroupedVar(attnum,
1478 tle->ressortgroupref,
1479 context);
1480 }
1481 }
1482 }
1483
1484 /*
1485 * Check whether the Var is known functionally dependent on the GROUP
1486 * BY columns. If so, we can allow the Var to be used, because the
1487 * grouping is really a no-op for this table. However, this deduction
1488 * depends on one or more constraints of the table, so we have to add
1489 * those constraints to the query's constraintDeps list, because it's
1490 * not semantically valid anymore if the constraint(s) get dropped.
1491 * (Therefore, this check must be the last-ditch effort before raising
1492 * error: we don't want to add dependencies unnecessarily.)
1493 *
1494 * Because this is a pretty expensive check, and will have the same
1495 * outcome for all columns of a table, we remember which RTEs we've
1496 * already proven functional dependency for in the func_grouped_rels
1497 * list. This test also prevents us from adding duplicate entries to
1498 * the constraintDeps list.
1499 */
1500 if (list_member_int(*context->func_grouped_rels, var->varno))
1501 return node; /* previously proven acceptable */
1502
1503 Assert(var->varno > 0 &&
1504 (int) var->varno <= list_length(context->pstate->p_rtable));
1505 rte = rt_fetch(var->varno, context->pstate->p_rtable);
1506 if (rte->rtekind == RTE_RELATION)
1507 {
1508 if (check_functional_grouping(rte->relid,
1509 var->varno,
1510 0,
1511 context->groupClauseCommonVars,
1512 &context->qry->constraintDeps))
1513 {
1514 *context->func_grouped_rels =
1515 lappend_int(*context->func_grouped_rels, var->varno);
1516 return node; /* acceptable */
1517 }
1518 }
1519
1520 /* Found an ungrouped local variable; generate error message */
1522 if (context->sublevels_up == 0)
1523 ereport(ERROR,
1524 (errcode(ERRCODE_GROUPING_ERROR),
1525 errmsg("column \"%s.%s\" must appear in the GROUP BY clause or be used in an aggregate function",
1526 rte->eref->aliasname, attname),
1527 context->in_agg_direct_args ?
1528 errdetail("Direct arguments of an ordered-set aggregate must use only grouped columns.") : 0,
1529 parser_errposition(context->pstate, var->location)));
1530 else
1531 ereport(ERROR,
1532 (errcode(ERRCODE_GROUPING_ERROR),
1533 errmsg("subquery uses ungrouped column \"%s.%s\" from outer query",
1534 rte->eref->aliasname, attname),
1535 parser_errposition(context->pstate, var->location)));
1536 }
1537
1538 if (IsA(node, Query))
1539 {
1540 /* Recurse into subselects */
1541 Query *newnode;
1542
1543 context->sublevels_up++;
1544 newnode = query_tree_mutator((Query *) node,
1546 context,
1547 0);
1548 context->sublevels_up--;
1549 return (Node *) newnode;
1550 }
1552 context);
1553}
1554
1555/*
1556 * finalize_grouping_exprs -
1557 * Scan the given expression tree for GROUPING() and related calls,
1558 * and validate and process their arguments.
1559 *
1560 * This is split out from substitute_grouped_columns above because it needs
1561 * to modify the nodes (which it does in-place, not via a mutator) while
1562 * substitute_grouped_columns may see only a copy of the original thanks to
1563 * flattening of join alias vars. So here, we flatten each individual
1564 * GROUPING argument as we see it before comparing it.
1565 */
1566static void
1568 List *groupClauses, bool hasJoinRTEs,
1569 bool have_non_var_grouping)
1570{
1572
1573 context.pstate = pstate;
1574 context.qry = qry;
1575 context.hasJoinRTEs = hasJoinRTEs;
1576 context.groupClauses = groupClauses;
1577 context.groupClauseCommonVars = NIL;
1578 context.gset_common = NIL;
1579 context.have_non_var_grouping = have_non_var_grouping;
1580 context.func_grouped_rels = NULL;
1581 context.sublevels_up = 0;
1582 context.in_agg_direct_args = false;
1583 finalize_grouping_exprs_walker(node, &context);
1584}
1585
1586static bool
1589{
1590 ListCell *gl;
1591
1592 if (node == NULL)
1593 return false;
1594 if (IsA(node, Const) ||
1595 IsA(node, Param))
1596 return false; /* constants are always acceptable */
1597
1598 if (IsA(node, Aggref))
1599 {
1600 Aggref *agg = (Aggref *) node;
1601
1602 if ((int) agg->agglevelsup == context->sublevels_up)
1603 {
1604 /*
1605 * If we find an aggregate call of the original level, do not
1606 * recurse into its normal arguments, ORDER BY arguments, or
1607 * filter; GROUPING exprs of this level are not allowed there. But
1608 * check direct arguments as though they weren't in an aggregate.
1609 */
1610 bool result;
1611
1612 Assert(!context->in_agg_direct_args);
1613 context->in_agg_direct_args = true;
1615 context);
1616 context->in_agg_direct_args = false;
1617 return result;
1618 }
1619
1620 /*
1621 * We can skip recursing into aggregates of higher levels altogether,
1622 * since they could not possibly contain exprs of concern to us (see
1623 * transformAggregateCall). We do need to look at aggregates of lower
1624 * levels, however.
1625 */
1626 if ((int) agg->agglevelsup > context->sublevels_up)
1627 return false;
1628 }
1629
1630 if (IsA(node, GroupingFunc))
1631 {
1632 GroupingFunc *grp = (GroupingFunc *) node;
1633
1634 /*
1635 * We only need to check GroupingFunc nodes at the exact level to
1636 * which they belong, since they cannot mix levels in arguments.
1637 */
1638
1639 if ((int) grp->agglevelsup == context->sublevels_up)
1640 {
1641 ListCell *lc;
1642 List *ref_list = NIL;
1643
1644 foreach(lc, grp->args)
1645 {
1646 Node *expr = lfirst(lc);
1647 Index ref = 0;
1648
1649 if (context->hasJoinRTEs)
1650 expr = flatten_join_alias_vars(NULL, context->qry, expr);
1651
1652 /*
1653 * Each expression must match a grouping entry at the current
1654 * query level. Unlike the general expression case, we don't
1655 * allow functional dependencies or outer references.
1656 */
1657
1658 if (IsA(expr, Var))
1659 {
1660 Var *var = (Var *) expr;
1661
1662 if (var->varlevelsup == context->sublevels_up)
1663 {
1664 foreach(gl, context->groupClauses)
1665 {
1666 TargetEntry *tle = lfirst(gl);
1667 Var *gvar = (Var *) tle->expr;
1668
1669 if (IsA(gvar, Var) &&
1670 gvar->varno == var->varno &&
1671 gvar->varattno == var->varattno &&
1672 gvar->varlevelsup == 0)
1673 {
1674 ref = tle->ressortgroupref;
1675 break;
1676 }
1677 }
1678 }
1679 }
1680 else if (context->have_non_var_grouping &&
1681 context->sublevels_up == 0)
1682 {
1683 foreach(gl, context->groupClauses)
1684 {
1685 TargetEntry *tle = lfirst(gl);
1686
1687 if (equal(expr, tle->expr))
1688 {
1689 ref = tle->ressortgroupref;
1690 break;
1691 }
1692 }
1693 }
1694
1695 if (ref == 0)
1696 ereport(ERROR,
1697 (errcode(ERRCODE_GROUPING_ERROR),
1698 errmsg("arguments to GROUPING must be grouping expressions of the associated query level"),
1699 parser_errposition(context->pstate,
1700 exprLocation(expr))));
1701
1702 ref_list = lappend_int(ref_list, ref);
1703 }
1704
1705 grp->refs = ref_list;
1706 }
1707
1708 if ((int) grp->agglevelsup > context->sublevels_up)
1709 return false;
1710 }
1711
1712 if (IsA(node, Query))
1713 {
1714 /* Recurse into subselects */
1715 bool result;
1716
1717 context->sublevels_up++;
1718 result = query_tree_walker((Query *) node,
1720 context,
1721 0);
1722 context->sublevels_up--;
1723 return result;
1724 }
1726 context);
1727}
1728
1729/*
1730 * buildGroupedVar -
1731 * build a Var node that references the RTE_GROUP RTE
1732 */
1733static Var *
1734buildGroupedVar(int attnum, Index ressortgroupref,
1736{
1737 Var *var;
1738 ParseNamespaceItem *grouping_nsitem = context->pstate->p_grouping_nsitem;
1739 ParseNamespaceColumn *nscol = grouping_nsitem->p_nscolumns + attnum - 1;
1740
1741 Assert(nscol->p_varno == grouping_nsitem->p_rtindex);
1742 Assert(nscol->p_varattno == attnum);
1743 var = makeVar(nscol->p_varno,
1744 nscol->p_varattno,
1745 nscol->p_vartype,
1746 nscol->p_vartypmod,
1747 nscol->p_varcollid,
1748 context->sublevels_up);
1749 /* makeVar doesn't offer parameters for these, so set by hand: */
1750 var->varnosyn = nscol->p_varnosyn;
1751 var->varattnosyn = nscol->p_varattnosyn;
1752
1753 if (context->qry->groupingSets &&
1754 !list_member_int(context->gset_common, ressortgroupref))
1755 var->varnullingrels =
1756 bms_add_member(var->varnullingrels, grouping_nsitem->p_rtindex);
1757
1758 return var;
1759}
1760
1761
1762/*
1763 * Given a GroupingSet node, expand it and return a list of lists.
1764 *
1765 * For EMPTY nodes, return a list of one empty list.
1766 *
1767 * For SIMPLE nodes, return a list of one list, which is the node content.
1768 *
1769 * For CUBE and ROLLUP nodes, return a list of the expansions.
1770 *
1771 * For SET nodes, recursively expand contained CUBE and ROLLUP.
1772 */
1773static List *
1775{
1776 List *result = NIL;
1777
1778 switch (gs->kind)
1779 {
1780 case GROUPING_SET_EMPTY:
1781 result = list_make1(NIL);
1782 break;
1783
1785 result = list_make1(gs->content);
1786 break;
1787
1789 {
1790 List *rollup_val = gs->content;
1791 ListCell *lc;
1792 int curgroup_size = list_length(gs->content);
1793
1794 while (curgroup_size > 0)
1795 {
1796 List *current_result = NIL;
1797 int i = curgroup_size;
1798
1799 foreach(lc, rollup_val)
1800 {
1801 GroupingSet *gs_current = (GroupingSet *) lfirst(lc);
1802
1803 Assert(gs_current->kind == GROUPING_SET_SIMPLE);
1804
1805 current_result = list_concat(current_result,
1806 gs_current->content);
1807
1808 /* If we are done with making the current group, break */
1809 if (--i == 0)
1810 break;
1811 }
1812
1813 result = lappend(result, current_result);
1814 --curgroup_size;
1815 }
1816
1817 result = lappend(result, NIL);
1818 }
1819 break;
1820
1821 case GROUPING_SET_CUBE:
1822 {
1823 List *cube_list = gs->content;
1824 int number_bits = list_length(cube_list);
1825 uint32 num_sets;
1826 uint32 i;
1827
1828 /* parser should cap this much lower */
1829 Assert(number_bits < 31);
1830
1831 num_sets = (1U << number_bits);
1832
1833 for (i = 0; i < num_sets; i++)
1834 {
1835 List *current_result = NIL;
1836 ListCell *lc;
1837 uint32 mask = 1U;
1838
1839 foreach(lc, cube_list)
1840 {
1841 GroupingSet *gs_current = (GroupingSet *) lfirst(lc);
1842
1843 Assert(gs_current->kind == GROUPING_SET_SIMPLE);
1844
1845 if (mask & i)
1846 current_result = list_concat(current_result,
1847 gs_current->content);
1848
1849 mask <<= 1;
1850 }
1851
1852 result = lappend(result, current_result);
1853 }
1854 }
1855 break;
1856
1857 case GROUPING_SET_SETS:
1858 {
1859 ListCell *lc;
1860
1861 foreach(lc, gs->content)
1862 {
1863 List *current_result = expand_groupingset_node(lfirst(lc));
1864
1865 result = list_concat(result, current_result);
1866 }
1867 }
1868 break;
1869 }
1870
1871 return result;
1872}
1873
1874/* list_sort comparator to sort sub-lists by length */
1875static int
1877{
1878 int la = list_length((const List *) lfirst(a));
1879 int lb = list_length((const List *) lfirst(b));
1880
1881 return pg_cmp_s32(la, lb);
1882}
1883
1884/* list_sort comparator to sort sub-lists by length and contents */
1885static int
1887{
1888 int res = cmp_list_len_asc(a, b);
1889
1890 if (res == 0)
1891 {
1892 List *la = (List *) lfirst(a);
1893 List *lb = (List *) lfirst(b);
1894 ListCell *lca;
1895 ListCell *lcb;
1896
1897 forboth(lca, la, lcb, lb)
1898 {
1899 int va = lfirst_int(lca);
1900 int vb = lfirst_int(lcb);
1901
1902 if (va > vb)
1903 return 1;
1904 if (va < vb)
1905 return -1;
1906 }
1907 }
1908
1909 return res;
1910}
1911
1912/*
1913 * Expand a groupingSets clause to a flat list of grouping sets.
1914 * The returned list is sorted by length, shortest sets first.
1915 *
1916 * This is mainly for the planner, but we use it here too to do
1917 * some consistency checks.
1918 */
1919List *
1920expand_grouping_sets(List *groupingSets, bool groupDistinct, int limit)
1921{
1922 List *expanded_groups = NIL;
1923 List *result = NIL;
1924 double numsets = 1;
1925 ListCell *lc;
1926
1927 if (groupingSets == NIL)
1928 return NIL;
1929
1930 foreach(lc, groupingSets)
1931 {
1932 List *current_result = NIL;
1933 GroupingSet *gs = lfirst(lc);
1934
1935 current_result = expand_groupingset_node(gs);
1936
1937 Assert(current_result != NIL);
1938
1939 numsets *= list_length(current_result);
1940
1941 if (limit >= 0 && numsets > limit)
1942 return NIL;
1943
1944 expanded_groups = lappend(expanded_groups, current_result);
1945 }
1946
1947 /*
1948 * Do cartesian product between sublists of expanded_groups. While at it,
1949 * remove any duplicate elements from individual grouping sets (we must
1950 * NOT change the number of sets though)
1951 */
1952
1953 foreach(lc, (List *) linitial(expanded_groups))
1954 {
1955 result = lappend(result, list_union_int(NIL, (List *) lfirst(lc)));
1956 }
1957
1958 for_each_from(lc, expanded_groups, 1)
1959 {
1960 List *p = lfirst(lc);
1961 List *new_result = NIL;
1962 ListCell *lc2;
1963
1964 foreach(lc2, result)
1965 {
1966 List *q = lfirst(lc2);
1967 ListCell *lc3;
1968
1969 foreach(lc3, p)
1970 {
1971 new_result = lappend(new_result,
1972 list_union_int(q, (List *) lfirst(lc3)));
1973 }
1974 }
1975 result = new_result;
1976 }
1977
1978 /* Now sort the lists by length and deduplicate if necessary */
1979 if (!groupDistinct || list_length(result) < 2)
1980 list_sort(result, cmp_list_len_asc);
1981 else
1982 {
1983 ListCell *cell;
1984 List *prev;
1985
1986 /* Sort each groupset individually */
1987 foreach(cell, result)
1989
1990 /* Now sort the list of groupsets by length and contents */
1992
1993 /* Finally, remove duplicates */
1994 prev = linitial(result);
1995 for_each_from(cell, result, 1)
1996 {
1997 if (equal(lfirst(cell), prev))
1998 result = foreach_delete_current(result, cell);
1999 else
2000 prev = lfirst(cell);
2001 }
2002 }
2003
2004 return result;
2005}
2006
2007/*
2008 * get_aggregate_argtypes
2009 * Identify the specific datatypes passed to an aggregate call.
2010 *
2011 * Given an Aggref, extract the actual datatypes of the input arguments.
2012 * The input datatypes are reported in a way that matches up with the
2013 * aggregate's declaration, ie, any ORDER BY columns attached to a plain
2014 * aggregate are ignored, but we report both direct and aggregated args of
2015 * an ordered-set aggregate.
2016 *
2017 * Datatypes are returned into inputTypes[], which must reference an array
2018 * of length FUNC_MAX_ARGS.
2019 *
2020 * The function result is the number of actual arguments.
2021 */
2022int
2023get_aggregate_argtypes(Aggref *aggref, Oid *inputTypes)
2024{
2025 int numArguments = 0;
2026 ListCell *lc;
2027
2028 Assert(list_length(aggref->aggargtypes) <= FUNC_MAX_ARGS);
2029
2030 foreach(lc, aggref->aggargtypes)
2031 {
2032 inputTypes[numArguments++] = lfirst_oid(lc);
2033 }
2034
2035 return numArguments;
2036}
2037
2038/*
2039 * resolve_aggregate_transtype
2040 * Identify the transition state value's datatype for an aggregate call.
2041 *
2042 * This function resolves a polymorphic aggregate's state datatype.
2043 * It must be passed the aggtranstype from the aggregate's catalog entry,
2044 * as well as the actual argument types extracted by get_aggregate_argtypes.
2045 * (We could fetch pg_aggregate.aggtranstype internally, but all existing
2046 * callers already have the value at hand, so we make them pass it.)
2047 */
2048Oid
2050 Oid aggtranstype,
2051 Oid *inputTypes,
2052 int numArguments)
2053{
2054 /* resolve actual type of transition state, if polymorphic */
2055 if (IsPolymorphicType(aggtranstype))
2056 {
2057 /* have to fetch the agg's declared input types... */
2058 Oid *declaredArgTypes;
2059 int agg_nargs;
2060
2061 (void) get_func_signature(aggfuncid, &declaredArgTypes, &agg_nargs);
2062
2063 /*
2064 * VARIADIC ANY aggs could have more actual than declared args, but
2065 * such extra args can't affect polymorphic type resolution.
2066 */
2067 Assert(agg_nargs <= numArguments);
2068
2069 aggtranstype = enforce_generic_type_consistency(inputTypes,
2070 declaredArgTypes,
2071 agg_nargs,
2072 aggtranstype,
2073 false);
2074 pfree(declaredArgTypes);
2075 }
2076 return aggtranstype;
2077}
2078
2079/*
2080 * agg_args_support_sendreceive
2081 * Returns true if all non-byval types of aggref's args have send and
2082 * receive functions.
2083 */
2084bool
2086{
2087 ListCell *lc;
2088
2089 foreach(lc, aggref->args)
2090 {
2091 HeapTuple typeTuple;
2092 Form_pg_type pt;
2093 TargetEntry *tle = (TargetEntry *) lfirst(lc);
2094 Oid type = exprType((Node *) tle->expr);
2095
2096 /*
2097 * RECORD is a special case: it has typsend/typreceive functions, but
2098 * record_recv only works if passed the correct typmod to identify the
2099 * specific anonymous record type. array_agg_deserialize cannot do
2100 * that, so we have to disclaim support for the case.
2101 */
2102 if (type == RECORDOID)
2103 return false;
2104
2105 typeTuple = SearchSysCache1(TYPEOID, ObjectIdGetDatum(type));
2106 if (!HeapTupleIsValid(typeTuple))
2107 elog(ERROR, "cache lookup failed for type %u", type);
2108
2109 pt = (Form_pg_type) GETSTRUCT(typeTuple);
2110
2111 if (!pt->typbyval &&
2112 (!OidIsValid(pt->typsend) || !OidIsValid(pt->typreceive)))
2113 {
2114 ReleaseSysCache(typeTuple);
2115 return false;
2116 }
2117 ReleaseSysCache(typeTuple);
2118 }
2119 return true;
2120}
2121
2122/*
2123 * Create an expression tree for the transition function of an aggregate.
2124 * This is needed so that polymorphic functions can be used within an
2125 * aggregate --- without the expression tree, such functions would not know
2126 * the datatypes they are supposed to use. (The trees will never actually
2127 * be executed, however, so we can skimp a bit on correctness.)
2128 *
2129 * agg_input_types and agg_state_type identifies the input types of the
2130 * aggregate. These should be resolved to actual types (ie, none should
2131 * ever be ANYELEMENT etc).
2132 * agg_input_collation is the aggregate function's input collation.
2133 *
2134 * For an ordered-set aggregate, remember that agg_input_types describes
2135 * the direct arguments followed by the aggregated arguments.
2136 *
2137 * transfn_oid and invtransfn_oid identify the funcs to be called; the
2138 * latter may be InvalidOid, however if invtransfn_oid is set then
2139 * transfn_oid must also be set.
2140 *
2141 * transfn_oid may also be passed as the aggcombinefn when the *transfnexpr is
2142 * to be used for a combine aggregate phase. We expect invtransfn_oid to be
2143 * InvalidOid in this case since there is no such thing as an inverse
2144 * combinefn.
2145 *
2146 * Pointers to the constructed trees are returned into *transfnexpr,
2147 * *invtransfnexpr. If there is no invtransfn, the respective pointer is set
2148 * to NULL. Since use of the invtransfn is optional, NULL may be passed for
2149 * invtransfnexpr.
2150 */
2151void
2153 int agg_num_inputs,
2154 int agg_num_direct_inputs,
2155 bool agg_variadic,
2156 Oid agg_state_type,
2157 Oid agg_input_collation,
2158 Oid transfn_oid,
2159 Oid invtransfn_oid,
2160 Expr **transfnexpr,
2161 Expr **invtransfnexpr)
2162{
2163 List *args;
2164 FuncExpr *fexpr;
2165 int i;
2166
2167 /*
2168 * Build arg list to use in the transfn FuncExpr node.
2169 */
2170 args = list_make1(make_agg_arg(agg_state_type, agg_input_collation));
2171
2172 for (i = agg_num_direct_inputs; i < agg_num_inputs; i++)
2173 {
2174 args = lappend(args,
2175 make_agg_arg(agg_input_types[i], agg_input_collation));
2176 }
2177
2178 fexpr = makeFuncExpr(transfn_oid,
2179 agg_state_type,
2180 args,
2181 InvalidOid,
2182 agg_input_collation,
2184 fexpr->funcvariadic = agg_variadic;
2185 *transfnexpr = (Expr *) fexpr;
2186
2187 /*
2188 * Build invtransfn expression if requested, with same args as transfn
2189 */
2190 if (invtransfnexpr != NULL)
2191 {
2192 if (OidIsValid(invtransfn_oid))
2193 {
2194 fexpr = makeFuncExpr(invtransfn_oid,
2195 agg_state_type,
2196 args,
2197 InvalidOid,
2198 agg_input_collation,
2200 fexpr->funcvariadic = agg_variadic;
2201 *invtransfnexpr = (Expr *) fexpr;
2202 }
2203 else
2204 *invtransfnexpr = NULL;
2205 }
2206}
2207
2208/*
2209 * Like build_aggregate_transfn_expr, but creates an expression tree for the
2210 * serialization function of an aggregate.
2211 */
2212void
2214 Expr **serialfnexpr)
2215{
2216 List *args;
2217 FuncExpr *fexpr;
2218
2219 /* serialfn always takes INTERNAL and returns BYTEA */
2220 args = list_make1(make_agg_arg(INTERNALOID, InvalidOid));
2221
2222 fexpr = makeFuncExpr(serialfn_oid,
2223 BYTEAOID,
2224 args,
2225 InvalidOid,
2226 InvalidOid,
2228 *serialfnexpr = (Expr *) fexpr;
2229}
2230
2231/*
2232 * Like build_aggregate_transfn_expr, but creates an expression tree for the
2233 * deserialization function of an aggregate.
2234 */
2235void
2237 Expr **deserialfnexpr)
2238{
2239 List *args;
2240 FuncExpr *fexpr;
2241
2242 /* deserialfn always takes BYTEA, INTERNAL and returns INTERNAL */
2244 make_agg_arg(INTERNALOID, InvalidOid));
2245
2246 fexpr = makeFuncExpr(deserialfn_oid,
2247 INTERNALOID,
2248 args,
2249 InvalidOid,
2250 InvalidOid,
2252 *deserialfnexpr = (Expr *) fexpr;
2253}
2254
2255/*
2256 * Like build_aggregate_transfn_expr, but creates an expression tree for the
2257 * final function of an aggregate, rather than the transition function.
2258 */
2259void
2261 int num_finalfn_inputs,
2262 Oid agg_state_type,
2263 Oid agg_result_type,
2264 Oid agg_input_collation,
2265 Oid finalfn_oid,
2266 Expr **finalfnexpr)
2267{
2268 List *args;
2269 int i;
2270
2271 /*
2272 * Build expr tree for final function
2273 */
2274 args = list_make1(make_agg_arg(agg_state_type, agg_input_collation));
2275
2276 /* finalfn may take additional args, which match agg's input types */
2277 for (i = 0; i < num_finalfn_inputs - 1; i++)
2278 {
2279 args = lappend(args,
2280 make_agg_arg(agg_input_types[i], agg_input_collation));
2281 }
2282
2283 *finalfnexpr = (Expr *) makeFuncExpr(finalfn_oid,
2284 agg_result_type,
2285 args,
2286 InvalidOid,
2287 agg_input_collation,
2289 /* finalfn is currently never treated as variadic */
2290}
2291
2292/*
2293 * Convenience function to build dummy argument expressions for aggregates.
2294 *
2295 * We really only care that an aggregate support function can discover its
2296 * actual argument types at runtime using get_fn_expr_argtype(), so it's okay
2297 * to use Param nodes that don't correspond to any real Param.
2298 */
2299static Node *
2300make_agg_arg(Oid argtype, Oid argcollation)
2301{
2302 Param *argp = makeNode(Param);
2303
2304 argp->paramkind = PARAM_EXEC;
2305 argp->paramid = -1;
2306 argp->paramtype = argtype;
2307 argp->paramtypmod = -1;
2308 argp->paramcollid = argcollation;
2309 argp->location = -1;
2310 return (Node *) argp;
2311}
int16 AttrNumber
Definition: attnum.h:21
Bitmapset * bms_add_member(Bitmapset *a, int x)
Definition: bitmapset.c:815
#define Min(x, y)
Definition: c.h:1004
uint32_t uint32
Definition: c.h:539
unsigned int Index
Definition: c.h:620
#define OidIsValid(objectId)
Definition: c.h:775
int errmsg_internal(const char *fmt,...)
Definition: elog.c:1161
int errdetail(const char *fmt,...)
Definition: elog.c:1207
int errhint(const char *fmt,...)
Definition: elog.c:1321
int errcode(int sqlerrcode)
Definition: elog.c:854
int errmsg(const char *fmt,...)
Definition: elog.c:1071
#define _(x)
Definition: elog.c:91
#define ERROR
Definition: elog.h:39
#define elog(elevel,...)
Definition: elog.h:226
#define ereport(elevel,...)
Definition: elog.h:150
bool equal(const void *a, const void *b)
Definition: equalfuncs.c:223
void err(int eval, const char *fmt,...)
Definition: err.c:43
char * format_type_be(Oid type_oid)
Definition: format_type.c:343
Assert(PointerIsAligned(start, uint64))
#define HeapTupleIsValid(tuple)
Definition: htup.h:78
static void * GETSTRUCT(const HeapTupleData *tuple)
Definition: htup_details.h:728
static int pg_cmp_s32(int32 a, int32 b)
Definition: int.h:646
int b
Definition: isn.c:74
int a
Definition: isn.c:73
int i
Definition: isn.c:77
if(TABLE==NULL||TABLE_index==NULL)
Definition: isn.c:81
List * lappend(List *list, void *datum)
Definition: list.c:339
void list_sort(List *list, list_sort_comparator cmp)
Definition: list.c:1674
List * list_copy_tail(const List *oldlist, int nskip)
Definition: list.c:1613
List * list_concat(List *list1, const List *list2)
Definition: list.c:561
List * lappend_int(List *list, int datum)
Definition: list.c:357
List * list_intersection_int(const List *list1, const List *list2)
Definition: list.c:1200
List * lappend_oid(List *list, Oid datum)
Definition: list.c:375
bool list_member_int(const List *list, int datum)
Definition: list.c:702
int list_int_cmp(const ListCell *p1, const ListCell *p2)
Definition: list.c:1691
List * list_truncate(List *list, int new_size)
Definition: list.c:631
List * list_union_int(const List *list1, const List *list2)
Definition: list.c:1113
Oid get_func_signature(Oid funcid, Oid **argtypes, int *nargs)
Definition: lsyscache.c:1863
Datum lca(PG_FUNCTION_ARGS)
Definition: ltree_op.c:571
Var * makeVar(int varno, AttrNumber varattno, Oid vartype, int32 vartypmod, Oid varcollid, Index varlevelsup)
Definition: makefuncs.c:66
TargetEntry * makeTargetEntry(Expr *expr, AttrNumber resno, char *resname, bool resjunk)
Definition: makefuncs.c:289
FuncExpr * makeFuncExpr(Oid funcid, Oid rettype, List *args, Oid funccollid, Oid inputcollid, CoercionForm fformat)
Definition: makefuncs.c:594
void pfree(void *pointer)
Definition: mcxt.c:1594
Oid exprType(const Node *expr)
Definition: nodeFuncs.c:42
int exprLocation(const Node *expr)
Definition: nodeFuncs.c:1388
#define expression_tree_mutator(n, m, c)
Definition: nodeFuncs.h:155
#define query_tree_walker(q, w, c, f)
Definition: nodeFuncs.h:158
#define expression_tree_walker(n, w, c)
Definition: nodeFuncs.h:153
#define query_tree_mutator(q, m, c, f)
Definition: nodeFuncs.h:160
#define QTW_EXAMINE_RTES_BEFORE
Definition: nodeFuncs.h:27
#define IsA(nodeptr, _type_)
Definition: nodes.h:164
#define copyObject(obj)
Definition: nodes.h:232
#define makeNode(_type_)
Definition: nodes.h:161
static int check_agg_arguments(ParseState *pstate, List *directargs, List *args, Expr *filter)
Definition: parse_agg.c:641
static void check_agglevels_and_constraints(ParseState *pstate, Node *expr)
Definition: parse_agg.c:304
static Var * buildGroupedVar(int attnum, Index ressortgroupref, substitute_grouped_columns_context *context)
Definition: parse_agg.c:1734
Node * transformGroupingFunc(ParseState *pstate, GroupingFunc *p)
Definition: parse_agg.c:265
void build_aggregate_finalfn_expr(Oid *agg_input_types, int num_finalfn_inputs, Oid agg_state_type, Oid agg_result_type, Oid agg_input_collation, Oid finalfn_oid, Expr **finalfnexpr)
Definition: parse_agg.c:2260
static Node * make_agg_arg(Oid argtype, Oid argcollation)
Definition: parse_agg.c:2300
static void finalize_grouping_exprs(Node *node, ParseState *pstate, Query *qry, List *groupClauses, bool hasJoinRTEs, bool have_non_var_grouping)
Definition: parse_agg.c:1567
Oid resolve_aggregate_transtype(Oid aggfuncid, Oid aggtranstype, Oid *inputTypes, int numArguments)
Definition: parse_agg.c:2049
void build_aggregate_deserialfn_expr(Oid deserialfn_oid, Expr **deserialfnexpr)
Definition: parse_agg.c:2236
void transformWindowFuncCall(ParseState *pstate, WindowFunc *wfunc, WindowDef *windef)
Definition: parse_agg.c:851
static bool check_agg_arguments_walker(Node *node, check_agg_arguments_context *context)
Definition: parse_agg.c:722
static Node * substitute_grouped_columns_mutator(Node *node, substitute_grouped_columns_context *context)
Definition: parse_agg.c:1353
void parseCheckAggregates(ParseState *pstate, Query *qry)
Definition: parse_agg.c:1111
static int cmp_list_len_asc(const ListCell *a, const ListCell *b)
Definition: parse_agg.c:1876
void build_aggregate_transfn_expr(Oid *agg_input_types, int agg_num_inputs, int agg_num_direct_inputs, bool agg_variadic, Oid agg_state_type, Oid agg_input_collation, Oid transfn_oid, Oid invtransfn_oid, Expr **transfnexpr, Expr **invtransfnexpr)
Definition: parse_agg.c:2152
static bool finalize_grouping_exprs_walker(Node *node, substitute_grouped_columns_context *context)
Definition: parse_agg.c:1587
void transformAggregateCall(ParseState *pstate, Aggref *agg, List *args, List *aggorder, bool agg_distinct)
Definition: parse_agg.c:109
List * expand_grouping_sets(List *groupingSets, bool groupDistinct, int limit)
Definition: parse_agg.c:1920
static int cmp_list_len_contents_asc(const ListCell *a, const ListCell *b)
Definition: parse_agg.c:1886
static List * expand_groupingset_node(GroupingSet *gs)
Definition: parse_agg.c:1774
static Node * substitute_grouped_columns(Node *node, ParseState *pstate, Query *qry, List *groupClauses, List *groupClauseCommonVars, List *gset_common, bool have_non_var_grouping, List **func_grouped_rels)
Definition: parse_agg.c:1331
bool agg_args_support_sendreceive(Aggref *aggref)
Definition: parse_agg.c:2085
int get_aggregate_argtypes(Aggref *aggref, Oid *inputTypes)
Definition: parse_agg.c:2023
void build_aggregate_serialfn_expr(Oid serialfn_oid, Expr **serialfnexpr)
Definition: parse_agg.c:2213
List * transformSortClause(ParseState *pstate, List *orderlist, List **targetlist, ParseExprKind exprKind, bool useSQL99)
List * transformDistinctClause(ParseState *pstate, List **targetlist, List *sortClause, bool is_agg)
List * addTargetToSortList(ParseState *pstate, TargetEntry *tle, List *sortlist, List *targetlist, SortBy *sortby)
Oid enforce_generic_type_consistency(const Oid *actual_arg_types, Oid *declared_arg_types, int nargs, Oid rettype, bool allow_poly)
Node * transformExpr(ParseState *pstate, Node *expr, ParseExprKind exprKind)
Definition: parse_expr.c:117
const char * ParseExprKindName(ParseExprKind exprKind)
Definition: parse_expr.c:3132
int parser_errposition(ParseState *pstate, int location)
Definition: parse_node.c:106
@ EXPR_KIND_EXECUTE_PARAMETER
Definition: parse_node.h:76
@ EXPR_KIND_DOMAIN_CHECK
Definition: parse_node.h:69
@ EXPR_KIND_COPY_WHERE
Definition: parse_node.h:82
@ EXPR_KIND_COLUMN_DEFAULT
Definition: parse_node.h:70
@ EXPR_KIND_DISTINCT_ON
Definition: parse_node.h:61
@ EXPR_KIND_MERGE_WHEN
Definition: parse_node.h:58
@ EXPR_KIND_STATS_EXPRESSION
Definition: parse_node.h:74
@ EXPR_KIND_INDEX_EXPRESSION
Definition: parse_node.h:72
@ EXPR_KIND_MERGE_RETURNING
Definition: parse_node.h:65
@ EXPR_KIND_PARTITION_BOUND
Definition: parse_node.h:79
@ EXPR_KIND_FUNCTION_DEFAULT
Definition: parse_node.h:71
@ EXPR_KIND_WINDOW_FRAME_RANGE
Definition: parse_node.h:51
@ EXPR_KIND_VALUES
Definition: parse_node.h:66
@ EXPR_KIND_FROM_SUBSELECT
Definition: parse_node.h:44
@ EXPR_KIND_POLICY
Definition: parse_node.h:78
@ EXPR_KIND_WINDOW_FRAME_GROUPS
Definition: parse_node.h:53
@ EXPR_KIND_PARTITION_EXPRESSION
Definition: parse_node.h:80
@ EXPR_KIND_JOIN_USING
Definition: parse_node.h:43
@ EXPR_KIND_INDEX_PREDICATE
Definition: parse_node.h:73
@ EXPR_KIND_ORDER_BY
Definition: parse_node.h:60
@ EXPR_KIND_OFFSET
Definition: parse_node.h:63
@ EXPR_KIND_JOIN_ON
Definition: parse_node.h:42
@ EXPR_KIND_HAVING
Definition: parse_node.h:47
@ EXPR_KIND_INSERT_TARGET
Definition: parse_node.h:55
@ EXPR_KIND_ALTER_COL_TRANSFORM
Definition: parse_node.h:75
@ EXPR_KIND_LIMIT
Definition: parse_node.h:62
@ EXPR_KIND_WHERE
Definition: parse_node.h:46
@ EXPR_KIND_UPDATE_TARGET
Definition: parse_node.h:57
@ EXPR_KIND_SELECT_TARGET
Definition: parse_node.h:54
@ EXPR_KIND_RETURNING
Definition: parse_node.h:64
@ EXPR_KIND_GENERATED_COLUMN
Definition: parse_node.h:83
@ EXPR_KIND_NONE
Definition: parse_node.h:40
@ EXPR_KIND_CALL_ARGUMENT
Definition: parse_node.h:81
@ EXPR_KIND_GROUP_BY
Definition: parse_node.h:59
@ EXPR_KIND_OTHER
Definition: parse_node.h:41
@ EXPR_KIND_FROM_FUNCTION
Definition: parse_node.h:45
@ EXPR_KIND_TRIGGER_WHEN
Definition: parse_node.h:77
@ EXPR_KIND_FILTER
Definition: parse_node.h:48
@ EXPR_KIND_UPDATE_SOURCE
Definition: parse_node.h:56
@ EXPR_KIND_CHECK_CONSTRAINT
Definition: parse_node.h:68
@ EXPR_KIND_WINDOW_PARTITION
Definition: parse_node.h:49
@ EXPR_KIND_CYCLE_MARK
Definition: parse_node.h:84
@ EXPR_KIND_WINDOW_FRAME_ROWS
Definition: parse_node.h:52
@ EXPR_KIND_WINDOW_ORDER
Definition: parse_node.h:50
@ EXPR_KIND_VALUES_SINGLE
Definition: parse_node.h:67
char * get_rte_attribute_name(RangeTblEntry *rte, AttrNumber attnum)
ParseNamespaceItem * addRangeTableEntryForGroup(ParseState *pstate, List *groupClauses)
@ GROUPING_SET_CUBE
Definition: parsenodes.h:1531
@ GROUPING_SET_SIMPLE
Definition: parsenodes.h:1529
@ GROUPING_SET_ROLLUP
Definition: parsenodes.h:1530
@ GROUPING_SET_SETS
Definition: parsenodes.h:1532
@ GROUPING_SET_EMPTY
Definition: parsenodes.h:1528
@ RTE_JOIN
Definition: parsenodes.h:1043
@ RTE_CTE
Definition: parsenodes.h:1047
@ RTE_RELATION
Definition: parsenodes.h:1041
#define FRAMEOPTION_DEFAULTS
Definition: parsenodes.h:634
#define rt_fetch(rangetable_index, rangetable)
Definition: parsetree.h:31
NameData attname
Definition: pg_attribute.h:41
int16 attnum
Definition: pg_attribute.h:74
void * arg
#define FUNC_MAX_ARGS
bool check_functional_grouping(Oid relid, Index varno, Index varlevelsup, List *grouping_columns, List **constraintDeps)
#define lfirst(lc)
Definition: pg_list.h:172
static int list_length(const List *l)
Definition: pg_list.h:152
#define NIL
Definition: pg_list.h:68
#define forboth(cell1, list1, cell2, list2)
Definition: pg_list.h:518
#define lfirst_int(lc)
Definition: pg_list.h:173
#define foreach_delete_current(lst, var_or_cell)
Definition: pg_list.h:391
#define list_make1(x1)
Definition: pg_list.h:212
#define for_each_from(cell, lst, N)
Definition: pg_list.h:414
#define linitial(l)
Definition: pg_list.h:178
#define lfirst_oid(lc)
Definition: pg_list.h:174
#define list_make2(x1, x2)
Definition: pg_list.h:214
FormData_pg_type * Form_pg_type
Definition: pg_type.h:261
static Datum ObjectIdGetDatum(Oid X)
Definition: postgres.h:262
#define InvalidOid
Definition: postgres_ext.h:37
unsigned int Oid
Definition: postgres_ext.h:32
@ PARAM_EXEC
Definition: primnodes.h:385
@ COERCE_EXPLICIT_CALL
Definition: primnodes.h:753
bool contain_windowfuncs(Node *node)
Definition: rewriteManip.c:214
int locate_agg_of_level(Node *node, int levelsup)
Definition: rewriteManip.c:149
int locate_windowfunc(Node *node)
Definition: rewriteManip.c:251
List * aggdistinct
Definition: primnodes.h:493
List * aggdirectargs
Definition: primnodes.h:484
List * args
Definition: primnodes.h:487
Expr * aggfilter
Definition: primnodes.h:496
ParseLoc location
Definition: primnodes.h:526
List * aggorder
Definition: primnodes.h:490
Index agglevelsup
Definition: primnodes.h:570
ParseLoc location
Definition: primnodes.h:573
List * content
Definition: parsenodes.h:1539
Definition: pg_list.h:54
Definition: nodes.h:135
ParseLoc location
Definition: primnodes.h:403
int32 paramtypmod
Definition: primnodes.h:399
int paramid
Definition: primnodes.h:396
Oid paramtype
Definition: primnodes.h:397
ParamKind paramkind
Definition: primnodes.h:395
Oid paramcollid
Definition: primnodes.h:401
AttrNumber p_varattno
Definition: parse_node.h:331
AttrNumber p_varattnosyn
Definition: parse_node.h:337
ParseNamespaceColumn * p_nscolumns
Definition: parse_node.h:299
ParseState * parentParseState
Definition: parse_node.h:194
bool p_hasWindowFuncs
Definition: parse_node.h:227
ParseNamespaceItem * p_grouping_nsitem
Definition: parse_node.h:211
ParseExprKind p_expr_kind
Definition: parse_node.h:214
List * p_windowdefs
Definition: parse_node.h:213
int p_next_resno
Definition: parse_node.h:215
List * p_rtable
Definition: parse_node.h:196
bool p_hasAggs
Definition: parse_node.h:226
bool groupDistinct
Definition: parsenodes.h:217
List * groupClause
Definition: parsenodes.h:216
Node * havingQual
Definition: parsenodes.h:221
List * rtable
Definition: parsenodes.h:175
List * targetList
Definition: parsenodes.h:198
List * groupingSets
Definition: parsenodes.h:219
Index ctelevelsup
Definition: parsenodes.h:1227
RTEKind rtekind
Definition: parsenodes.h:1076
Expr * expr
Definition: primnodes.h:2225
Index ressortgroupref
Definition: primnodes.h:2231
Definition: primnodes.h:262
ParseLoc location
Definition: primnodes.h:310
AttrNumber varattno
Definition: primnodes.h:274
int varno
Definition: primnodes.h:269
Index varlevelsup
Definition: primnodes.h:294
List * orderClause
Definition: parsenodes.h:593
ParseLoc location
Definition: parsenodes.h:597
List * partitionClause
Definition: parsenodes.h:592
Node * startOffset
Definition: parsenodes.h:595
char * refname
Definition: parsenodes.h:591
Node * endOffset
Definition: parsenodes.h:596
int frameOptions
Definition: parsenodes.h:594
char * name
Definition: parsenodes.h:590
List * args
Definition: primnodes.h:594
Index winref
Definition: primnodes.h:600
ParseLoc location
Definition: primnodes.h:606
void ReleaseSysCache(HeapTuple tuple)
Definition: syscache.c:264
HeapTuple SearchSysCache1(int cacheId, Datum key1)
Definition: syscache.c:220
TargetEntry * get_sortgroupclause_tle(SortGroupClause *sgClause, List *targetList)
Definition: tlist.c:367
Node * get_sortgroupclause_expr(SortGroupClause *sgClause, List *targetList)
Definition: tlist.c:379
Node * flatten_join_alias_vars(PlannerInfo *root, Query *query, Node *node)
Definition: var.c:789
int locate_var_of_level(Node *node, int levelsup)
Definition: var.c:555
const char * type